
Catch the Wind: Graph Workload Balancing on
Cloud

Zechao Shang, Jeffrey Xu Yu

The Chinese University of Hong Kong, Hong Kong, China
{zcshang,yu}@se.cuhk.edu.hk

Abstract— Graph partitioning is a key issue in graph database
processing systems for achieving high efficiency on Cloud. How-
ever, the balanced graph partitioning itself is difficult because it is
known to be NP-complete. In addition a static graph partitioning
cannot keep all graph algorithms efficient for a long time in
parallel on Cloud because the workload balancing in different
iterations for different graph algorithms are all possible different.
In this paper, we investigate graph behaviors by exploring the
working window (we call it wind) changes, where a working
window is a set of active vertices that a graph algorithm really
needs to access in parallel computing. We investigated nine classic
graph algorithms using real datasets, and propose simple yet
effective policies that can achieve both high graph workload
balancing and efficient partition on Cloud.

I. INTRODUCTION

Due to the large number of new applications need to deal
with massive graphs, several graph database processing sys-
tems are developed [22]. As one of the representatives, Google
has developed Pregel [15] as its internal graph processing
platform based on bulk-synchronous parallel model (BSP)
[25]. Pregel takes a vertex-centric approach and computes
in a sequence of supersteps. In a superstep, Pregel applies
a user-defined function (UDF) on every active vertex v in
parallel, with the capability of receiving messages from other
vertices to v in the previous superstep, and the capability of
sending messages to other vertices (neighbors of v), which will
be delivered in the next superstep. The idea behind Pregel
is similar to MapReduce [7]. But, as pointed out in [15],
MapReduce needs to pass the massive graph itself from one
step to another step iteratively, which is time consuming.
Pregel adopts BSP and implements a stateful model to support
long-lived processes. Besides Google’s own implementation,
there are some public open source implementations which take
similar approaches, such as HAMA [1] and Giraph [2]. Shao et
al. in [22] survey systems and implementations for managing
and mining large graphs on Cloud.

On Cloud with K computational nodes1, the efficiency of
any graph algorithm2 relies on how to partition a large graph
into K subgraphs, where all subgraphs are similar in size,
the sets of the vertices of the K subgraphs are disjoint, and
the number of edges across two subgraphs is minimized. Here,
the similar in size is for workload balancing and the minimum

1We use node to indicate a computational node, and vertex to indicate a
vertex in the graph

2Here we mean general graph algorithms run on Pregel, which do not aware
the underlying distributed environment

number of crossing edges is for communication cost minimiza-
tion, in parallel computing. However, the graph partitioning is
challenging because it is known to be NP-complete [11], [4],
and is challenging on Cloud as partitioning extremely large,
irregular datasets is only beginning to be addressed [8]. Cur-
rently, the de-facto standard of graph partitioning is random
partitioning for handling large graphs like social networks
[20]. The two main reasons behind the random partitioning
of large graphs are: (i) the extremely high cost of graph
partitioning even in parallel [21] and (ii) the questionable
efficiency that a single graph partitioning can achieve for any
graph algorithms in general, where the efficiency is achieved
by workload balancing among all computational nodes on
Cloud. To deal with the graph partitioning, several replication
based approaches are recently proposed [20], [16], [26], where
the sets of vertices in the K subgraphs can be overlapped.
Yang et al. in [26] investigate dynamic adaption of changing
workload with such replication based on a reasonable good
initial partitioning. Stanton et al. in [23] study several heuristic
methods for graph partitioning under the stream computation
model. Although they achieve considerable performance and
scalability, they deal with static workloads. In this paper, as
an attempt, we concentrate ourselves on dynamic workload
balancing based on the vertex-centric computing that Pregel
or similar systems take, without any requirements on the
initial partitioning, and we do not allow vertex overlapping
between computational nodes, because vertex overlapping may
require an additional mechanism with possible high overhead
for consistency maintenance, and costs more storage.

The main contributions of this work are summarized below.
We investigate graph behaviors when executing graph algo-
rithms in Pregel. The graph behavior is modeled as the set of
the active vertices that a graph algorithm really needs to access
in a superstep. The motivation behind is that we observe that
the workload balancing should not be done for the entire graph
once and thus used forever, because a graph algorithm does
not always need to access all vertices in every superstep. This
explains why a single static graph partitioning cannot achieve
workload balancing because such graph partitioning is built
for the entire graph. We investigate the graph behaviors by
exploring the working window changes (we call it wind for
short). We classify nine classic graph algorithms into three
categories, and conduct extensive experimental studies on the
working window changes for a random graph partitioning.
Based on our experimental studies, we propose simple yet

978-1-4673-4910-9/13/$31.00 © 2013 IEEE ICDE Conference 2013553

effective policies that can achieve workload balancing for the
active vertices and reduce the number of edges across different
computational nodes in supersteps starting from an initial
random graph partitioning. We confirm the effectiveness and
the efficiency of our policies on a prototyped system we have
built on top of HAMA [1], an open source implementation of
Pregel.

The remainder of the paper is organized as follows. We
discuss Pregel in Section II on which our prototyped system is
built up, and discuss nine graph algorithms in three categories
to which we investigate how to support dynamic workload
balancing in Section III. We show our experimental studies in
Section V. We discuss the related work on graph partitioning
in Section VI, and conclude our paper in Section VII.

II. THE PREGEL

Google has developed Pregel [15] as its internal graph
processing platform based on bulk-synchronous parallel model
BSP [25]. Pregel distributes data on all computational nodes,
and during the entire computing all data are assumed to reside
in main memory. Pregel takes a vertex-centric approach and
computes in a sequence of supersteps. In each superstep, every
node in Pregel computes a user-defined function (UDF) against
each vertex in a graph in parallel. The UDF computes u’s
value based on the receiving messages to u, which are sent
from other vertices in the previous superstep, and the UDF
may also send messages from u to other vertices (neighbors
of u) which will receive the messages in the next superstep.
In general, a vertex u can receive/send messages from/to its
neighbors which reside in the same or different nodes. The
synchronization is done at the end of every superstep to ensure
that all nodes complete their tasks (including sending/receiving
messages) before entering the next superstep.

Pregel hides the underlying communication mechanism
completely. The application to be built on top of Pregel
cannot control any low level operations such as mode of send-
ing/receiving messages, workload balancing, data partition and
replication.

Some functions provided in the vertex-centric API in Pregel
are shown below for accessing vertices.
class Vertex {

VertexValue getVertexValue();
void setVertexValue(Value);
int getSuperStep();
void SendMessageTo(Vertex, MessageValue);
void VoteToHalt();
void abstract UDF (MessageIterator);

}
Here, getVertexValue() and setVertexValue() get/set the vertex
value, respectively. SendMessageTo() takes two inputs: the
vertex to be sent and the message to be delivered. getSuper-
Step() gets the current superstep number. UDF is the function
to be implemented by an application. The input to UDF is
a MessageIterator, which is used to access every receiving
messages to the corresponding vertex. In the following, for
simplicity, for a vertex u, we take the MessageIterator as a
set of messages to u denoted as Mu. Any vertex is initially
set as active, and becomes inactive by calling VoteToHalt() by

Algorithm 1: A Computational Node in Pregel

1 foreach active vertex u do
2 u.UDF (received messages to u from the previous

superstep);

3 send out all outgoing messages;
4 enter barrier (all nodes wait here for sync);

TABLE I
SUMMARY OF THE NINE GRAPH ALGORITHMS

No. Algorithm Category
A1 PageRank [15], [17]

IA2 Semi-clustering [15]
A3 Graph Coloring [19], [13]
A4 Single Source Shortest Path (SSSP) [15], [5]

IIA5 Breadth First Search (BFS) [6]
A6 Random-Walk [18]
A7 Maximal Matching (MM) [15], [3]

IIIA8 Minimum Spanning Tree (MST) [19], [10]
A9 Maximal Independent Sets (MIS) [19], [14]

the vertex itself. An inactive vertex will become active again
when it receives message(s). The Pregel repeats the supersteps
until all vertices become inactive.

Algorithm 1 depicts a node in Pregel. In the for loop, it
computes the UDF for each active vertex u in a superstep,
and then sends out all messages from a vertex that requests.
The sending (line 3) in Algorithm 1 is completely different
from the member function of SendMessageTo() in the Vertex
class. The latter is to highlight that it needs to send messages
and the former is the one that really sends messages. Besides
Google’s own implementation, there are some public open
source implementations which take the similar approaches,
such as HAMA [1] and Giraph [2].

III. NINE GRAPH ALGORITHMS

We discuss nine classic graph algorithms including PageR-
ank [15], [17], Semi-clustering [15], Graph Coloring [19],
[13], Single Source Shortest Path (SSSP) [15], [5], Breadth
First Search (BFS) [6], Random-Walk [18], Maximal Matching
(MM) [15], [3], Minimum Spanning Tree (MST) [19], [10],
and Maximal Independent Sets (MIS) [19], [14]. In the Pregel
framework, all graph algorithms need to implement a vertex-
centric UDF function as indicated in line 2 in Algorithm 1. We
divide all the 9 graph algorithms into 3 categories by the ways
of a UDF function being designed, namely, Always-Active-
Style, Traversal-Style, and Multi-Phase-Style. We discuss them
below.

Always-Active-Style (Category I): By Always-Active-Style,
every vertex in every superstep sends messages to all its
neighbors. The main steps are illustrated in Algorithm 2.
Here, the UDF function defined on a vertex u receives a
set of messages Mu, which were sent to u in the immediate
previous superstep by the neighbors of u. The UDF function
first computes the value of u based on both the old value that u
holds and the messages received (line 1). Then, it will inform
all u’s neighbors of the current value of u (line 2-3), and also

554

Algorithm 2: Always-Active-Style (Mu)
Input: Mu, all incoming messages to vertex u

1 Call an aggregate function on u based on Mu;
2 foreach outgoing edge e = (u, v) do
3 Send a message to v;

4 Change the local vertex value on u if necessary;

Algorithm 3: PageRank-UDF
Input: Mu, all incoming messages to vertex u

1 sum← 0;
2 foreach message m ∈Mu do
3 sum← sum+m;

4 p← u’s value;
5 p← α · p+ (1− α) · sum;
6 foreach outgoing edge e = (u, v) from u do
7 Send a message with value p/degree(u) to vertex v;

8 Set u’s value to be p;

update the current value of u to be held for the next superstep
(line 4). PageRank, Semi-clustering, and Graph Coloring are
all in this category.

As an example, the vertex-centric PageRank UDF is shown
in Algorithm 3 based on Pregel implementation [15]. Every
vertex is assigned to an initial value, which is its initial
rank. The UDF function computes a new rank at the i-th
superstep for vertex u by combining its previous rank and
the aggregation of the ranks of its neighbors (line 1-5). It then
sends the new rank of u to its neighbors (line 6-7), and sets the
new rank of u to be held for the next iteration. The termination
condition is based on the pre-determined number of supersteps,
and all nodes will terminate at the same time. It is important to
notice that all vertices are active sending their updated ranks
to their neighbors, because such rank values have impacts on
the ranks of their neighbors, and their neighbors’ neighbors,
etc.

Traversal-Style (Category II): By Traversal-Style, a specific
vertex is treated as a starting point, and the other vertices
are involved in computing based on how it propagates on
conditions. The main steps are illustrated in Algorithm 4.
Initially, only one vertex will be set as active and all others are
in the inactive status. In the computing, a vertex u becomes
active when it receives some messages (Mu). As shown in
Algorithm 4, the UDF function updates the value of u based on
the messages received (line 1-2). If the value of u is updated,
it implies that it is now involved in the computing of the
given graph algorithm, and it will propagate to some of its
selected neighbors on conditions (line 4-5). Because u does not
necessarily need to be involved in the computing all the time,
u will vote to halt by calling the member function VoteToHalt()
to voluntarily be inactive (line 7). Note that a vertex will be
waked up by the messages received. It is interesting to note
that the category I algorithms, for example PageRank, cannot
effectively use VoteToHalt(), because the value of a vertex will

Algorithm 4: Traversal-Style (Mu)
Input: Mu, all incoming messages to vertex u

1 Call an aggregate function on u based on Mu;
2 Update the vertex value for u if needed;
3 if u’s vertex value is updated then
4 foreach outgoing edge e = (u, v) do
5 Send a message to v on condition;

6 Set the local vertex value on u if needed;

7 VoteToHalt();

Algorithm 5: SSSP-UDF
Input: Mu, all incoming messages to vertex u

1 dmin ←∞;
2 foreach message m ∈Mu do
3 dmin ← min(m, dmin);

4 p← u’s value;
5 if dmin < p then
6 foreach outgoing edge e = (u, v) from u do
7 Send a message to v, with a value of dmin + ω(u, v);

8 Set u’s local value as dmin;

9 VoteToHalt();

always affect others, even if the value of the vertex satisfies
the converge condition, for example, the error bound between
the current value and its previous value is less than or equal to
a threshold. Typical algorithms in the category II are Breadth
First Search [6], Single Source Shortest Path [6], and Random-
Walk [18].

The implementation of SSSP is illustrated in Algorithm 5.
Initially every vertex u, except the start vertex, is assigned to
an initial value ∞ for the shortest distance from the starting
vertex to u. In SSSP, a vertex u receives messages from some
of its neighbors if some of its neighbors have updated their
shortest distance from the starting vertex. The UDF function
will determine the new shortest distance from the starting
vertex to u itself via some of u’s neighbors (line 1-3). If the
new shortest distance becomes smaller, u will send messages
to its neighbors to tell them the new updates (line 6-7), where
ω(u, v) is the edge weight on the edge from u to its neighbor
v. Because u may not necessarily need to be involved in the
shortest distance computing, it votes to halt (line 9).

Multi-Phase-Style (Category III): As illustrated in Algo-
rithm 6, a single phase, for example, to identify one matching
edge among many, cannot be done in a single superstep,
because a matching edge is an edge (u, v) that neither u nor
v is involved in another matching edge. It needs to be done in
several supersteps in Pregel. The entire computation is divided
into a number of phases, and each phase, Pj is done in k
supersteps: Pj0 , Pj1 , · · · , Pji , · · · , Pik−1

. Typical algorithms
in the category III are MM [15], [3], MST [19], [10], and
MIS [19], [14].

We discuss the maximal matching problem (MM), as an
example, which is to find a maximal subset of edges, ME ,

555

Algorithm 6: Multi-Phase-Style (Mu)
Input: Mu, all incoming messages to vertex u

1 if u has completed its computing then
2 VoteToHalt(); return;

3 switch getSuperStep() % k do
4 ...;
5 case i /* 0 ≤ i < k */
6 call either Always-Active-Style or Traversal-Style style

UDF; break;

7 ...;

Algorithm 7: MM-UDF
Input: Mu, all incoming messages to vertex u

1 if u itself is a matched point then
2 VoteToHalt(); return;

3 switch getSuperStep() % 4 do
4 case 0 /* invitation */
5 foreach outgoing edge e = (u, v) from u do
6 Send a message to v to invite ;

7 acceptu ← false;
8 break;

9 case 1 /* acceptance */
10 Randomly pick an edge e = (u, v) up from Mu;
11 Send a message to v to accept; acceptu ← true; break;

12 case 2 /* confirmation */
13 if acceptu = false then
14 Randomly pick an edge e = (u, v) up from Mu;
15 Send a message to v to confirm;
16 Set u as a matched point; VoteToHalt(); break;

17 case 3 /* marking */
18 if Mu 6= ∅ then
19 Set u as a matched point; VoteToHalt(); break;

in a given graph G where no two edges in ME have a
common vertex. In Pregel, a randomized algorithm [3] is
used to support a bipartite maximal matching, which can be
extended to handle maximal matching in general graph. The
computation is divided into a number of phases, and each
phase, Pi, is done in four supersteps, namely, Pi0 , Pi1 , Pi2 ,
and Pi3 . In Pi0 , all vertices that have not been involved in any
matching send a message to their neighbors to invite them to
join a match. In Pi1 , a vertex randomly accepts one of the
invitations to join a matching, and replies the corresponding
sender a message, because a vertex may possibly receive many
matching invitations from its neighbors. In Pi2 , in a similar
fashion, a vertex that has sent invitations may receive several
acceptances, and will confirm one acceptance by replying a
message. In Pi3 , the vertex that receives a confirmation will
mark itself as marked. The computation repeats until no more
matches can be identified. As illustrated in Algorithm 7, one
important thing is that a vertex may not respond to any when
it has already been matched.

IV. SUPER-DYNAMIC PARTITIONING

In this section, we discuss two important issues which are
also conflict with each other in Pregel-like systems for large
graph processing. The two issues are workload balancing and
communication cost minimization. In Pregel, the number of
vertices is the dominant factor for workload in each compu-
tational node, because of its vertex-centric computing. The
workload balancing suggests that all nodes are best to have
similar amount of workload in every superstep. The intuition
is that the computing cost of a superstep is the max computing
cost of the node that has the largest workload. Workload
balancing will lead to minimization of computational cost
of supersteps. On the other hand, the communication cost
minimization suggests that the communication cost among
supersteps shall be minimized. It is worth noting that, in graph
processing in Pregel, such communication cost depends on
the number of messages across computational nodes, and the
number of messages is heavily dependent on the number of
edges that cross different computational nodes. Minimizing
the communication cost will significantly reduce the time for
synchronization. The two issues are important, because the
system excution time depends on both of them. The two issues
are conflict. First, balancing workload among computational
nodes may increase the number of edges that are across
different computational nodes which leads to possibly high
communication cost. Second, minimizing the communication
cost may make all workload goes to a single computational
node.

Graph Notations: Consider a graph G = (V,E), where V
is the set of vertices, and E ⊆ V × V is the set of directed
edges. We use n = |V |,m = |E| to denote the numbers of
vertices and edges, respectively.

A graph G will be distributed to the K computational nodes,
{N1, N2, · · · , NK}, in Pregel for parallel processing, where
all Ni have the same memory capacity C.

At the s-th superstep, each node Ni holds a subset of
vertices, V s

i ⊆ V under the condition that V s
i ∩ V s

j = ∅
for (i 6= j) and V =

⋃
V s
i , and holds a subset of internal

edges, IEs
i = {(u, v)|(u, v) ∈ E, u ∈ V s

i , v ∈ V s
i }. The

edges that cross nodes are called external edges. We use EEs
i,j

to denote the set of external edges which cross two different
computational nodes, Ni and Nj , i 6= j, such as EEs

i,j =
{(u, v)|(u, v) ∈ E, u ∈ V s

i , v ∈ V s
j } ∪ {(u, v)|(u, v) ∈

E, u ∈ V s
j , v ∈ V s

i }. The edges associated with partition Ni

is Es
i = ∪EEs

i,j ∪ IE
s
i .

Working Window, Workload, and Workload Balancing:
The computational cost on a computational node mainly
depends on the number of active vertices that receive messages
in the vertex-centric computing framework like Pregel. Here,
the active vertices are a subset of the entire vertices in a
superstep, because not all vertices will be invoked by messages
in a superstep. We call the set of active vertices in the s-th
superstep on a computational node Ni a working window, and
denote it as W s

i , and the entire working window at the s-th
superstep is W s = ∪Ki=1W

s
i . The average size of working

556

window per node at the s-th superstep is denoted as W
s
, which

is computed as W
s
= |W s|/K.

We consider the workload in the s-th superstep on a
computational node Ni denoted as Ws

i .

Ws
i = |W s

i |+ |AE
s
i | (1)

Here, |W s
i | is the number of active vertices on Ni, and AEs

i

is the active subset of the edges. The average workload in the
s-th superstep is Ws

=
∑K

i=1Ws
i /K.

Eq. (1) indicates the workload depends on two factors. |W s
i |

is the number of UDF functions must be invoked to compute,
and |AEs

i | is the number of messages that UDF functions must
process |W s

i |. Eq. (1) takes the simple sum of |W s
i | and |AEs

i |
for two reasons. First, it is based on our observations. For
most UDF functions, the number of computing operations is
linear w.r.t. the incoming messages. Second, the message seri-
alization/deserialization time is linear to the size of messages,
which usually overtakes other operations and dominates the
UDF execution time.

In addition, we use Ds
i,j to denote the number of messages

sent from Ni to Nj at the s-th superstep, which is based on
EEs

i,j . Ds
i,j implies the communication cost from Ni to Nj at

the s-th superstep. The total communication cost at the s-th
superstep is denoted as Ds.

Because it is very difficult to minimize the two objectives,
namely, workload balancing and communication cost mini-
mization, at the same time, in this paper, we study to minimize
communication cost under the condition that workloads are
balanced. The problem statement is given below.

Problem Statement: For a given graph algorithm expressible
in Pregel, the problem we study is to minimize

∑
sD

s, subject
to two conditions in every superstep: (1) |V s

i |+ |Es
i | ≤ C and

(2) at each superstep s, all computational nodes are balanced,
namely Ws

i ≤ (1 + ε)×Ws
,∀i ∈ {1..K} where 0 ≤ ε� 1.

The first condition suggests that a node Ni must be able to
hold the workload assigned, and the second condition suggests
that the workload must be balanced.

The problem is challenging. First, the problem itself is an
NP problem even in a static setting, as the size-balanced graph
partition problem is shown to be NP-complete [4]. In addition,
the active vertices, we are most interested in, are those vertices
that will be active in the near future rather than those vertices
that are active in the current superstep. This is because in
the current superstep the active vertices have already been
determined based on the messages already received from
the immediate previous superstep, and cannot be rebalanced.
Second, it is known to be very difficult to predict the workload
in parallel graph processing on computational nodes. Third,
there does not exist the optimal graph partitioning under one
set of conditions that can be efficiently used for any graph
problems in general, for the reason that the workloads vary
greatly, as discussed for the 3 categories of graph algorithms.
Fourth, this requests a super-dynamic solution during the
computation of a graph algorithm, that must be effective and
simple.

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

Fig. 1. A Graph Example

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

(a) PageRank

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

(b) BFS (Start from 1)

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

16

17

(c) MM

Fig. 2. Graph Examples

A. Various Working Window Behaviors

We show various working window behaviors using a graph
example. Fig. 1 shows a graph with 17 vertices and 31
edges. Assume that there are 3 nodes N1, N2, and N3. As
divided by the dotted line in Fig. 1, N1 holds the vertices
V1 = {v1, v2, v3, v4, v5} and the internal edges among V1,
N2 holds the vertices V2 = {v6, v7, v8, v9, v10, v11} and the
internal edges among V2, and N3 holds the vertices V3 =
{v12, v13, v14, v15, v16, v17} and the internal edges among V3,
respectively. The numbers of vertices in the 3 nodes are
balanced with 5, 6, and 6 vertices. It implies that it is workload
balanced if we simply let the working window W s

i = Vi, for
1 ≤ i ≤ 3, regardless the graph algorithms. The numbers
of external edges are the minimum: 2 edges between N1

and N2 and 3 edges between N2 and N3. It implies that
the communication cost is minimized. This graph partition
can be done by most state-of-the-art graph partitioner like
METIS [12].

Fig. 2 shows the the working windows in several supersteps
using 3 graph algorithms, PageRank, BFS, and MM. In every
superstep, a shaded vertex indicates an active vertex, and
a white vertex indicates an inactive vertex. Fig. 2(a) shows
the working windows for PageRank in the first 4 supersteps
from top to bottom. All vertices in every superstep are active.
Fig. 2(b) shows the working windows for BFS in the first 4
supersteps from top to bottom, starting from the starting vertex
v1. As can be seen from the supersteps, the 4 working windows
are, W 1 = {v1}, W 2 = {v2, v5}, W 3 = {v3, v4, v6}, and
W 4 = {v7, v8, v9, v10, v11}, in the 1st, 2nd, 3rd, and 4th
superstep, respectively. In the 1st and 2nd supersteps, the
working windows are in N1. In the 3rd superstep, N1 and
N2 have active vertices to work on, but the number of active
vertices is small. In the 4th superstep, all active vertices

557

0

0.25

0.5

0.75

1.0

1 5 10 15

si
ze

 o
f w

or
ki

ng
 s

et

superstep

(a) PageRank (A1)

0

0.25

0.5

0.75

1.0

1 5 10 15

si
ze

 o
f w

or
ki

ng
 s

et

superstep

(b) SSSP (A4)

0

0.25

0.5

0.75

1.0

1 5 10 15

si
ze

 o
f w

or
ki

ng
 s

et

superstep

(c) BFS (A5)

0

0.25

0.5

0.75

1.0

1 5 10 15

si
ze

 o
f w

or
ki

ng
 s

et

superstep

(d) MM (A7)

0

0.25

0.5

0.75

1.0

1 5 10 15

si
ze

 o
f w

or
ki

ng
 s

et

superstep

(e) MST (A8)

0

0.25

0.5

0.75

1.0

1 5 10 15

si
ze

 o
f w

or
ki

ng
 s

et

superstep

(f) MIS (A9)
Fig. 3. Working Window Sizes

are on N2. Fig. 2(c) shows the working windows for MM.
Unlike the previous figures, we show the 1st, 5th, 9th, and
13th supersteps, because a single phase consists of k = 4
supersteps. Initially, in the 1st superstep, all vertices are active.
In the later supersteps, unlike others, the node N3 does not
have much active vertices to work on.

As a remark, it is difficult to predict how the working
windows change from time to time in general as the algorithm
varies. Such changes possibly depend on the graph algorithm
to be used and the large graph to be processed.

B. Catch the Working Window Patterns

We investigate the behaviors of the nine graph algorithms
in Pregel in Table III, by analyzing the properties of working
windows. The 9 graph algorithms are numbered by A1, A2,
· · · , A9. We have conducted the testing using all the datasets
listed in our experimental studies. They all have the similar
behaviors. Below, we show the results using the CA-Condmat
data (http://snap.stanford.edu/data/), which is
a collaboration dataset with 23K vertices and 186K edges.
Auxiliary supersteps which do not have any communication
are omitted in following charts for clarity.

Dynamic Working Window Changes: First, we show that
working windows change dynamically. Fig. 3 shows the ratio
of the working window size over the entire vertex set in
all supersteps. Fig. 3(a) shows that all vertices are active
for PageRank (Category I). For SSSP and BFS of Traversal-
Style in Category II, the working windows increase and then
decrease, as shown in Fig. 3(b) and Fig. 3(c). For MM, MST,
and MIS of Multi-Phase-Style in Category III, the working
windows show some periodical patterns in different ways, as
shown in Fig. 3(d), Fig. 3(e), and Fig. 3(f). It confirms that it
is difficult to use one graph partition to support any graph
algorithms in Pregel. We also verify it by partitioning the

0

0.25

0.5

0.75

1.0

1 4 7 10

hi
t r

at
e

distance between supersteps

(a) PageRank (A1)

0

0.25

0.5

0.75

1.0

1 4 7 10

hi
t r

at
e

distance between supersteps

(b) SSSP (A4)

0

0.25

0.5

0.75

1.0

1 4 7 10

hi
t r

at
e

distance between supersteps

(c) BFS (A5)

0

0.25

0.5

0.75

1.0

1 4 7 10

hi
t r

at
e

distance between supersteps

(d) MM (A7)

0

0.25

0.5

0.75

1.0

1 4 7 10

hi
t r

at
e

distance between supersteps

(e) MST (A8)

0

0.25

0.5

0.75

1.0

1 4 7 10

hi
t r

at
e

distance between supersteps

(f) MIS (A9)
Fig. 4. Average correlation between the working windows

CA-Condmat graph data into 16 computational nodes using
METIS (the static graph partitioning approach), and run the
nine graph algorithms. To show the workload balancing, we
define an imbalance factor, which is the sum of the max
workload for every superstep divided by the sum of average
workload for every superstep. If the workload is well balanced,
the imbalance factor is near 1. A larger imbalance factor
implies that workloads are not well balanced. Our experiment
shows that during processing graph algorithms, the imbalance
factor can be up to 1.6. This leads to that the costly static
graph partitioning can not serve all the purposes for workload
balancing, because the workload changes dynamically.

Next, we discuss whether it is possible to catch the wind
(working window) in some way, even though it is known
to be very difficult. We give some notations below first.
Consider two working windows, W p and W q , at the p-th and
q-th supersteps, respectively. The distance between the two
working windows is denoted as dis(W p,W q) = |p − q|. We
say a working window Wp is a k-distance previous working
window of Wq if p < q and dis(W p,W q) = k. The hit-
rate of a working window W q regarding another k-distance
previous working window W p is denoted as hitk(W p,W q)

and is defined as hitk(W p,W q) = |Wp∩W q|
|W q| .

Long-Term Working Window Behaviors: Fig. 4 shows the
relationship between k-distance and the hit-rate for every two
working windows using the graph algorithms. Here, the x-
axis in Fig. 4 is the k-distance, and the y-axis shows the
average hit-rate for every two working windows that are k-
distance. For example, when k = 1, the average hit-rate is
the average of all hit1(W q−1,W q). In Fig. 4, we observe the
behaviors of graph algorithms in the three categories. Fig. 4(a)
shows hit-rate maintains 100% for any two working windows
in k-distance where 1 ≤ k ≤ 10, when PageRank (A1) is

558

0

0.25

0.5

0.75

1.0

1 5 10 15

hi
t r

at
e

superstep

k=1 k=2 k=3

(a) PageRank (A1)

0

0.25

0.5

0.75

1.0

1 5 10 15

hi
t r

at
e

superstep

k=1 k=2 k=3

(b) SSSP (A4)

0

0.25

0.5

0.75

1.0

1 5 10 15

hi
t r

at
e

superstep

k=1 k=2 k=3

(c) BFS (A5)

0

0.25

0.5

0.75

1.0

1 5 10
hi

t r
at

e

superstep

k=1 k=2 k=3

(d) MM (A7)

0

0.25

0.5

0.75

1.0

1 5 10 15

hi
t r

at
e

superstep

k=1 k=2 k=3

(e) MST (A8)

0

0.25

0.5

0.75

1.0

1 5 10

hi
t r

at
e

superstep

k=1 k=2 k=3

(f) MIS (A9)

Fig. 5. The hit-rates between the working windows

executed. This is the typical behavior of graph algorithms
in Category I (Table III), because all vertices are always
active (Algorithm 2). Fig. 4(b) and Fig. 4(c) show the hit-rate
when SSSP (A4) and BFS (A5) are executed, in Category
II, respectively. The working windows show some locality
property. The hit-rate decreases naturally when the distance
become larger. Fig. 4(d), Fig. 4(e), and Fig. 4(f) show the
periodical behaviors regarding the hit-rates, for MM (A7),
MST (A8), and MIS (A9), in Category III, respectively. It is
worth mentioning the periodical behaviors of the hit-rate for
Category III algorithms. Every three supersteps, or in other
words, a working window at a superstep, q, accesses the
similar working window as the 3-distance previous working
window, q− 3. This has a strong relationship with the design
of the vertex-centric algorithms, as can be seen in MM-UDF
(Algorithm 7). For all the three categories, it suggests that
moving working window to the right computational nodes at
a superstep can possibly reduce the communication cost in the
following supersteps.

Short-Term Working Window Behaviors: Fig. 5 shows
the hitk(W

q−1,W q), for k = 1, 2, 3, for each superstep.
Unlike Fig. 4 which shows the average, Fig. 5 shows
hitk(W

q−1,W q) for each superstep from 1 to 15. For PageR-
ank, since it is Always-Active-Style, the hit-rate is always
100% (Fig. 5(a)) for k = 1, 2, 3. For SSSP and BFS, during
the computing, the hit-rate increases up to a heap and then
decreases (Fig. 5(b) and Fig. 5(c)). It exhibits high hit-rate
between two consecutive supersteps (k = 1). For MM, MST,
and MIS, Fig. 5(d), Fig. 5(e), and Fig. 5(f) show the periodical
patterns. It exhibits high hit-rate between two consecutive
supersteps when k = 3 instead of k = 1, due to the graph
algorithm designs in Category III.

Discussions: The traditional parallel system load balancing
approaches collect statistics for a moderate-length history to
perform analyze and strategies. It becomes infeasible in our
problem, because we have to consider load balancing in every
superstep in processing a graph algorithm. In other words, we
have to deal with load balancing using a very short history
which dynamically changes. A question that arises is whether
there exist some patterns for us to predict working window
movements. Such an answer depends on both the underneath
graph and the graph algorithm. It is very difficult to have
an analytical result at this stage. In this work, based on the
extensive experimental studies, we observe the three categories
of graph algorithms have potential predictability. The Always-
Active-Style algorithms have stable working windows, as
we can predict working windows. For the Traversal-Style
algorithms, even though the predictability cannot be ensured
in general, however, in real applications, most of large scale
graphs have the low-diameter property. This means that the
average distance between two vertices are short, hypothesized
to be in the same scale of log of the size of graph. Also the
size of k-neighbors, which means all vertices are reachable
in no more than k hops, is exponential to k. It implies that
some Traversal-Style algorithms, for example SSSP, have a
reasonable hit-rate between supersteps. However, on the other
hand, BFS in Category II has a very low hit-rate between
supersteps, because it literally traverses a graph. For Category
III algorithms, we need to consider a phase as a whole. The
hit-rate between two successive phases is very high, due to
the nature of the algorithm design that accesses a certain set
of vertices, determines some partial results, and moves from
the set of such vertices to another nearby set of vertices. Our
observation suggests that in many cases the working windows
can be possibly predicted using a very short history.

C. A Distributed Vertex-Centric Scheduler

In this section, we discuss our distributed vertex-centric
scheduler. The main idea is to allow each node Ni to decide by
itself how much workload should be moved out to another Nj ,
in order to minimize the total communication costs. There are
two issues. The first issue is how much workload we should
move from Ni to Nj . And the second issue is what we should
move from Ni to Nj .

How much to move: For the first issue, we keep the hard
workload limit as much as possible, in order to ensure the
workload balancing. Assume the current superstep is s. If Ni

is overloaded in the current s-th superstep, all other nodes
Nj , for i 6= j, should not move any vertices towards Ni,
and the overloaded node Ni should move its vertices out
to other nodes, to keep all nodes balanced in the (s+1)-
th superstep. This approach can prevent nodes from being
severely overloaded. We introduce a quota Qs

i,j to determine
the workload to be moved from Ni to Nj on the current s-th
superstep for the next (s+1)-th superstep, and call it a quota
function.

Qs
i,j =

Ws−1
i −Ws−1

j

K
(2)

559

Algorithm 8: Move(i,j)

1 if Qs
i,j = 0 then

2 Qs
i,j ← Qthreshold;

3 ∆← Qs
i,j ;

4 Let Li,j be a ranking list of vertices in Ni;
5 while ∆ > 0 do
6 remove u from the top of Li,j ;
7 if W s

i,j(u) < ∆ then
8 move u from Ni to Nj ;
9 ∆← ∆−W s

i,j(u);

Here, Qs
i,j is determined based on the workload in the previous

(s-1)-th superstep. A question that arises is why we must use
the previous workloads, Ws−1

i − Ws−1
j , and cannot use the

current workload, Ws
i − Ws

j . Because the workload in the
current superstep has already been determined and cannot be
changed without introducing an extra synchronization barrier
which is costly in BSP computing. Based on the discussions
in Section IV-B, the working window has high hit-rate based
on the previous working window, we use Ws−1

i −Ws−1
j to

estimate Ws
i −Ws

j . This is confirmed to be effective in our
extensive testing.

Based on Qs
i,j , a node Ni can move the workload from Ni

to Nj , if Qs
i,j > 0. No workload can be transferred from Ni

to Nj , if Qs
i,j < 0. By a non-zero Qs

i,j , it becomes unlikely
that other nodes, Nj , will move its workload to Ni if Ni is
overloaded. When Qs

i,j = 0 in a superstep or in the initial
superstep where we do not know the workload yet, Ni and
Nj may move some workload to each other. We control the
amount of workload to be moved under a small threshold, for
example, α = 1%× |V |+|E|K2 . The numerator, |V |+ |E|, is the
total number of vertices and edges, |V |+|E|K2 is the amount that
can be moved from Ni to Nj on average. We only move out
up to its 1%, which is a very small amount. It is better to allow
some vertices to be moved from Ni to Nj even if Qs

i,j = 0.
Otherwise if the workload is perfectly balanced, which could
be achieved by hash based distribution policy, no move will be
allowed at all. And in Always-Active-Style type algorithms,
there will be no move forever.

Suppose Qs
i,j > 0. We move some workload from Ni to

Nj as bounded by Qs
i,j . Suppose that we move a vertex u

from Ni to Nj , then the workload associated with this move
on the vertex u is denoted as W s

i (u). Here, W s
i (u) is equal to

1+ |AEs
i,j(u)|, where the value of 1 is the number of vertices

to be moved, |AEs
i,j(u)| is the number of active edges. A

vertex u can be moved from Ni to Nj if W s
i (u) is less than

Qs
i,j . Algorithm 8 illustrates the idea. It is worth noting that a

ranking list, Li,j is used for Qs
i,j in Algorithm 8. A vertex can

only appear in a ranking list at most once, and the vertices in
the list is ranked based on the degree of benefit of moving it
from Ni to Nj . Below, we discuss the ranking which is based
on a function called willingness score.

What to move: Assume a vertex u is in a computational node

Ni. Let Isi,j(u) and Os
i,j(u) be the number of in-messages

received and the number of out-messages sent to/from the
vertex u to a node Nj in the s-th superstep, respectively.
We denote the total communication cost for the vertex u by
IOi,j(u), which is defined in Eq. (3).

IOs
i,j(u) = Isi,j(u) +Os

i,j(u) (3)

It is important to note that a vertex u is an active vertex if it
receives/sends messages. Based on IOs

i,j(u), the first vertex-
centric willingness function for workload balancing is to select
the computational node Nj for a vertex u to move to if Nj

has the max IOs
i,j(u) value among all nodes (Eq. (4)).

$s
0(u) = argmaxj IO

s
i,j(u) (4)

Suppose u is in node Ni. Eq. (4) takes the simple majority,
and decides the node Nj for u to move. If u has more internal
edges than the external edges, $s

0(u) will return Ni, which
suggests that u is not supposed to be moved, and will stay in
the same node Ni.

Suppose u is about to be moved to Nj from Ni. As can be
seen from Eq. (4), it does not consider whether the vertices in
the neighbor of u in Nj will move to a different node Nk for
k 6= j at the same time when u is moved to Nj . However, it
is difficult to predict whether the vertices in the neighbor of
u in Nj will move or not, and it is costly to do so, even it
can be done. Alternatively, from a different angle, the strategy
we take is to keep a vertex u in Ni for certain interval, in
order for other vertices to be moved to Ni. In other words,
we do not move u from one to another new computational
node frequently. Based on this observation, we define a new
willingness function, $s

1(u).

$s
1(u) =

{
$s

0(u) not moved in the past β supersteps
0, otherwise

(5)

Here, β is a parameter to control at least how long a vertex u
is forced to stay in a node.

Next, we consider the potential problem with the simple
majority used in Eq. (4). Consider the following example.
With Eq. (4), suppose that if u remains in the same node Ni,
IOs

i,i(u) = 100, and further suppose if u moves to a different
node Nj , IOs

i,i(u) = 101. The gain of moving u to a different
node is little and is with cost. In order to handle this problem,
we consider to take a ratio into account when moving vertices,
instead of simple majority. In other words, we only move u
to Nj if the gain is higher than a ratio λ,

IOs
i,j(u)

IOs
i,i(u)

≥ λ. We
modify Eq. (4) as follows.

ĨO
s

i,j(u) =

{
λ(Isi,j(u) +Os

i,j(u)), i = j

Isi,j(u) +Os
i,j(u), otherwise

(6)

where λ > 1. Accordingly, we define a new willingness
function, $s

2(u) below.

$s
2(u) = argmaxj ĨO

s

i,j(u) (7)

All the willingness functions are vertex-centric and do not
consider the workload in the computational nodes. Since the

560

workload is a very important factor to be balanced, we define
a communication cost formula

ÎO
s

i,j(u) = (Isi,j(u) +Os
i,j(u))× (1−

Ws−1
j

Ws−1) (8)

that takes both vertex willingness to move and the immediate
previous workload into consideration. Consider a computa-
tional node Nj for a vertex to be moved to. If its workload
in the previous (s-1)-th superstep, Ws−1

j , is higher than the
average workload Ws−1

, then we do not attempt to move a
vertex to Nj . There are many possible ways to define such
a function. For simplicity, we show the simplest one here.
Accordingly, we give a new willingness function, $s

3(u).

$s
3(u) = argmaxj ÎO

s

i,j(u) (9)

D. Implementation

We have implemented our prototyped system on HAMA [1]
(Version 0.4) which is a BSP computing framework on top
of HDFS (Hadoop Distributed File System). Our proposed
methods can be easily migrated to any BSP-based graph
processing systems. Assume that there are K computational
nodes, N1, N2, · · · , NK . We discuss the two main components
in our prototyped system on top of HAMA, which are working
workload monitoring and workload moving.

Workload Monitoring: On HAMA, in every superstep, a
vertex is active if it is active already or it is inactive in
the previous superstep but receives messages in the current
superstep. The number of active vertices as well as the number
of messages received and the number of messages sent can
be collected. The workload Ws

i in the s-th superstep on Ni,
for 1 ≤ i ≤ K, will be sent to all the other computational
nodes, and in the (s+1)-th superstep such collected workload
assists the determination of the workload to be moved among
computational nodes, Qs+1

i,j , for 1 ≤ i ≤ K and 1 ≤
j ≤ K. The information exchange can be done using the
built-in functions, for either synchronization or broadcasting,
provided by the BSP-based graph processing systems. In
our implementation on HAMA, we define several subclasses
under HAMA BSPMessage class, and exchange messages
using HAMA MessageManager. Based on the workload, each
computational node will select its active vertices to move.

Workload Moving: The quota Qs
i,j on Ni is known at the

beginning of the s-th superstep. On a node Ni, we maintain K
priority queues, where each priority queue, Pi,j , maintains the
top active vertices which are willing to move to Nj from Ni up
to Qs

i,j , using willingness score functions defined in previous
subsection. All the active vertices will appear in one queue at
most. The inactive vertices do not appear in any queues. At
the end of the superstep before entering the synchronization
barrier, we remove the top active vertices from a priority queue
Pi,j on Ni and move them to Nj .

It is important to note that we need to trace where the
vertices are when vertices are moved from one computational
node to another. This is because, initially, if a computational

TABLE II
DATASETS

Graph Type |V | |E|
CA-CondMat3 Collaboration 23K 186K
citeseerx4 Academic 6.5M 15M
cit-Patents3 Citation 3.8M 16.5M
dblp5 Academic 1M 8M
Flickr6 Social Networks 80K 11.8M
soc-LiveJournal13 Social Networks 4.8M 70M
web-Google3 Web graphs 0.8M 5.9M
uk-20057 Web graphs 39.5M 936M

node, Ni, maintains a vertex u in Ni which links to another
vertex v not in Ni, Ni knows which computational node Nj

keeps v. When a vertex v can be moved around, it needs
to identify the computational node Nk that has v. If the
BSP-based graph processing system has built-in functions to
support transactional vertex movement to ensure the ACID
property, we will use that function to move vertices. Other-
wise, we can support the vertices moving by using a state-
of-the-art graph partition management module such as Zephyr
[9] and Lookup Table [24]. In our implementation on HAMA
version 0.4, we implement the Lookup Table as used in [24]
with additional catching function to reduce the overhead.

V. EXPERIMENTS

We have implemented our prototyped system on HAMA
[1] (Version 0.4) on top of HDFS (Hadoop Distributed File
System). We conducted extensive testing in a cloud environ-
ment with 24 PCs connected by a 100Mbps network, where
each PC is equipped with a Intel i3-2100 3.1GHz CPU, 4GB
memory, and a 320GB disk, running Scientific Linux release
6.1. Table II shows basic information about the graph datasets
used in our experiments.

Nine Policies: In the following, we show the performance of
our proposed policies based on $s

0 (Eq. (4)), $s
1 (Eq. (5)),

$s
2 (Eq. (7)), and $s

3 (Eq. (9)). Here, the default β used in
$s

1 is β = 1, and the default λ used for $s
2 is λ = 1.05.

The 8 policies are formed as follows: P0 ($s
0), P1 ($s

3), P2
($s

2), P3 ($s
3 +$s

2), P4 ($s
1), P5 ($s

3 +$s
1), P6 ($s

2 +$s
1),

and P7 ($s
3 +$s

2 +$s
1). We tested all the policies against all

the graph datasets (Table II). Initially, a graph is randomly
partitioned into 16 partitions. Because all graphs have similar
behaviors, we show the results measured in the CA-Condmat
dataset.

We consider the edges that connect to the active vertices.
We call an edge an active edge if it connects to at least
one active vertex. Fig. 6(a) shows the percentages of the
total number of active internal edges over the total number
of active edges for the CA-Condmat dataset, and Fig. 6(b)
shows the percentages of the total number of the moved active

3http://snap.stanford.edu/data/
4http://csxstatic.ist.psu.edu/about/data
5http://socialcomputing.asu.edu/datasets/Flickr
6http://dblp.uni-trier.de/xml/
7http://law.dsi.unimi.it/webdata/uk-2005/

561

 0

 20

 40

 60

 80

 100

PR Semi-cluster

Coloring
SSSP

BFS RWR Matching
MST MIS

P
e
rc

e
n
ta

g
e
 o

f
In

te
rn

a
l

E
d
g
e
s

P0
P1
P2
P3
P4
P5
P6
P7

(a) The Percentage of Active Internal Edges

 0

 5

 10

 15

 20

 25

 30

PR Semi-cluster

Coloring
SSSP

BFS RWR Matcching
MST MIS

P
e
rc

e
n
ta

g
e
 o

f
m

o
v
e
d
 v

e
rt

ic
e
s

P0
P1
P2
P3
P4
P5
P6
P7

(b) The Percentage of Moved Active Vertices

Fig. 6. Nine Policies
vertices over the total number of active vertices in the CA-
Condmat dataset, for all 8 policies and all 9 graph algorithms.
A higher percentage implies less cost for communication
between computational nodes. As shown in Fig. 6(a), the
policies, P3 and P7, outperform the other policies in most
cases. In Fig. 6(b), the policy P7 moves a smaller number of
vertices compared to P3. It suggests that the combination of
the three $s

3 +$s
2 +$s

1 reduces the max number of external
edges effectively with a small overhead. In the following, we
use P7 as the default policy, and call it CatchW.

With CatchW, we further test the graph datasets. As a
basis for comparison, Fig. 7(a) shows the percentages of the
total number of active internal edges over the total number
of active edges using the initial random partitioning without
CatchW. Such percentage is very low 4-6%, which implies a
high communication cost due to the large percentage of active
external edges across different computational nodes. Fig. 7(b)
and Fig. 7(c) show that, with CatchW, we can increase the
number of active internal edges up to 70% with a small
overhead (number of moved active vertices).

CatchW vs METIS: Given a set of active vertices in a
superstep, it is infeasible to run METIS to partition using
the active vertices due to its high overhead. In this testing,
as an indicator, we compare CatchW with METIS. For the
METIS, we initially partition the CA-Condmat dataset into 16
partitions using METIS, and we run METIS every superstep
using the information of the active vertices. For CatchW, we
randomly partition the CA-Condmat dataset into 16 partitions,
and we use the default policy P7 to balance workload at run
time. As expected, METIS outperforms CatchW in terms of
the percentage of the total number of active internal edges
over the total number of active edges. However, Fig. 8 shows
that our CatchW can approach the METIS which dynamically
repartition the graph with a high overhead for four represen-

 0

 1

 2

 3

 4

 5

 6

 7

 8

PR Semi-cluster

Coloring
SSSP

BFS RWR Matching
MST MIS

P
e
rc

e
n
ta

g
e
 o

f
In

te
rn

a
l

E
d
g
e
s

CM
citex
cit-P
dblp

Flickr
LJ

Google

(a) The Percentage of Active Internal Edges (Random)

 0

 20

 40

 60

 80

 100

PR Semi-cluster

Coloring
SSSP

BFS RWR Matcching
MST MIS

P
e
rc

e
n
ta

g
e
 o

f
In

te
rn

a
l

E
d
g
e
s

CM
citex
cit-P
dblp

Flickr
LJ

Google

(b) The Percentage of Active Internal Edges (CatchW)

 0

 5

 10

 15

 20

PR Semi-cluster

Coloring
SSSP

BFS RWR Matcching
MST MIS

P
e
rc

e
n

ta
g

e
 o

f
m

o
v

e
d

 v
e
rt

ic
e
s

CM
citex
cit-P
dblp

Flickr
LJ

Google

(c) The Percentage of Moved Active Vertices (CatchW)

Fig. 7. Various of Graph Datasets

tative graph algorithms, PageRank, SSSP, Random-Walk, and
MST.

Cold-Start and Hot-Start: We test the cold-start and hot-start
of different graph algorithms when we use CatchW to dynam-
ically balance workload. All the 9 graph algorithms are named
A1, A2, ... A9 (refer to Table III). Fig. 9 shows the percentages
of the total number of active internal edges over the total
number of active edges for the CA-Condmat dataset which is
initially randomly partitioned into 16 partitions. Fig. 10 shows
the percentage of the total number of the moved active vertices
over the total number of active vertices. We explain our testing
results. Take PageRank (A1) as an example. In Fig. 9(a), the
horizontal blue line shows the percentage of the number of
active internal edges when we run PageRank under the cold-
start, using the initial randomly partitioned graph. Each of the
9 bars, representing the 9 graph algorithms, shows the same
percentage for PageRank using the graph partition resulting
from one of the 9 graph algorithms under the hot-start. In a
similar fashion, in Fig. 10(a), the horizontal blue line shows the
percentage of the number of active vertices moved when we
run PageRank under the cold-start, using the initial randomly
partitioned graph. Each of the 9 bars, representing the 9 graph
algorithms, shows the same percentage for PageRank using the

562

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 20

Pe
rc

en
ta

ge
 o

f I
nt

er
na

l E
dg

es

CatchW METIS

(a) PageRank (A1)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 20

Pe
rc

en
ta

ge
 o

f I
nt

er
na

l E
dg

es

CatchW METIS

(b) SSSP (A4)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 15 30 45 60

Pe
rc

en
ta

ge
 o

f I
nt

er
na

l E
dg

es

CatchW METIS

(c) Random-Walk (A6)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 20
Pe

rc
en

ta
ge

 o
f I

nt
er

na
l E

dg
es

CatchW METIS

(d) MST (A8)

Fig. 8. The Percentage of Internal Edges

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(a) PageRank (A1)

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(b) Semi-clustering (A2)

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(c) Graph Coloring (A3)

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(d) SSSP (A4)

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(e) BFS (A5)

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(f) Random-Walk (A6)

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(g) MM (A7)

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(h) MST (A8)

 0

 20

 40

 60

 80

 100

A1A2A3A4A5A6A7A8A9P
e
rc

e
n

ta
g

e
 o

f
In

te
rn

a
l

E
d

g
e
s

(i) MIS (A9)

Fig. 9. Hot Starts: The Percentage of Internal Edges

graph partition resulting from one of the 9 graph algorithms
under the hot-start. Fig. 9(a) and Fig. 10(a) show that the
active vertices moved can help moving the workload in a right
direction. In other words, with a small overhead (Fig. 10(a)),
similar results can be obtained (Fig. 9(a)). The similar patterns
can be seen for other algorithms as well.

Large Dataset: We show our testing results using the uk-2005
dataset, which has roughly 39M vertices and 936M edges. We
randomly partition it into 24 partitions. We compare CatchW
with HAMA. Fig. 11 shows the results for PageRank for every
superstep. Fig. 11(a) shows the percentages of the number of
active internal edges over the total number of active edges
per superstep. CatchW can maintain over 3.4 times of active
edges as internal edges over HAMA. Fig. 11(b) shows that
the total execution time can reduce 31.5%, and Fig. 11(c)
shows that the total communication time can reduce 42.6%.
Note that communication time is included in the execution
time. Fig. 12(a) and Fig. 12(b) also show the percentages of
the number of active internal edges over the total number of
active edges in every superstep when computing SSSP and
MM, respectively. For SSSP and MM, the execution times
reduce 2% and 9%.

 0

 0.5

 1

 1.5

 2

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(a) PageRank (A1)

 0

 0.5

 1

 1.5

 2

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(b) Semi-clustering (A2)

 0

 0.5

 1

 1.5

 2

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(c) Graph Coloring (A3)

 0

 2

 4

 6

 8

 10

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(d) SSSP (A4)

 0

 2

 4

 6

 8

 10

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(e) BFS (A5)

 0

 0.5

 1

 1.5

 2

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(f) Random-Walk (A6)

 0

 0.2

 0.4

 0.6

 0.8

 1

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(g) MM (A7)

 0

 2

 4

 6

 8

 10

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(h) MST (A8)

 0

 2

 4

 6

 8

 10

 12

 14

A1A2A3A4A5A6A7A8A9

P
e
rc

e
n

t
o

f
m

o
v

e
d

 v
e
rt

ic
e
s

(i) MIS (A9)

Fig. 10. Hot Starts: The Percentage of Moved Active Vertices

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15P
e
rc

e
n
ta

g
e
 o

f
In

te
rn

a
l

E
d
g
e
s

HAMA CatchW

(a) Percentage of internal
edges

 0

 20

 40

 60

 80

1 5 10 15

E
x
e
c
u
ti

o
n
 T

im
e
 (

s
)

HAMA CatchW

(b) Execution time

 0

 20

 40

 60

 80

1 5 10 15

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 (

s
) HAMA CatchW

(c) Communication time

Fig. 11. PageRank (per superstep)

Scaleup: We test the scaleup using a part of uk-2005 that can
be held in 8 computational nodes, and increase the number of
computational nodes to 24. Our CatchW outperforms HAMA.

VI. RELATED WORKS

Graph partitioning is to partition a large graph into a
number of partitions, and is widely used to support scientific
simulations in a parallel environment [21]. Because graph
partitioning is known to be an NP-complete problem [11],
[4], many heuristics and approximate approaches are proposed.
Schloegel, et al. in [21] survey static and dynamic graph parti-
tioning methods, where the former implies that all information
is given for graph partitioning, and the latter does so with only
partial information. We discuss the approaches based on [21].

For the static graph partitioning techniques, there are
combinatorial techniques, spectral methods, and multilevel
schemes. The combinatorial techniques partition a graph based
on its highly connected components, and the representative
approaches are the KL (Kernighan-Lin) algorithm and the
FM (Fiduccia-Mattheyses) algorithm. Spectral methods are to
partition a graph based on the Laplacian for the matrix repre-
sentation of a graph and computing of the second eigenvalue
of the Laplacian. Multilevel schemes consist of three phases.
In the first graph coarsening phase, it recursively collapses
vertices/edges into a smaller coarser graph. In the second
initial partitioning phase, it partitions the sufficient the coarsest
graph into partitions. And in the multilevel refinement phase,
it partitions a graph based on the partitioning results from the
coarsest graph to the original graph in order. The representative

563

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15P
e
rc

e
n
ta

g
e
 o

f
In

te
rn

a
l

E
d
g
e
s

HAMA CatchW

(a) SSSP

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15P
e
rc

e
n
ta

g
e
 o

f
In

te
rn

a
l

E
d
g
e
s

HAMA CatchW

(b) MM

Fig. 12. Percentage of internal edges per superstep

 0

 10

 20

 30

 40

 50

8 12 16 24

R
un

ni
ng

 T
im

e(
s)

Size of Cluster

CatchW HAMA

Fig. 13. Scaleup
method is METIS [12]. The qualitative comparison is given
in [21]. These approaches cannot be used to address our
problem for two reasons. First, it is difficult to know all
the information needed for graph algorithms. Second, it is
infeasible to partition a graph before processing a graph
algorithm due to its high overhead.

For dynamic graph partitioning (or adaptive graph parti-
tioning), it is to minimize the communication cost for rebal-
ancing workloads among computational nodes. The objective
function takes both the balancing and the cost to balance (the
number of vertices to be moved) into consideration. There are
repartitioning methods, scratch-remap methods, and diffusion-
based methods. The repartitioning methods partition the graph
either from the scratch or by some cut-end-phase strategy.
The scratch-remap methods compute the new partitioning, and
minimize the moving cost from the existing old partitions
to the new partitions. The diffusion-based methods take an
incremental approach and migrate workload from the over-
loaded computational nodes to their neighbor nodes that are
underloaded repeatedly. The diffusion-based methods mainly
address two questions: how much to move and what to be
moved. It is worth noting that the diffusion-based methods
need several iterations to achieve global balancing. In our
problem setting, we have to rebalance a small amount of data
simultaneously only in a single iteration.

Devine et al. in [8] survey the partitioning and load balanc-
ing for emerging parallel applications and architectures.

VII. CONCLUSION

In this paper, we investigate the graph behaviors by ex-
ploring the working window changes in parallel computing
on a public open source implementation HAMA of Pregel for
nine graph algorithms using real datasets. We show that it
is possible to use immediate previous working window as a
basis to catch the working window in the next superstep in
Pregel like system. We propose simple yet effective policies
to move small amount of active vertices in order to achieve
high graph workload balancing. We confirm the effectiveness
and the efficiency of our policies on a prototyped system built

on top of HAMA [1].

ACKNOWLEDGMENT

The work was supported by grant of the Research Grants
Council of the Hong Kong SAR, China No. 418512.

REFERENCES

[1] http://hama.apache.org/.
[2] http://incubator.apache.org/giraph/.
[3] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker. High speed

switch scheduling for local area networks. In ASPLOS ’92, 1992.
[4] K. Andreev and H. Räcke. Balanced graph partitioning. In SPAA ’04,

2004.
[5] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths

algorithms: theory and experimental evaluation. Math. Program., 73(2),
1996.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI ’04, 2004.

[8] K. D. Devine, E. G. Boman, and G. Karypis. Partitioning and load
balancing for emerging parallel applications and architectures. In
Frontiers of Scientific Computing. SIAM, 2006.

[9] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: live
migration in shared nothing databases for elastic cloud platforms. In
SIGMOD ’11, 2011.

[10] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst.,
5(1), 1983.

[11] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified
np-complete problems. In STOC ’74, 1974.

[12] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20, 1998.

[13] N. Linial. Locality in distributed graph algorithms. SIAM J. Comput.,
21(1), 1992.

[14] M. Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM J. Comput., 15(4), 1986.

[15] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In SIGMOD ’10, 2010.

[16] J. Mondal and A. Deshpande. Managing large dynamic graphs effi-
ciently. In SIGMOD ’12, 2012.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

[18] K. Pearson. The Problem of the Random Walk. Nature, 72, 1905.
[19] D. Peleg. Distributed computing: a locality-sensitive approach. SIAM,

2000.
[20] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,

and P. Rodriguez. The little engine(s) that could: scaling online social
networks. In SIGCOMM ’10, 2010.

[21] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high
performance scientific simulations. Tech. Report TR 00-018, Computer
Science and Engineering, University of Minnesota, 2000.

[22] B. Shao, H. Wang, and Y. Xiao. Managing and mining large graphs:
systems and implementations (tutorial). In SIGMOD ’12, 2012.

[23] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed
graphs. In KDD ’12, 2012.

[24] A. L. Tatarowicz, C. Curino, E. P. C. Jones, and S. Madden. Lookup
tables: Fine-grained partitioning for distributed databases. In ICDE ’12,
2012.

[25] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8), 1990.

[26] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective partition
management for large graphs. In SIGMOD ’12, 2012.

564

