

Controlled Lock Violation
Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, Alistair Veitch

Hewlett-Packard Laboratories

ABSTRACT

In databases with a large buffer pool, a transaction may run
in less time than it takes to log the transaction’s commit record on
stable storage. Such cases motivate a technique called early lock
release: immediately after appending its commit record to the log
buffer in memory, a transaction may release its locks. Thus, it cuts
overall lock duration to a fraction and reduces lock contention
accordingly.

Early lock release also has its problems. The initial mention
of early lock release was incomplete, the first detailed description
and implementation was incorrect with respect to read-only trans-
actions, and the most recent design initially had errors and still
does not cover unusual lock modes such as ‘increment’ locks.
Thus, we set out to achieve the same goals as early lock release
but with a different, simpler, and more robust approach.

The resulting technique, controlled lock violation, requires
no new theory, applies to any lock mode, promises less imple-
mentation effort and slightly less run-time effort, and also opti-
mizes distributed transactions, e.g., in systems that rely on multi-
ple replicas for high availability and high reliability. In essence,
controlled lock violation retains locks until the transaction is du-
rable but permits other transactions to violate its locks while
flushing its commit log record to stable storage.

Figure 1. Lock retention times in traditional and optimized
commit sequences.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – transaction process-
ing: concurrency.

Keywords
Transaction processing, DBMS, locking, concurrency.

1 INTRODUCTION
A simple database transaction takes 20,000 to 100,000

instructions [1], depending on the transaction logic, on index
structures, on the quality of the implementation, and on compiler
optimizations. For example, assuming 40,000 instructions per
transaction, 1 instruction per CPU cycle on average, a 4 GHz CPU

clock, and no buffer faults, a modern processor core can execute
the transaction logic in about 0.01 ms. Committing such a transac-
tion, however, may take much longer. If “stable storage” for the
recovery log is a pair of traditional disk drives, the time to commit
might approach 10 ms. If stable storage for the recovery log is
provided by flash storage, commit time might be faster by two
orders of magnitude, i.e., 0.1 ms, but it is still an order of magni-
tude longer than transaction execution.

If a transaction acquires locks right at its start, e.g., key val-
ue locks in a B-tree index, and holds them until transaction com-
mit is complete, it retains the locks for about 0.01 ms while the
transaction logic proceeds and for another 0.1 ms (or even 10 ms)
during commit processing, i.e., after the transaction logic is com-
plete. Given these relationships, it is not surprising that research-
ers have sought to reduce lock contention during commit process-
ing. Retaining locks for only 0.01 ms, not 0.11 ms (or even
10.01 ms), should appreciably reduce lock contention, in particu-
lar for “hot spot” locks such as appending index entries to an in-
dex on transaction time or on an attribute with high correlation to
transaction time, e.g., order number or invoice number.

Figure 1 illustrates the relationship between transaction ex-
ecution time and commit duration. The diagram shows a factor of
10. In the traditional sequence of actions during commit process-
ing, each transaction holds its locks for the entire time shown by

the blue line above the time line. In a transaction
with early lock release, lock retention is as short as
the green line below the time line. The same per-
formance improvement is achieved by a new tech-
nique, controlled lock violation, even in its simple
form.

Multiple prior research efforts have described early lock re-
lease, which lets a transaction release its locks immediately after
space for a commit record is allocated in the log buffer in mem-
ory. In other words, the locks are released before the commit re-
cord is flushed to stable storage and thus before the transaction
becomes durable. Soisalon-Soininen and Ylönen [2] proved this
technique correct, i.e., recoverable, but their proof does not ad-
dress concurrency control and transaction isolation. Johnson et al.
[3] and Kimura et al. [4] measured dramatic improvements in lock
contention and in transaction throughput. Unfortunately, early
lock release can also produce wrong results, including incorrect
updates, because an implementation may fail to respect commit
dependencies among participating transactions, as illustrated in
Figure 2. In essence, one transaction must not publish or persist
another transaction’s update until the update is durable.

Recent work [4] describes a new variant of early lock re-
lease that avoids these wrong results yet preserves performance
and scalability. The principal idea is to remove the locks from the
lock manager early but to retain “tags” to convey commit depend-
encies among transactions. In some cases, commit dependencies
are respected that do not exist, i.e., the technique is too conserva-
tive. As importantly, the tags do not fully optimize distributed
transactions, e.g., in modern database systems that maintain mul-
tiple replicas for high availability and high reliability. Nonethe-
less, lacking other correct implementations, we take this as the
prototypical representative of early lock release.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright © ACM 978-1-4503-2037-5/13/06...$15.00.

85

Controlled lock violation is a new and superior alternative
to early lock release. It eschews early lock release and the need
for tags. Instead, each transaction retains its locks until its commit
process is complete. With respect to concurrency, controlled lock
violation matches early lock release as it permits subsequent
transactions to violate or ignore lock conflicts, but only in very
controlled situations. More specifically, a subsequent transaction
may acquire a lock that violates an existing lock if the transaction
holding the lock is already in its commit process, i.e., if it has
allocated a commit record in the log buffer. Thus, controlled lock
violation enables concurrency in all situations in which early lock
release (corrected with tags) enables concurrency.

Moreover, controlled lock violation can improve the con-
currency not only of centralized, single-site transactions but also
of distributed transactions. Thus, controlled lock violation can
increase concurrency during commit processing in modern system
designs that rely on replicas. The same issue – multiple separate
recovery logs and two-phase commit – equally applies to many
partitioned databases. For example, in a large database partitioned
such that individual partitions (and their individual recovery logs)
can easily move in order to achieve elastic scaling, transactions
over multiple partitions require two-phase commit even when all
affected partitions currently reside on the same server. In contrast
to early lock release, controlled lock violation optimizes commit
processing and lock conflicts in all those settings.

The contributions of our new technique are these:
1. In a single-site setting, controlled lock violation achieves the

same transaction processing performance as early lock re-
lease, but without new theory, with fewer special cases, and
without new data structures.

2. Controlled lock violation covers a broader set of lock modes
than early lock release and all granularities of locking, in-
cluding multi-granularity locking and key-range locking.

3. By retaining the original locks during commit activities,
subsequent conflicting transactions can analyze the conflict
more precisely than is possible in early lock release.

4. In a distributed setting, controlled lock violation optimizes
both phases of two-phase commit. Thus, the conflicts of par-
ticipant transactions can be reduced tremendously compared
to two-phase commit execution. (Early lock release can op-
timize only the final phase of two-phase commit.)

5. For “canned transactions” coded as stored procedures, static
code analysis can enable controlled lock violation even be-
fore a transaction’s commit request.
The following section reviews related prior work, in par-

ticular on early lock release and two-phase commit. Section 3
introduces controlled lock violation and contrasts it to early lock
release. Section 4 extends controlled lock violation to two-phase
commit and Section 5 applies it to canned transactions. Section 6
compares the performance of controlled lock violation with that of
early lock release in those cases when early lock release applies.
Section 7 compares controlled lock violation with further related
techniques, e.g., speculative execution. The final section contains
our summary and conclusions.

2 RELATED PRIOR WORK
DeWitt et al. described early lock release back in 1984, al-

beit without an implementation [5]. Ailamaki and her research
group have described a highly optimized implementation as well
as the resulting speed-up in transaction processing [6]. Kimura et
al. describe an oversight in the earlier designs as well as a tech-
nique to avoid over-eager commit of read-only transactions [4].
These efforts are discussed below, followed by a summary of

other but unrelated cases of early lock release as well as some
background information on distributed two-phase commit.

We assume concurrent and serializable transactions imple-
mented by commonly used techniques, including write-ahead
logging, log sequence numbers, record-level locking, logical “un-
do” by logged compensating updates rather than rigid physical
“undo,” an in-memory buffer pool for data and recovery log plus
persistent block-access storage such as traditional disks, durability
by forcing commit records to the recovery log on “stable storage,”
two-phase commit in distributed transactions, etc. The intention
behind these assumptions is broad applicability of the work.

2.1 Main memory databases
An early paper [5] on implementation techniques for main

memory database systems described early lock release as follows
(original emphasis):

“A scheme that amortizes the log I/O across several transac-
tions is based on the notion of a pre-committed transaction. When
a transaction is ready to complete, the transaction management
system places its commit record in the log buffer. The transaction
releases all locks without waiting for the commit record to be
written to disk. The transaction is delayed from committing until
its commit record actually appears on disk. The ‘user’ is not noti-
fied that the transactions has committed until this event has oc-
curred.

By releasing its locks before it commits, other transactions
can read the pre-committed transaction’s dirty data. Call these
dependent transactions. Reading uncommitted data in this way
does not lead to an inconsistent state as long as the pre-committed
transaction actually commits before its dependent transactions. A
pre-committed transaction does not commit only if the system
crashes, never because of a user or system induced abort. As long
as records are sequentially added to the log, and the pages of the
log buffer are written to disk in sequence, a pre-committed trans-
action will have its commit record on disk before dependent
transactions.”

In this design, locks are released early, without distinction
by lock mode, e.g., shared or exclusive. It is well known that read
locks can be released early, e.g., during the pre-commit phase of
distributed transactions with two-phase commit. Write locks, on
the other hand, require longer retention in traditional transaction
processing. Similarly, this design does not distinguish between
read-only and read-write transactions among the dependent trans-
actions. It turns out that the next design repeats this erroneous
omission. (Figure 2 shows an example error scenario.)

2.2 Early lock release in Shore-MT
Researchers at CMU and EPFL implemented early lock re-

lease as part of tuning Shore-MT [6], specifically to remove log-
ging from the critical path of transaction processing by avoiding
all lock contention while a transaction becomes durable.

Johnson et al. demonstrate “speedup due to ELR [early lock
release] when running the TPC-B benchmark and varying I/O
latency and skew in data accesses” while logging on different
forms of stable storage, including logging to a slow traditional
disk (10 ms for a write to stable storage) and logging to flash
(write in 0.1 ms) [3]. Running TPC-B (which produces many lock
conflicts) against a traditional logging device, their work shows
that early lock release can speed up system throughput 30-fold;
for a fast logging device, system throughput improves 3-fold.

86

Figure 2. Bad database contents due to early lock release.

While the speed-ups are impressive, early lock release as

originally described and implemented in Shore-MT can produce
wrong results and even wrong database contents [4]. For example,
consider a transaction T0 acquiring an exclusive lock to update a
database record, then releasing the lock after formatting a commit
record in the log buffer, whereupon transaction T1 acquires a lock
on the same database record. If both transactions T0 and T1 are
update transactions, then the sequencing of commit records en-
forces the commit dependency between them. What happens,
however, if the dependent transaction T1 does not require a com-
mit record because it is a read-only transaction? In this case, it
may read and report a value written by transaction T0 before the
commit of transaction T1 is complete. Transaction T1 may termi-
nate successfully and thus commit to the user a value that may
never exist in the database if the commit record of transaction T0
is never saved on stable storage, e.g., due to a system crash.

For an example resulting in bad database contents, consider
a transaction T0 that updates a record in the database D0 from old
value 10 to new value 11 and then begins its commit activities.
After T0 has formatted its commit record in the log buffer and
released its locks, transaction T1 reads the value 11, copies it into
another database D1, and then performs its own commit. This
commit is a two-phase commit between databases D0 and D1.
Assume that database D1 provides commit coordination and logs
global commit records. Since transaction T1 is a read-only trans-
action in database D0, the pre-commit phase is sufficient there, the
second commit phase is not required, and no log record is written
in database D0 for transaction T1. Moreover, assume that stable
storage for database D1 is fast (e.g., flash storage) whereas stable
storage for database D0 is slower (e.g., a traditional disk). In this
case, it is quite possible that transaction T1 commits, including
saving its final global commit record on stable storage, before
transaction T0 can do the same and become durable. If database
D0 crashes in the meantime, database D0 rolls the data record back
to value 10, whereas database D1 contains value 11. Clearly, this
result of “copying” from database D0 to database D1 is not accept-
able transactional behavior.

Figure 2 illustrates this example. There are two parallel
timelines for the two databases. One transaction (blue) in Data-
base 1 reaches its commit point but never achieves durability due
to a system failure (red); thus, this transaction and all its updates
are rolled back during system recovery. The distributed transac-
tion (green) attempts a two-phase commit prior to the system
failure; the local read-only sub-transaction in Database 1 immedi-
ately responds and does not participate in the second commit

phase. The coordinator may commit the global transac-
tion even after one of the participating sites fails, be-
cause the local sub-transaction on Database 1 terminated
successfully. At the end, the value copied from Database
1 to Database 2 will remain in Database 2 but be rolled
back in Database 1, such that Database 2 is no longer a
faithful copy of Database 1.

2.3 Early lock release in Foster B-trees
As part of an effort to prototype and evaluate a

new B-tree variant, early lock release was also imple-
mented in the context of prototyping Foster B-trees [7],
although design and implementation of the locking sub-
system are orthogonal to its usage in any specific data
structure. This is the first implementation of early lock

release to avoid the danger of wrong results and wrong database
contents. The technique employed relies on tags in the lock man-
ager’s hash table [4]. When an update transaction releases a lock
as part of early lock release, it leaves a tag containing the log
sequence number of its commit record. Any subsequent transac-
tion acquiring a lock on the same object must not commit until the
appropriate log page has been written to stable storage.

Figure 3. Hash table with tags.

Figure 3 illustrates where tags are attached in the lock man-

ager’s hash table. The tag contains a high water mark, i.e., a log
sequence number. Any transaction acquiring any lock on the same
object cannot commit until this log record is on stable storage.

 Figure 4, copied from [4], shows performance improve-
ments due to early lock release in Shore-MT [6], including the
version with Foster B-trees [7] instead of the original Shore-MT

Figure 4. Performance effects of early lock release, © VLDB
Endowment.

87

indexes. The relative performance of Foster B-trees and the origi-
nal Shore-MT B-tree implementation is not relevant here as it is
partially due to differences in representation and compression of
records in pages. A comparison of fully implemented early lock
release (purple triangles) with the same code minus early lock
release (blue stars) demonstrates performance advantages across
almost the entire range from an insert-only workload (read ratio
0%) to read-only queries (read ratio 100%). The performance
advantage reverses for a read-only workload “because ELR
checks the transaction’s lock requests twice at commit time” [4].
This experiment logs on flash storage; the effects are similar or
stronger with the recovery log on traditional disks.

The performance of early lock release in Figure 4 is also
indicative of the performance of controlled lock violation. This is
because they are equivalent in their effect, at least in single-site
cases (they are not in the context of two-phase commit). After all,
one transaction releasing its locks is effectively the same as other
transactions ignoring those same locks (in the same cases).

Unfortunately, after the introduction of tags had “repaired”
early lock release, it needed yet another repair. Early lock release
for intention locks requires tags just like absolute locks (i.e., non-
intention locks), but they require a different kind of tag. For ex-
ample, two transactions may both acquire intention locks on the
same index but may touch different index entries. Thus, tags for
intention locks should introduce commit dependencies only in
conflicts with absolute locks but not with intention locks [4].

Of course, one wonders how many additional kinds of tags
might be required. For example, Microsoft SQL Server uses mul-
tiple special locks such as ‘insert’ locks, ‘bulk insertion’ locks,
‘schema stability’ and ‘schema modify’ locks, etc. In other words,
what seems needed is either a theory for deriving appropriate tags
from lock modes (as in [8]) or a mechanism (including an appro-
priate theory and policy) that avoids tags altogether.

One may also wonder how early lock release may optimize
distributed transactions with two-phase commit. It turns out, un-
fortunately, that the optimizations of early lock release apply to
the final commit phase only but not to the pre-commit phase. In
other words, a participant transaction may release its read-only
locks during the pre-commit phase (as is well known) but it must
retain its update locks until the local participant transaction has
appended its final commit record to the log buffer. Lock retention
time is reduced only by the time to write the final commit record
to stable storage but not by the time for writing the pre-commit
record during the initial phase or for communication and coordi-
nation during a two-phase commit. This is discussed further in
Section 4.

2.4 Other cases of early lock release
In addition to the instances outlined above, other instances

of early lock release have been mentioned in the literature or are
used in real systems.

First, when a transaction employs “save points,” e.g., be-
tween individual SQL statements, and if a transaction rolls back to
an earlier save point, then it may release the locks it acquired after
that save point. For example, if a transaction’s first statement
touched only index I1 and the second statement touched index I2,
but the second statement failed and the transaction rolls back to
the save point between the two statements, then all locks on index
I2 may be released during this partial rollback.

Second, when a transaction must abort, it may release all its
read-only locks immediately. Only the write locks are required to
protect the rollback actions. As the rollback logic proceeds, it may

release locks as it completes the rollback (“undo”, compensation)
actions, i.e., in reverse order of lock acquisition.

Third, when the global coordinator in a two-phase commit
requests that local participant transactions prepare for transaction
commit, read-only participants may terminate immediately [9].
This includes releasing all their locks; obviously, those are all
read-only locks. In addition, a read-only participant has no need to
participate in the second phase of the two-phase commit. This is
perhaps the most well known example of early lock release.

Fourth, read-write participants in a two-phase commit may
release their read-only locks immediately upon receiving the re-
quest to prepare for a transaction commit. In other words, early
lock release in two-phase commit is not dependent on the overall
behavior of the local participant but on the nature of the locks – a
transaction may release its read-only locks immediately after the
commit request.

Fifth, even in the absence of distribution and two-phase
commit, a transaction may release its read-only locks as soon as it
has allocated space for a commit record in the log buffer. This
technique requires that each transaction scans its set of locks
twice, once to find (and release) its read-only locks and once
again (at the very end) to release the remaining locks. Early lock
release requires only one such scan, which releases all locks and
inserts tags into the lock manager’s hash table. These tags will be
cleared out by subsequent transactions finding tags that expired.
Controlled lock violation requires only the final scan after all
commit activities; it may, however, use an earlier scan over all its
locks in order to identify all transactions already waiting for those
locks and able to resume with controlled lock violation.

Figure 5. Compatibility of hierarchical locks.

Sixth, existing locks may be modified in their lock modes in

order to strip out the read-only aspects. For example, an SIX lock
[10] may be reduced to a lock in IX mode. (An SIX lock com-
bines a shared S lock and an intent-exclusive IX lock on the same
object – the compatibility matrix for intention locks is shown in
Figure 5.) Locks may also be reduced in their coverage or granu-
larity of locking. For example, an exclusive X lock on an entire
index may be reduced to an IX lock on the index combined with
appropriate X locks on individual pages or index entries. Note that
lock de-escalation can proceed without checking for lock conflicts
and cannot create a deadlock. Thus, the X lock on the index is not
released but instead it is much reduced in its strength or coverage.

Finally, key range locking raises special cases for the last
two points. Some key range locks guarantee the absence of possi-
ble future database contents, specifically locks on the open inter-
val between two existing key values in an ordered index such as a
B-tree. Such locks are required to prevent phantoms and to ensure
true serializability [11]. As special forms of read-only locks, they
can be released prior to the transaction’s commit activities. Other
key range locks combine read-only and update parts, with only the
update aspect required during commit activities. For example, a
XS lock (“key exclusive, gap shared”) [12] can be reduced to an
XN lock (“key exclusive, gap free”) as part of releasing all read-
only locks. Figure 6 shows a B-tree node with a few key values
as well as some of these lock modes and their scope.

88

Figure 6. Lock scopes in key range locking.

2.5 Distributed commit
The traditional standard for committing a transaction over

multiple nodes (or multiple recovery logs) has been two-phase
commit, with all locks retained until all commit activities are
complete. Thomson et al. [13] observe that “The problem with
holding locks during the agreement protocol is that two-phase
commit requires multiple network round-trips between all partici-
pating machines, and therefore the time required to run the proto-
col can often be considerably greater than the time required to
execute all local transaction logic. If a few popularly-accessed
records are frequently involved in distributed transactions, the
resulting extra time that locks are held on these records can have
an extremely deleterious effect on overall transactional through-
put.” Therefore, their design sequences transactions deterministi-
cally in order to “eliminate distributed commit protocols, the larg-
est scalability impediment of modern distributed systems.” In
contrast, controlled lock violation reduces the “contention foot-
print” [13] of two-phase commit by judiciously violating locks
held by committing transactions.

Kraska et al. [14] similarly aim to reduce lock conflicts by
reducing commit communication. They “describe a new optimis-
tic commit protocol for the wide-area network. In contrast to pes-
simistic commit protocols such as two-phase commit, the protocol
does not require a prepare phase and commits updates in a single
message round-trip across data centers if no conflicts are de-
tected” [14]. An essential part of this protocol seems to be that
each request for work includes a request to prepare for commit,
quite comparable to the first phase of a traditional two-phase
commit. In either case, a local transaction guarantees that it will
abide by a subsequent global decision to commit or abort.

With this guarantee in place, a single message carrying the
global decision can achieve the final commit, comparable to the
second phase of a traditional two-phase commit. As each work
request includes a request for commit preparation, each work step
with local database updates requires a prepared-to-commit log
record in each local recovery log. Moreover, a prepared local
transaction is protected, i.e., it cannot be terminated, e.g., if it
becomes part of a deadlock. Note that a local participant may
subsequently receive additional work requests for the same trans-
action. If the additional work request includes database updates, it
invalidates the prior commit preparation and requires a new one,
including another suitable log record written to stable storage.

Kraska et al. measured round-trip response times between
various regions on Amazon’s EC2 cluster over a number of days
[14]. Even communication links with response times around 0.1-
0.2 seconds most of the time can spike to about 1 second and even
to about 4 minutes. Note that these are message delays, not fail-
ures. If such delays affect communication during two-phase
commit, and if transactions retain locks during commit coordina-
tion, spikes in communication latency likely produce spikes in
lock contention.

Kraska et al. [14] propose to address the problem by impos-
ing the cost to prepare a two-phase commit on every remote invo-
cation within every transaction, whether or not network latency is
currently spiking. In contrast, controlled lock violation addresses
the problem by permitting subsequent transactions to violate locks
and proceed while earlier transactions run their commit activities.

3 CONTROLLED LOCK VIOLATION
While early lock release removes locks from the lock man-

ager before writing the commit record to stable storage, controlled
lock violation retains the locks until transaction end. In order to
match the concurrency and performance of early lock release,
however, controlled lock violation permits new transactions to
acquire conflicting locks in a controlled way. Specifically, in the
simplest form of controlled lock violation, lock acquisition is
permitted if the transaction holding the lock has appended its
commit record to the log buffer. The advanced forms of controlled
lock violation have more relaxed rules, e.g., for two-phase commit
(Section 4) or for canned transactions (Section 5).

Figure 7. Sequences of three transactions (T0, T1, and T2)
without (top) and with (bottom) controlled lock violation.

Figure 7 illustrates a sequence of three transactions that all

require a lock on the same database object. The green horizontal
lines represent the time needed to execute transaction logic; the
red horizontal lines represent time spent waiting for locks or for
log records to flush to stable storage. The top diagram shows sub-
sequent transactions acquiring the contested lock only after each
preceding transaction has finished all its commit activities. The
bottom diagram shows how subsequent transactions may acquire
the contested lock and run the transaction logic immediately after
the preceding transaction has started its commit activities, specifi-
cally after adding its commit log record to the in-memory log
buffer. Note that in the lower figure, the commit log records of
transactions T0 and T1 happen to go to stable storage in the same
I/O operation. Obviously, controlled lock violation enable transac-
tions to follow each other in faster succession. The “price” for this
performance gain is that multiple transactions require rollback
during recovery in case of a system failure; recall that a transac-
tion with a commit log record in the log buffer can fail only if the
entire system crashes.

3.1 Principles
It is well known that if a transaction T1 reads an update by a

preceding yet uncommitted transaction T0, also known as a dirty
read, then T1 incurs a commit dependency on T0. In other words,
in a serializable transaction execution schedule, transaction T1
may commit only after transaction T0 commits. More generally, if
a transaction T1 ignores or violates a concurrency control conflict,

89

e.g., conflicting locks, with another transaction T0, a commit de-
pendency results.

The only exception is a read-only lock held by the earlier
transaction. In this case, a commit dependency is not required. On
the other hand, a read-only lock acquired in conflict with an ear-
lier lock causes a commit dependency. In fact, this is the case
overlooked in early designs for early lock release.

Of course, should transaction T0 subsequently read or up-
date a data item after transaction T1 has updated it, then a circular
dependency results. In such cases, serializability becomes impos-
sible and transaction T1 must abort.

One can consider a rollback of transaction T0 as such a case:
modern recovery techniques essentially “update back” the chang-
es of failed transactions rather than reverse byte for byte. Logical
transaction compensation is required whenever the granularity of
locking, e.g., key value locking, lets multiple concurrent transac-
tions modify the same physical data structure, e.g., a B-tree node.
If transaction T0 fails and rolls back after transaction T1 has up-
dated a data item already updated by transaction T0, then the “up-
date back” action completes a circular dependency that can be
resolved only by aborting transaction T1. Thus, thinking of roll-
back as “updating back” nicely explains the commit dependency
mentioned above.

3.2 Approach
In a traditional database system without early lock release,

imagine a transaction T0 holding a lock and another transaction T1
requesting a conflicting lock. In this case, T1 might wait for T0's
commit (and the implied lock release) or T1 might abort T0 (and
thus force immediate lock release). For a decision between these
alternatives, it compares the priorities of T0 and T1. It also checks
the state of T0. If T0 has already added a commit record to the log
buffer, or if T0 is part of a distributed transaction in pre-commit
state, or if T0 is already aborting and rolling back, then T0 is pro-
tected and T1 cannot force T0 to abort. Importantly, before trans-
action T1 decides on a course of action, it must acquire informa-
tion about transaction T0 and its transactional state.

Controlled lock violation aims to achieve the performance
advantages of early lock release (corrected with tags) but without
releasing locks until all commit activities are complete. In con-
trolled lock violation, transaction T0 retains all its locks until its
commit record indeed is on stable storage. However, if transaction
T1 comes along and looks at transaction T0 (in order to decide its
course of action, e.g., whether to abort T0), and if T0 already has a
commit record in the log buffer (even if not yet on stable storage),
then T1 may proceed in spite of any locks T0 still holds. Specifi-
cally, transaction T1 may acquire its desired lock in spite of the
conflict but it must take a commit dependency on T0. Transaction
T0 retains its locks, so the lock manager may grant and hold con-
flicting locks in this case.

Actually, the commit dependency is required only if the
lock held by transaction T0 is an update lock, e.g., an exclusive
lock, ‘intent exclusive’ lock, ‘increment’ lock, etc. In other words,
violation of anything but a read-only lock creates a commit de-
pendency. A write lock acquired in conflict with an earlier lock
must be registered as a commit dependency, even if two update
transactions and their commit records usually ensure a correct
commit ordering. This is necessary because the write lock might
be used only for reading: if the entire transaction remains a read-
only transaction without any log records, then no commit record is
required and the error case may occur unless the commit depend-
ency is explicitly enforced.

3.3 Implementation techniques
In the above examples, the crucial task missing from trans-

action T0’s commit is writing the commit record to stable storage;
the other tasks are acknowledgement of the commit to the user (or
application) and releasing locks and other resources such as
threads and memory. As soon as the log write is complete and
thus the transaction durable, the commit dependency is resolved.

Thus, the commit dependency is really equivalent to a high
water mark in the recovery log. When the recovery log has been
written to stable storage up to and including this high water mark,
transaction T1 is free to commit. In other words, when transaction
T1 acquires a lock that conflicts with a non-read-only lock held by
transaction T0, which is permitted because transaction T0 has al-
ready written its commit record to the log buffer, then the LSN
(log sequence number) of T0’s commit record is registered as the
high water mark governing the commit of T1. Transaction T1 can-
not commit until the recovery log has been written to stable stor-
age up to and including this log record.

If transaction T1 is an update transaction, then it will even-
tually append its own commit record to the log buffer and the log
on stable storage. In this case, the sequencing of commit records
in the recovery log will ensure correct enforcement of the commit
dependency. In other words, the commit dependency is almost
meaningless and enforced as a matter of course.

If, on the other hand, transaction T1 is a read-only transac-
tion without any log records and thus without a commit record,
and if transaction T1 has incurred a commit dependency by violat-
ing a lock of a committing transaction T0, then T1 must wait until
the commit record of T0 is saved on stable storage. This is pre-
cisely what the high water mark enforces. Thus, this technique
delays a committing read-only transaction only if a lock violation
has indeed occurred and only as much as absolutely necessary.

If transaction execution is faster than writing a commit re-
cord to stable storage, perhaps even orders of magnitude faster,
then transactions may form long chains of commit dependencies.
In the extreme example of 0.01 ms execution time and 10 ms
commit time, a chain of 1,000 transactions seems possible. If only
one of those transactions were to abort, all subsequent ones must
abort, too. In other words, this seems to be a bad case of “abort
amplification” or “cascading abort.”

One must recognize, however, that a traditional transaction
processing system would have let none of the subsequent transac-
tions acquire conflicting locks; thus, transactions aborted in this
design would never even have started or made progress past the
conflicting lock request. More importantly, all transactions whose
locks may be violated have reached their commit point and have
appended a commit record to the log buffer; thus, practically the
only cause for a transaction failure is a system failure, in which all
subsequent transactions would fail even without the chain of
commit dependencies.

3.4 Comparison with early lock release
Controlled lock violation is similar to early lock release, at

least in some aspects. First, a transaction T1 can proceed as soon
as an earlier, conflicting transaction T0 has added its commit re-
cord to the log buffer in memory (or at least allocated space and
an address for it). Second, most read-only transactions can com-
mit instantly, except those that encounter a lock conflict and incur
a commit dependency. (In this exception case, controlled lock
violation is “slower” than early lock release because controlled
lock violation behaves correctly whereas early lock release does
not – see Figure 2 and the corresponding discussion).

90

Controlled lock violation is also quite different from early
lock release. First, transaction T0 retains its locks in controlled
lock violation as long as in traditional lock release, so it does not
release any locks early. Second, locks can be violated while trans-
action T0 commits, but only after T0 has added its commit record
to the log buffer. Third, hardly any new mechanism is required –
for example, neither the allocation nor the clean up of tags are
required. Fourth, if there is no conflict between committing and
active transactions, controlled lock violation does not impose any
restrictions or overheads, whereas early lock release forces com-
mitting transactions to install tags in the lock manager’s hash
table just in case a subsequent transaction might create a lock
conflict. Finally, and perhaps most importantly, controlled lock
violation requires very little if any new theory – violation of lock
conflicts and resulting commit dependencies are already part of
the traditional theory of concurrency control and recovery.

3.5 Combined locks
Retaining the original locks during commit activities is

more precise than early lock release. This is because controlled
lock violation preserves all lock information during commit ac-
tivities whereas early lock release reduces that information to a
tag. The detailed information about locks is particularly useful in
cases with combined lock modes such as SIX (see Figure 5).

A conflict involving a combined lock mode does not always
induce a commit dependency, because a combined lock may in-
clude read-only and update parts. Thus, controlled lock violation
is more precise than early lock release, because early lock release
reduces the conflict analysis to tags whereas controlled lock viola-
tion retains the precise lock. Early lock release would introduce
commit dependencies in all of the following examples.

Consider, for example, transaction T0 holding a combina-
tion lock, e.g., an SIX lock on a file (to read the entire file and
update selected pages). A commit dependency is required only if a
lock acquired by a later transaction conflicts with the update part.
For example, if transaction T1 requests an IS lock (in preparation
of locking individual pages in S mode), there is no conflict at all
because lock modes SIX and IS are compatible. (There is no con-
flict over this lock for the entire file; there may be a conflict if T0
and T1 attempt to lock the same page.) Further, if transaction T2
acquires an IX lock on the file (in preparation of acquiring X
locks on individual pages), which conflicts only with the read-
only S part of the SIX lock of transaction T0, no commit depend-
ency is required. On the other hand, if another transaction T3 ac-
quires an S lock on the file, which conflicts with the IX part of the
SIX lock of transaction T0, then T3 incurs a commit dependency
on T0. (In this particular case, transaction T3 also incurs a commit
dependency on T2 due to the conflict between IX and S locks.)

Figure 8. Conflicts and dependencies in key range locking.

Another example is key range locking in B-tree indexes.

Consider the specific case illustrated in Figure 8. Transaction T0
has locked key value 30 in XS mode (“key exclusive, gap
shared”) [12] and is in its commit phase with the commit record in
the log buffer. If transaction T1 acquires a violating NX lock
(“key free, gap exclusive” – N stands for no lock), should that
imply a commit dependency? The correct answer is ‘no’. If trans-

action T2 acquires a violating SN lock (“key shared, gap free”),
should that imply a commit dependency? The correct answer is
‘yes’. With early lock release and a tag in the lock manager's hash
table, it is impossible to derive these correct answers. Controlled
lock violation makes the correct decision easy: As the NX lock of
transaction T1 conflicts only with the read-only part of the XS
lock held by transaction T0, no commit dependency is required.
On the other hand, since the SN lock of transaction T2 conflicts
with the update part of the XS lock held by transaction T0, T2
incurs a commit dependency on T0. (Locks of modes SN and NX
do not conflict; therefore, T2 does not incur a commit dependency
on T1.)

3.6 Weak transaction isolation levels
Many databases and their applications run with a transaction

isolation level weaker than serializability, e.g., “read committed.”
This isolation level permits releasing read-only locks immediately
after use, e.g., when a scan advances to the next record. Write
locks, on the other hand, are retained until the transaction ends.

If a transaction finds a desired data item locked, it waits.
Only the “dirty read” transaction isolation level ignores existing
locks (and consequently provides no meaningful transaction isola-
tion). With controlled lock violation, this wait may not be re-
quired – a subsequent transaction may violate locks held by a
transaction already in its commit activities. If a read-only lock of
transaction T1 violates a write lock of an earlier transaction T0, it
incurs a commit dependency. This is true even if the transaction
T1 releases this read-only lock soon thereafter, i.e., long before it
attempts to commit.

A special case is an earlier transaction T0 that deletes a re-
cord. Most implementations employ ghost records, also known as
invalid records or pseudo-deleted records. These records still exist
in the data structure but are marked as logically deleted. Their
value is that a locked data item remains in the data structure until
the transaction commits, thus avoiding special cases in the con-
currency control code and simplifying rollback code. Any scan or
query must ignore ghost records. If a transaction T1 finds a locked
ghost record, and if the lock-holding transaction T0 is in its com-
mit activities, then T1 may violate the lock but it incurs a commit
dependency. Transaction T1 may commit only if transaction T0
indeed commits the ghost record. If transaction T0 fails and rolls
back, transaction T1 erroneously ignored a valid record and it
therefore must abort as well.

3.7 Summary
In summary, controlled lock violation matches early lock

release in the principal goal: when and where early lock release
applies, controlled lock violation permits the same concurrency.
However, controlled lock violation is simpler, e.g., with respect to
data structures, yet it is more general, e.g., with respect to lock
modes, and more accurate, e.g., with respect to combined locks
and key range locking.

Early lock release and controlled lock violation can com-
plement each other, for example in the following way. Once a
transaction has determined its commit LSN, it may release its
read-only locks. All remaining locks remain active but subsequent
lock requests may violate them.

The early lock release part of this hybrid design can also
weaken combined locks by removing the read-only component,
e.g., from SIX to IX in hierarchical locking or from XS to XN in
key-range locking. Moreover, it may notify waiting threads and
transactions of released or weakened locks. Weakening SIX to IX

91

locks seems particularly valuable in systems that let threads retain
intention lock (e.g., IX) from one transaction to another, a tech-
nique known as speculative lock inheritance [15]. Incidentally,
both early lock release and controlled lock violation can treat a U
(upgrade [8]) lock as if it were an S lock.

Hybrid models are readily possible because in some sense,
controlled lock violation differs from early lock release only in
the information they retain: while tags in corrected early lock
release retain a synopsis of the released lock, controlled lock vio-
lation retains the entire lock with all its detailed information. Re-
taining all lock information permits precision and functionality
impossible with early lock release, unless each retained tag effec-
tively replicates the released lock.

4 DISTRIBUTED TRANSACTIONS
As mentioned earlier, early lock release applies only to the

final commit phase of two-phase commit, not to the pre-commit
phase. In other words, early lock release cuts the lock retention
time by the time for writing the final commit record but not by the
time for communication during the two-phase commit and for
writing the pre-commit record to stable storage.

Figure 9. Lock retention times in two-phase commit.

Figure 9 illustrates a distributed transaction and its two

commit phases. The execution time is short but each commit
phase requires communication and at least one write to stable
storage. Traditional lock release retains locks until all commit
activities are complete, shown by a blue line above the time line.
Early lock release retains locks throughout the first phase of a
two-phase commit, shown by a green line below the time line. In
contrast, controlled lock violation enforces locks only during
transaction execution, shown by a short red line at the bottom left.

Using the times for transaction execution and for flushing
commit records to stable storage from the introduction, and as-
suming for simplicity negligible communication times, execution
takes 0.01 ms and each commit phase takes 10 ms (logging on a
pair of traditional disks) or 0.1 ms (logging on flash memory).
Traditional commit processing holds all locks for 20.01 ms (log
on disks) or 0.21 ms (log on flash); early lock release holds all
locks for 10.01 ms or 0.11 ms; and controlled lock violation en-
forces locks for only 0.01 ms (independent of the log device). In
other words, with the log on a pair of traditional disks, effective
lock retention times are 2,000 times shorter than with traditional
commit processing and 1,000 times shorter than with early lock
release; with the log on flash memory, effective lock retention
times are 20 or 10 times shorter, respectively.

Specifically, imagine an update transaction T1 that is a local
participant in a distributed transaction coordinated by remote
transaction T0, and another transaction T2 that requests a lock
conflicting with a lock held by T1. With early lock release, T2
must wait until T1 has added its final commit record to the log
buffer. With controlled lock violation, once the local transaction
T1 has received the request for the first commit phase, T2 may

acquire a conflicting lock. Of course, T2 incurs a commit depend-
ency on T1 and thus on T0. If those fail, T2 must roll back as well.

4.1 Implementation of commit dependencies
Implementation of commit dependencies in distributed set-

tings are somewhat complex. Fortunately, the commit dependen-
cies required here are always within a single site (node). Thus,
fairly simple mechanisms suffice.

A recent detailed description of such mechanisms was pub-
lished, for example, by Larson et al. [16]. They call their design a
“register-and-report approach” in which “T1 registers its depend-
ency with T2 and T2 informs T1 when it has committed or abort-
ed.” Essential to the implementation is a counter (similar to a
reference counter) and a set data structure capturing dependent
transactions. They explain further:

“To take a commit dependency on a transaction T2, T1 in-
crements its CommitDepCounter and adds its transaction ID to
T2’s CommitDepSet. When T2 has committed, it locates each
transaction in its CommitDepSet and decrements their Commit-
DepCounter. If T2 aborted, it tells the dependent transactions to
also abort by setting their AbortNow flags. If a dependent transac-
tion is not found, this means that it has already aborted. Note that

a transaction with commit dependencies may not
have to wait at all - the dependencies may have
been resolved before it is ready to commit. Commit
dependencies consolidate all waits into a single wait
and postpone the wait to just before commit.” [16]

4.2 Performance effects
Perhaps a concrete example is best to illustrate the advan-

tages of eliminating lock conflicts during both phases of a two-
phase commit. If the transaction logic runs 0.01 ms (e.g., 40,000
instruction cycles on a core running at 4 GHz) and each commit
phase runs 0.1 ms (to force a commit record to flash storage), then
early lock release improves the contention footprint by almost a
factor of 2 (0.21 ms ÷ 0.11 ms) whereas controlled lock violation
improves the time with lock conflicts by more than a factor of 20
(0.21 ms ÷ 0.01 ms). If stable storage is realized with traditional
disks, and if the time to force a log record to stable storage is
10 ms, then the factor for early lock release remains at about 2
(20.01 ms ÷ 10.01 ms) whereas the factor is about 2,000
(20.01 ms ÷ 0.01 ms) for controlled lock violation.

If locks can be violated immediately after a distributed
transaction begins its commit sequence, lock contention during
the two-phase commit sequence may cease to be a concern for
performance and scalability. In other words, the major concern
about or argument against two-phase commit loses weight and
credibility. By removing lock conflicts during communication and
coordination of two-phase commit, controlled lock violation may
substantially contribute to increased use of two-phase commit
with distributed transactions and thus to the consistency and reli-
ability of distributed systems.

4.3 Summary
Both early lock release and controlled lock violation reduce

the effective lock retention times during two-phase commit. Nei-
ther improves the elapsed time, communication time, or logging
effort during commit processing. However, since early lock re-
lease pertains only to the final phase of the two-phase commit, its
improvement of effective lock retention times is very small in
comparison to that of controlled lock violation.

92

5 CANNED TRANSACTIONS
In some cases, controlled lock violation may be advanta-

geous even before the user (or application) requests a transaction
commit for the transaction holding the lock. In general, such lock
violation is a bad idea. For example, if transaction T0 needs and
acquires a lock, transaction T1 violates this lock, and then T0 per-
forms another action that requires the same lock again, then trans-
action T0 needs to violate the lock held by T1 and transactions T0
and T1 have mutual, i.e., circular, commit dependencies on each
other. Only aborting transaction T1 can resolve this situation.

If, however, it is certain that transaction T0 will not require
again a specific lock that it holds, then another transaction T1 may
violate this lock. For example, a “canned” transaction T0 may run
a stored procedure, that stored procedure may consist of multiple
statements, and each statement may touch its own set of tables,
i.e., disjoint from the tables in other statements. All of these are
not unreasonable assumptions as many stored procedures satisfy
them. When they apply, then another transaction T1 may violate
any lock from an earlier statement. The precise condition is that
locks may be violated if neither the current nor any future state-
ment might need them.

Figure 10. A canned transaction.

Figure 10 shows source code for a very simple stored pro-

cedure. It moves money from one account to another and then
inserts a record of it in a table of activities. After the first two
statements, the table of accounts will not be touched again, except
perhaps to roll back the updates in case of a transaction failure,
e.g., due to a deadlock. Thus, while the third statement is still
executing, a later transaction may violate the locks on the ac-
counts table still held by an active transaction. Even in this simple
example, controlled lock violation during one of three statements
reduces the time with lock conflicts for the accounts table by one
third (not including lock retention after the commit request). In
other words, in addition to eliminating lock contention while a
commit record is written to stable storage, controlled lock viola-
tion can reduce lock contention even further.

Note that controlled lock violation of read-only locks does
not incur a commit dependency. In other words, controlled lock
violation of a read-only lock has no negative effect at all. Thus,
for tables touched only by a single statement of a stored proce-
dure, controlled lock violation gives the semantics and consis-
tency of full serializability but with the contention footprint and
with the lock conflicts of “read committed” transaction isolation.

The tables involved in each statement can easily be ex-
tracted from the source code of the stored procedure. If disam-
biguation of table names requires a binding based on the user
invoking the stored procedure, such static analysis might not be
possible, in particular if tables and views may have multiple
names or aliases. Cases requiring user-specific name resolution
are discouraged in practice, because these cases also prevent pre-
compilation, cached query execution plans, and compile-time
query optimization. Therefore, static analysis is usually possible.
It might focus on tables and materialized views (i.e., objects of the
logical database design) or on indexes and partitions (i.e., objects
of the physical database design). In the former case, it is sufficient

to analyze the request syntax; in the latter case, query execution
plans must also be considered.

Gawlick and Kinkade [17] wrote: “Consider, for example,
an ultra-hot spot: a counter updated by every transaction. To
achieve a high transaction rate, we want a transaction to be able to
access the counter without waiting for any other transaction. We
also want to guarantee the integrity of the counter, consistency
with other parts of the data base, etc.” Their solution introduced a
new “change” verb to the language, i.e., a restriction to increment
and decrement operations instead of general read and write opera-
tions. Note that an ‘increment’ lock is perfectly compatible with
serializable transactions but it does not imply a read lock, i.e., it
does not bestow the right to expect repeatable reads.

Wolfson [18] described a static analysis of stored proce-
dures and an algorithm to identify points when explicit early lock
release may be permitted without the danger of deadlocks. The
analysis algorithm is, unfortunately, NP-complete and needs to
run whenever the text of a stored procedure is altered. Moreover,
the work is limited to single-site deployments and to shared and
exclusive locks.

The present design offers an alternative to both prior ap-
proaches: a transaction may acquire a traditional write (exclusive)
lock on the counter, increment its value, and then hold the lock
until all commit activities are complete. Because such a transac-
tion touches the counter only once, subsequent transactions may
violate this lock immediately after the increment operation. In
other words, controlled lock violation can offer practically the
same concurrency but without the need for ‘increment’ locks.

In summary, controlled lock violation can happen even be-
fore the commit request in some cases that may be expected
common in practice. It might for many applications combine the
advantages of “read committed” and serializable transaction isola-
tion levels. In many cases, it also enables traditional exclusive
locks with the concurrency of special ‘increment’ locks.

6 PERFORMANCE EVALUATION
We implemented and measured controlled lock violation in

the context of Shore-MT [6], an experimental database system.

6.1 Implementation
We implemented controlled lock violation in Shore-MT by

adding a binary flag to each transaction descriptor that indicates
whether other transactions may violate the transaction’s locks.
Lock acquisition ignores conflicts with locks held by transactions
with this flag set when determining if locks can be granted. The
flag starts unset and is set at the same point early lock release
would release locks, namely once the commit record has been
allocated in the log buffer.

We also modified the lock acquisition code so that when a
transaction violates another transaction’s lock, the acquiring
transaction advances its high-water mark to equal or exceed the
holding transaction’s commit LSN. A transaction's high water
mark (part of the preexisting implementation of early lock release)
is the highest LSN that must be flushed to stable storage before a
read-only transaction is allowed to commit and return data to a
client. The preexisting code to implement this delay takes less
than 60 lines of C++ including comments and debugging code but
not tests. Such delays affect only read-only transactions.

The present implementation omits many possible optimiza-
tions. For example, it maintains a transaction’s high-water mark
even when a lock acquisition violates a read-only lock and it fails
to wake up waiting transactions when lock violation becomes

93

possible. (We expect to have this remedied very soon.) We also
have not yet implemented controlled lock violation in the context
of two-phase commit or of canned transactions.

6.2 Results
In the following, we report the performance of controlled

lock violation versus two variants of early lock release (releasing
S locks only and releasing both S and X locks) for the industry
standard TPC-B benchmark, which models simple database trans-
actions. To cover a range of logging delays, we logged to a RAM
disk but added an extra delay ranging from 0.1 ms to 10 ms to
simulate a range of stable storage devices. The database data itself
was stored on disk and our experimental machine is a 4-socket
Intel Xeon X7542 machine running at 2.7 GHz with 24 cores.

Figure 11. 24 cores, 24 threads.

Figure 11 and Figure 12 show the transaction throughput

(transactions per second) for competing commit processing tech-
niques as the extra delay is varied. Figure 11 is for 24 threads
(one per core) while Figure 12 is for 48 threads (two per core).
Extra threads can perform useful work when other threads are
blocked, waiting for locks or, more likely in the case of controlled
lock violation, for their commit record to be flushed to stable
storage.

Figure 12. 24 cores, 48 threads.

Note that the relatively low performance for 48 cores at

small delay is expected, since the threads block only for a very
short time and hence the additional threads merely add overhead
(e.g., due to true contention, context switching overhead, etc.).

As can be seen, both controlled lock violation and early
lock release for S and X locks outperform the traditional approach
of releasing read-only locks early by large factors for sizable de-
lays: up to 5× at 1 ms commit delay and 2× at 10 ms commit de-
lay. The improvement is smaller at small delays: up to 2.2× at
0.1 ms commit delay and 4.5× at 0.3 ms commit delay. The per-
formance of controlled lock violation and early lock release for S
and X locks are not significantly different; a T-test fails to reject
the null hypothesis at p=0.05. However, as our implementation of
controlled lock violation is missing several possible optimizations
(see Section 6.1) it may be possible for controlled lock violation
to exceed the performance of early lock release.

Since controlled lock violation sometimes delays read-only
transactions, we also experimented with a variant of TPC-B with
70% of the transactions made read-only by omitting their writes.
The results, shown in Figure 13 for 48 threads, again show siz-
able improvements for controlled lock violation.

Figure 13. 24 cores, 48 threads, 70% read-only.

7 DISCUSSION
Both early lock release and controlled lock violation are

specific forms of speculative execution. The speculation risk,
however, is very small, as both techniques require that the earlier
transaction reaches its commit point and formats a commit record
in the log buffer before speculative execution begins. Nonethe-
less, with all other things equal, a system should schedule (proc-
ess) a transaction without commit dependency ahead of one with,
or one with fewer commit dependencies ahead of one with more.
In other words, a transaction with commit dependencies should
progress only if there no is work pending that is less speculative,
or when the processing resources would remain idle except for
speculative work. This is particularly true in the advanced forms
of controlled lock violation discussed in later sections.

Outside the research area of database management, Night-
ingale et al. [19] investigated scenarios similar to ours. The issue
was the same – guaranteeing durability yet hiding the latency until
information had been written to disk. Their context was a file
system and its “sync” operations. Their solution acknowledges the
write operation immediately and lets the invoking process con-
tinue while preventing the process from communication. In other
words, speculative execution of the process enabled further local
progress but in the unlikely case that the sync operation failed, the
process can be rolled back and the speculative execution is wast-
ed. Thus, by relying on inexpensive checkpoints and speculative
execution, their system achieved performance similar to asyn-
chronous writes to disks but the semantics of synchronous writes.

94

Early lock release and controlled lock violation similarly rely on
speculative execution with an extremely low risk of failure and of
wasted work.

Both early lock release and controlled lock violation also
seem related to optimistic concurrency control, in the sense that
new transactions may proceed ignoring existing transactions and
their concurrency footprint. Both techniques, however, are forms
of pessimistic concurrency control, i.e., locking. Both techniques
employ traditional locking techniques for synchronization atomic-
ity or concurrency control – only during the phase that ensures
durability of transaction, i.e., flushing the commit record to stable
storage, are locks released or violated.

This reliance on pessimistic concurrency control is very de-
liberate. Carey’s extensive simulation studies (e.g., [20] and mul-
tiple subsequent studies) point out that the mechanism of concur-
rency control matters little in systems with few conflicts. In sys-
tems with many conflicts, avoiding wasted work by early detec-
tion of conflicts is the most important determinant of performance
(other than a fine granularity of locking). Controlled lock viola-
tion wastes work (due to “cascading aborts” or “abort amplifica-
tion”) only if a transaction fails after reaching its commit point.

In a single-site or single-log system, a transaction starts cas-
cading aborts only if a system failure (crash) occurs in the time
between adding a commit record to the log buffer and completing
the write to stable storage, i.e., the time required for a single write
operation. Moreover, in a traditional system that retains locks
until a transaction is durable, the transactions failed due to cascad-
ing abort would not have started. In other words, controlled lock
violation is pessimistic with respect to synchronization atomicity
but it is optimistic with respect to durability once a transaction has
started its commit activities. The risk and extent of wasted work
are miniscule compared to the performance advantage of early
lock release and controlled lock violation.

In a system with multiple logs and thus with two-phase
commit, frequent failures during the first commit phase would
suggest delaying controlled lock violation to the second phase. If,
however, most transactions that start their commit activities also
finish them successfully, the risk of cascading aborts is low. Simi-
lar considerations apply to controlled lock violation prior to the
commit point of canned transactions – if failures are frequent,
controlled lock violation should be restricted to the commit phase.

Early lock release and controlled lock violation avoid multi-
version concurrency control and its complexities by delaying any
conflicting transaction until the lock-holding transaction has fin-
ished its updates. Thus, there is no need for multiple versions of
the same record. However, should a rollback be required, e.g.,
because a distributed transaction fails in the second phase of its
two-phase commit, it is possible that multiple transactions need to
roll back, which could take a single record back in time through
multiple states. Nonetheless, at any one time, there is only a single
version of each record in the database.

8 SUMMARY AND CONCLUSIONS
In summary, the simple form of controlled lock violation is

comparable to early lock release. Early lock release can boost the
performance of transaction processing by a small factor or even
an order of magnitude as shown in Figure 4. In those cases in
which early lock release applies, controlled lock violation enables
the same amount of additional concurrency compared to tradi-
tional commit processing. However, there are multiple reasons to
prefer controlled lock violation over early lock release.

First, controlled lock violation is simpler and more robust
because it has fewer special cases. It applies to all lock types –

any lock may be violated and violation of any but a read-only lock
induces a commit dependency. Even after multiple rounds of cor-
rection and improvement, early lock release still does not cover
‘increment’ locks. The same is true for more specialized locks that
are used in real database systems, e.g., ‘bulk insertion’ or ‘schema
stability’ or ‘schema modify’ locks in SQL Server, as well as the
various special designs for key range locking and their lock
modes. Controlled lock violation is a simple, consistent solution
for all of these lock types, easy enough for implementation, qual-
ity assurance, and maintenance by most software engineers work-
ing on data management code.

Second, controlled lock violation is more precise than early
lock release with tags. For key range locking, a precise separation
of concurrency and conflict is required, in particular for hot spots
known in many databases and their indexes. Controlled lock vio-
lation carries that precision to the commit dependency, whereas
early lock release may introduce a commit dependency where
none is required.

Third, controlled lock violation works well with two-phase
commit. With early lock release, a transaction can avoid lock
conflicts if an earlier transaction is in the final phase of the two-
phase commit. With controlled lock violation, a transaction can
avoid lock conflicts during both phases, i.e., already during the
initial phase. Thus, the opportunity for lock conflicts during two-
phase commit is much smaller with controlled lock violation than
with early lock release. It could be argued that this reduction in
lock conflicts takes most of the performance costs out of two-
phase commit. For example, it might enable immediate (as op-
posed to eventually consistent) maintenance of all copies in a
system relying on replicas for high reliability and high availabil-
ity. These effects and their implications require further research.

Fourth, controlled lock violation applies even before the us-
er (or application) requests a commit. In a “canned” transaction
with a fixed sequence of statements, locks can be violated prior to
the commit request if neither the current nor any future statement
might need the locks, and this can be based on static analysis of
the stored procedure and its source code.

In conclusion, we believe that controlled lock violation
matches the promise of early lock release but it is simpler, more
accurate, and more general. In other words, we believe it is supe-
rior in multiple dimensions.

ACKNOWLEDGEMENTS
Hideaki Kimura implemented the tag-based design for early

lock release with read-only transactions. Eric Anderson pointed
out the possible relationship between controlled lock violation and
optimistic concurrency control. Haris Volos helped with the per-
formance evaluation. Martin Scholl alerted us to the recent work
on MDCC. Gary Smith suggested some concerns regarding dis-
patching waiting transactions and transaction isolation levels
weaker than serializability. Barb Peters suggested some improve-
ments in style and grammar.

We thank all developers and researchers of the Shore-MT
team at EPFL, CMU and UW-Madison for making the Shore-MT
code-base available. We especially thank Anastassia Ailamaki
and her students for their thoughtful work on early lock release.

REFERENCES
[1] Anon et al.: A measure of transaction processing power.

Datamation, 1 April 1985. Also: http://research.microsoft
.com/~gray/papers/AMeasureOfTransactionProcessingPower
.doc; retrieved 11/10/2012.

95

[2] Eljas Soisalon-Soininen, Tatu Ylönen: Partial strictness in
two-phase locking. ICDT 1995: 139-147.

[3] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Atha-
nassoulis, Anastasia Ailamaki: Aether: a scalable approach
to logging. PVLDB 3(1): 681-692 (2010).

[4] Hideaki Kimura, Goetz Graefe, Harumi Kuno: Efficient
locking for databases on modern hardware. ADMS work-
shop, Istanbul August 2012.

[5] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D.
Shapiro, Michael Stonebraker, David A. Wood: Implementa-
tion techniques for main memory database systems. ACM
SIGMOD 1984: 1-8.

[6] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anas-
tasia Ailamaki, Babak Falsafi: Shore-MT: a scalable storage
manager for the multicore era. EDBT 2009: 24-35.

[7] Goetz Graefe, Hideaki Kimura, Harumi Kuno: Foster B-
trees. ACM TODS 37(3) (2012).

[8] Henry F. Korth: Locking primitives in a database system.
JACM 30(1): 55-79 (1983).

[9] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, Bruce G.
Lindsay: Transactions and consistency in distributed data-
base systems. ACM TODS 7(3): 323-342 (1982).

[10] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, Irving
L. Traiger: Granularity of locks in a large shared data base.
VLDB 1975: 428-451.

[11] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, Irving
L. Traiger: Granularity of locks and degrees of consistency
in a shared data base. IFIP Working Conf. on Modeling in
Data Base Management Systems 1976: 365-394.

[12] Goetz Graefe: A survey of B-tree locking techniques. ACM
TODS 35(3) (2010).

[13] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng,
Kun Ren, Philip Shao, Daniel J. Abadi: Calvin: fast distrib-
uted transactions for partitioned database systems. ACM
SIGMOD 2012: 1-12.

[14] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Mad-
den: MDCC: multi-data center consistency. Submitted for
publication, available at http://mdcc.cs.berkeley.edu.

[15] Ryan Johnson, Ippokratis Pandis, Anastasia Ailamaki: Im-
proving OLTP scalability using speculative lock inheritance.
PVLDB 2(1): 479-489 (2009)

[16] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig
Freedman, Jignesh M. Patel, Mike Zwilling: High-
performance concurrency control mechanisms for main-
memory databases. PVLDB 5(4): 298-309 (2011).

[17] Dieter Gawlick, David Kinkade: Varieties of concurrency
control in IMS/VS Fast Path. IEEE Database Eng. Bull. 8(2):
3-10 (1985).

[18] Ouri Wolfson: An algorithm for early unlocking of entities in
database transactions. J. Algorithms 7(1): 146-156 (1986).

[19] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M.
Chen, Jason Flinn: Rethink the sync. ACM TOCS 26(3):
(2008).

[20] Michael J. Carey, Michael Stonebraker: The performance of
concurrency control algorithms for database management
systems. VLDB 1984: 107-118.

96

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

