Statistical Guarantees for Local Graph Clustering


Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is independent of the size of the input graph. In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the performance of the l1-regularized PageRank method (a popular local graph clustering method) for the recovery of a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been generated by a random model, we present two results. In the first, we show that the optimal support of l1-regularized PageRank recovers the full target cluster, with bounded false positives. In the second, we show that if the seed node is connected solely to the target cluster then the optimal support of l1-regularized PageRank recovers exactly the target cluster. We also show that the solution path of l1-regularized PageRank is monotonic. From a computational perspective, this permits the application of the forward stagewise algorithm, which in turn permits us to approximate the entire solution path of the local cluster in a running time that does not depend on the size of the entire graph.

The 23rd International Conference on Artificial Intelligence and Statistics