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Scalable Deep Learning on Distributed Infrastructures:

Challenges, Techniques, and Tools

RUBEN MAYER and HANS-ARNO JACOBSEN, Technical University of Munich

Deep Learning (DL) has had an immense success in the recent past, leading to state-of-the-art results in
various domains, such as image recognition and natural language processing. One of the reasons for this
success is the increasing size of DL models and the proliferation of vast amounts of training data being avail-
able. To keep on improving the performance of DL, increasing the scalability of DL systems is necessary. In
this survey, we perform a broad and thorough investigation on challenges, techniques and tools for scalable
DL on distributed infrastructures. This incorporates infrastructures for DL, methods for parallel DL train-
ing, multi-tenant resource scheduling, and the management of training and model data. Further, we analyze
and compare 11 current open-source DL frameworks and tools and investigate which of the techniques are
commonly implemented in practice. Finally, we highlight future research trends in DL systems that deserve
further research.
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1 INTRODUCTION

Deep Learning (DL) has recently gained a lot of attention due to its superior performance in tasks
like speech recognition [65, 69], optical character recognition [20], and object detection [95]. The
application of DL poses a tremendous potential in numerous areas like medical image analysis
(e.g., breast cancer metastases detection) [107], machine translation [84], image restoration (e.g.,
automatically colorize grayscale images) [75], image captioning [68] (i.e., creating a description of
an image), and as agents in reinforcement learning systems that map state-action pairs to expected
rewards [10]. In DL, a network of mathematical operators is trained with classified or unclassified
data sets until the weights of the model are ready to make correct predictions on previously unseen
data. Major companies and open-source initiatives have developed powerful DL frameworks such
as TensorFlow [4] and MXNet [125] that automatically manage the execution of large DL models
developed by domain experts.
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One of the driving factors of the success of DL is the scale of training in three dimensions. The
first dimension of scale is the size and complexity of the models themselves. Starting from simple,
shallow neural networks, with increasing depth and more sophisticated model architectures, new
breakthroughs in model accuracy were achieved [30, 38]. The second dimension of scale is the
amount of training data. The model accuracy can, to a large extent, be improved by feeding more
training data into the model [56, 63]. In practice, it is reported that 10s to 100s of Terabyte (TB) of
training data are used in the training of a DL model [27, 62]. The third dimension is the scale of
the infrastructure. The availability of programmable highly parallel hardware, especially graphics
processing units (GPUs), is a key-enabler to training large models with a lot of training data in a
short time [30, 206].

Our survey is focused on challenges that arise when managing a large, distributed infrastruc-
ture for DL. Hosting a large amount of DL models that are trained with large amounts of training
data is challenging. This includes questions of parallelization, resource scheduling and elasticity,
data management and portability. This field is now in rapid development, with contributions from
diverse research communities, such as distributed and networked systems, data management, and
machine learning. At the same time, we see a number of open-source DL frameworks and orches-
tration systems emerging [4, 24, 141, 195]. In this survey, we bring together, classify, and compare
the huge body of work on distributed infrastructures for DL from the different communities that
contribute to this area. Furthermore, we provide an overview and comparison of the existing open-
source DL frameworks and tools that put distributed DL into practice. Finally, we highlight and
discuss open research challenges in this field.

1.1 Complementary Surveys

There are a number of surveys on DL that are complementary to ours. Deng [41] provides a general
survey on DL architectures, algorithms, and applications. LeCunn et al. provide a general overview
of DL [95]. Schmidhuber [156] provides a comprehensive survey on the history and technology
of DL. Pouyanfar et al. [143] review current applications of DL. Luo [109] provides a review on
hyper-parameter selection strategies in ML training, including training of neural networks. Those
surveys cover general techniques of DL, but are not focused on scalability and distributed systems
for DL.

Ben-Nun and Hoefler [14] provide an analysis of concurrency in parallel and distributed DL
training. Chen and Lin [25] provide a survey on DL challenges and perspectives with regard to Big
Data (i.e., high data volumes, variety and velocity). Erickson et al. [45] provide a short overview
of DL frameworks. Our survey takes a much broader view on distributed DL systems. In partic-
ular, we include topics such as resource scheduling, multi-tenancy and data management. Those
aspects of scalable DL systems become particularly important when dealing with large models and
huge amounts of training data in a shared cluster or cloud environment. Furthermore, we analyze
current open-source DL frameworks and tools in depth and relate them to the research on parallel
and distributed DL training. This has not been done in the existing surveys. Pouyanfar et al. [143]
analyze and compare DL frameworks, but not with regard to parallelization and distribution.

1.2 Structure of the Survey

We structure our survey as follows. In Section 2, we introduce DL and provide the foundations
for the further discussion of DL systems. In Section 3, we discuss the challenges and techniques of
scalable DL in detail. We cover four important aspects: Distributed infrastructures, parallelization
of DL training, resource scheduling and data management. In Section 4, we analyze and compare
11 open-source DL frameworks and tools that put scalable DL into practice. Finally, in Section 5,
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Fig. 1. Relationship between AI, ML, and DL. Fig. 2. Schematic of a multi-layer perceptron.

we conclude this survey and provide an outlook on current trends and open problems in the field
that deserve further research.

2 FOUNDATIONS

2.1 Context of Deep Learning

Artificial intelligence (AI) has been a long held vision of building and programming computers in
such a way that they can independently (i.e., without human involvement) solve complex prob-
lems [131, 157]. In the most recent past, immense practical achievements of AI have been made
in many different fields, such as knowledge representation and automated reasoning [165], plan-
ning [87], natural language processing [198], computer vision [169], and robotics [99]. Among
the methods developed in AI research are cybernetics, symbolic and sub-symbolic, and statisti-
cal machine learning (ML). Deep Learning (DL) is a specific approach of ML, which deals with the
training of deep neural networks. The relationship between AI, ML, and DL is visualized in Figure 1.

2.2 Deep Neural Networks

A neural network (NN) is a network of interconnected artificial neurons, which are mathematical
functions that transform a set of input signals to an output signal. By layering the neurons and
connecting them from an input layer to an output layer, the overall network represents a function
f : x → y that maps the input signals that go into the input layer (layer 1) to an output signal that
leaves the output layer (layern). The goal of f is to approximate a target function f ∗, e.g., a classifier
y = f ∗ (x ) that maps an input x to a category y. In the training process, the set of parameters
Θ, i.e., the weights, biases, and thresholds, in all of the artificial neurons are adjusted in such a
way that the output of f approximates the output of f ∗ with the best possible accuracy. This is
commonly achieved by applying back-propagation [152] to the gradient of the loss function w.r.t.
the weights of the corresponding layers. There are different gradient descent algorithms applied
in DL; a detailed review of gradient descent algorithms is provided by Ruder [151]. In the training
process, instead of single training samples, mini-batches of training data are used in each iteration.
This has the advantage of increased parallelism in the training process: The output of the network
can be computed for a whole batch of training samples in parallel. However, choosing too large
mini-batch sizes may deteriorate the model accuracy and increases the memory footprint of the
training process [112]. The parameters of the training process itself, i.e., the loss function, gradient
descent algorithm, activation function, step size (the factor by which the weights are changed
toward the gradient), and size of the mini-batches are called hyper-parameters.
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2.3 Neural Network Architectures

The simplest way of organizing a DNN is by using multiple fully connected layers of neurons, i.e.,
each neuron in a layer is connected to each neuron in the subsequent layer. This architecture is also
referred to as multi-layer perceptron (MLP) (cf. Figure 2). However, MLPs have limitations [53, 96].
First, MLPs have a large number of weights, which requires a large number of training samples and
occupies a large amount of memory. Second, MLPs are not robust against geometric translations
and local distortions of the inputs. For instance, in the detection of hand-written digits from images,
the same digit will be written slightly different in different images [96]. Third, MLPs are agnostic
to the topology of the input, i.e., the order of the input signals is not taken into account. However,
in many cases, there is a local structure in the input data. For instance, in images, pixels that are
nearby are likely to be correlated [96], and in speech recognition, previous and future context of
the input data is particularly relevant to detect a spoken word [53]. To overcome the shortcomings
of MLPs, more sophisticated neural network architectures have been proposed. Here, we briefly
review the most prominent ones.

Convolutional neural networks (CNNs) [96] introduce convolutional layers and sub-sampling
layers. Different from fully connected layers as in MLPs, convolutional layers are only connected
to sub-areas of their respective previous layers, pursuing the concept of local receptive fields, which
is inspired by biology [72]. A convolutional layer is composed of multiple planes, where in each
plane, all neurons share the same weights (weight sharing). Finally, convolutional layers alternate
with sub-sampling layers to reduce the spacial resolution of the feature map. Besides feed-forward
networks (where the output of neurons does not loop back to their own input), loop-backs are
useful for many use-cases. For instance, in natural language processing, the meaning of one word in
a sentence may depend on the meaning of a previously seen word in the same (or even a previous)
sentence. To model such phenomena in DL networks, recurrent neural networks (RNNs) have
been proposed. Long-short term memory (LSTM) units are special units of an RNN to overcome
issues of exploding or vanishing gradients when training RNNs [67]. Autoencoders [66] are NNs
that are used to learn efficient encodings (i.e., compressed representations) that extract significant
features from the training data. Their architecture consists of an encoder, a code, and a decoder,
each consisting of layers of neurons, where the output layer of the network has the same number of
neurons as the input layer, but the code, which is exactly between encoding and decoding layers,
has much fewer neurons. In generative adversarial networks (GANs) [51], two NNs are aligned
with each other, namely, a generative and a discriminative NN. Another recent architecture of NNs
are graph neural networks [192], where graph-structured representations are learned, as opposed
to representations in the Euclidian space (as in CNNs).

3 DISTRIBUTED DEEP LEARNING

Training large DL models with vast amounts of training data is a non-trivial task. Often, it is per-
formed in a distributed infrastructure of multiple compute nodes, each of which may be equipped
with multiple GPUs. This brings a number of challenges. First, the processing resources must be
effectively used, i.e., one must avoid stalling of costly GPU resources due to communication bottle-
necks. Second, the compute, storage and network resources are typically shared among different
users or training processes to reduce costs and provide elasticity (i.e., the cloud computing para-
digm [9]). To tackle those challenges in DL, research at the intersection of computing systems and
DL is receiving growing attention [4, 27, 36, 79, 141, 195]. This becomes evident with new work-
shops and conferences arising that particularly focus on DL/ML systems research, such as the
Conference on Systems and Machine Learning (SysML).1 However, also established communities

1https://www.sysml.cc.
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Fig. 3. Overview.

such as the data management community are turning their attention toward DL/ML systems [93,
185]. In this section, we discuss the main directions of DL systems research in depth. We intro-
duce the main research challenges, discuss state-of-the-art approaches, and analyze open research
problems that deserve further attention.

Section Overview. Figure 3 provides an overview of the topics addressed in this section. On
the lowest level, we address the infrastructure used in large DL systems in Section 3.1. We cover
recent trends in the hardware being used, networking architectures, as well as low-level software
architecture for DL systems. On a higher level, we discuss methods for parallel DL training in
Section 3.2. In Section 3.3, we more specifically discuss challenges and approaches for data-parallel
training. To map the components of a parallel DL system to the infrastructure, scheduling is ap-
plied. In Section 3.4, we discuss the scheduling problem in single-tenant as well as multi-tenant
scenarios. One of the big challenges of large-scale DL is the size of training data and DL models that
need to be maintained. In Section 3.5, we discuss challenges and approaches of data management
in DL.

3.1 Infrastructure

To understand the challenges on parallelization, scheduling and data management for DL, we first
take a deeper look at the infrastructure on which DL training is performed. We divide the existing
work into two categories: Hardware innovations and data-center scale infrastructure applied to
real DL workloads. While the former can potentially be used on single compute nodes or small
clusters, the latter describes how individual hardware components can be composed into a scalable,
distributed infrastructure for DL.

3.1.1 Hardware Components for DL. While early DL deployments were based on clusters of
multi-core CPUs, scalability limitations pushed the efforts to exploiting highly parallel hardware,
and even developing special-purpose hardware dedicated to DL training and serving. The per-
formance benefits of GPUs compared to CPU depend on many factors, such as whether the job
is processing-bound or memory-bound, the efficiency of the implementation, as well as the hard-
ware itself [97]. Both CPUs and GPUs hardware innovates at a fast pace, which makes comparisons
difficult and short-living. Nevertheless, state-of-the-art infrastructures for DL typically comprise
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GPUs to accelerate the training and inference process. Hardware vendors offer specialized servers
and even workstations for DL, such as NVIDIA DGX station [2].

Besides GPU-centric DL, other forms of hardware acceleration have been proposed, such as
field-programmable gate arrays (FPGAs) [135]. One strength of FPGAs that is repeatedly men-
tioned is their capability to make DL training and inference more energy-efficient. NeuFlow by
Farabet et al. [46] is one of the first works that tackled the problem of using FPGAs for DL, in par-
ticular, for vision systems. Caffeine by Zhang et al. [201] is a hardware and software co-designed
library to support CNNs on FPGAs. On the hardware side, it provides a high-level synthesis imple-
mentation of an FPGA accelerator for CNNs. In their design, they build upon previously developed
methods such as unrolling and pipelining (cf. Zhang et al. [202]). On the software side, Caffeine
provides a driver that allows for easily integrating FPGAs. Caffeine has been integrated into the
Caffe DL framework and shows a reduction of energy consumption of up to 43.5× compared to
CPU and up to 1.5× compared to GPU execution. Wang et al. [181] propose a custom FPGA design,
called DLAU, to support the training of deep neural networks. One major challenge they had to
overcome is the limited memory capacity of FPGAs. They propose tile techniques to partition the
training data, along with FIFO buffers and pipelined processing units to minimize memory trans-
fer. In their evaluations, they show that DLAU can train neural networks with up to 10x less energy
consumption than GPUs. Tensor processing units (TPUs) are application-specific integrated cir-
cuits (ASICs) developed by Google that speed-up DL training and inference significantly [86]. TPUs
are proprietary and not commercially available, but can be rented via the Google cloud services.

Besides such more traditional forms of computing architectures that follow the von-Neumann
architecture by separating memory and processing units, there are research efforts to develop
novel in-memory computing architectures (also called neuromorphic hardware [21]). Those efforts
are inspired by the physiology of the brain, which is very different from the way traditional von-
Neumann computing architectures work. Neurostream by Azarkhish et al. [11] is a processor-in-
memory solution that is tailored toward training CNNs. However, neuromorphic hardware archi-
tectures are still in the experimental stage and not widely available.

Some papers have highlighted the need for efficient implementations of DL kernels, e.g., by
exploiting SIMD (single instruction, multiple data) instructions [97, 176] and awareness of non-
uniform memory access (NUMA) [150]. This raises the need for re-usable, optimized kernel im-
plementations of the most relevant operations in DNN training. One of the major GPU-specific
libraries is cuDNN, a library with DL primitives for GPUs [26]. The NVIDIA Collective Communi-
cations Library (NCCL) [1] provides multi-GPU and multi-node communication primitives and is
optimized for PCIe and NVLink high-speed interconnects. DL frameworks often incorporate such
low-level libraries to fully exploit the capabilities of the hardware infrastructure.

3.1.2 Large-scale Infrastructure for DL. A large-scale DL infrastructure is composed of many
inter-connected hardware components that together build a warehouse-scale computer [13]. In this
subsection, we review current infrastructures as described by organizations that perform very
large DL jobs, such as Facebook, Google, and Microsoft, as well as academic research.

Facebook describes its ML infrastructure in a recent paper [62]. They use both CPUs and GPUs
for training, and rely on CPUs for inference. To do so, they build specialized CPU-based and GPU-
based compute servers to serve their specific needs of training and inference. For training, GPUs
are preferred, as they perform better; however, in their data centers, they have abundant capacities
of readily available CPUs, especially during off-peak hours, which they also exploit. For inference,
they rely on CPUs, as GPU architectures are optimized for throughput over latency, but latency
is a critical factor in inference. Interestingly, for inter-connecting training servers in distributed,
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data-parallel training, they rely on 50G Ethernet, and forego using specialized interconnects such
as RDMA or NCCL [1].

Similarly to Facebook, Tencent employs a heterogeneous infrastructure with both CPUs and
GPUs. Their deep-learning system Mariana [211] consists of three different frameworks that are
optimized for different infrastructures and use cases.

Adam is a large-scale distributed system for DL at Microsoft [27]. It relies on a large number of
commodity hardware CPU-servers to perform DL training. Besides many system-level optimiza-
tions, one of the hardware-centric features of Adam is that they partition DL models in such a way
that the model layers fit in the L3 cache to improve training performance.

The paper on TensorFlow [4], a scalable ML framework developed by Google, provides some
insights into the infrastructure at Google. Overall, Google follows a different approach from Face-
book and Microsoft when it comes to the DL infrastructure. First, they employ TPUs, which are
custom ASICs, as opposed to only using commercial-off-the-shelf (COTS) hardware. Second, they
exploit specialized interconnects and use multiple communication protocols, such as gRPC over
TCP and RDMA over Converged Ethernet (RoCE).2 Distributed TensorFlow supports communica-
tion via the message passing interface (MPI) [180].

In academic research, exploiting high-performance computing (HPC) infrastructures for DL
training is a topic of increasing importance. Coates et al. [32] report using a cluster of 16 servers,
each equipped with two quad-core CPUs and 4 GPUs, being interconnected by Infiniband. Dif-
ferent from Ethernet, Infiniband has high throughput and—more important—extremly low end-
to-end latency (in the order of microseconds). Ben-Nun and Hoefler [14] also observe a trend to
move towards HPC infrastructures in DL research.

Summing up, large-scale infrastructures in real-world deployments are highly heterogeneous.
They do not only comprise GPU servers, but commonly also CPUs. Overall, we see a certain dom-
inance of COTS hardware, just as it is also the case in other Big Data analytics workloads, such
as batch processing [39] and graph processing [111]. However, also custom hardware and HPC
infrastructure is used, especially at Google and in academic research. In HPC infrastructures, we
observe that the DL systems are specialized toward the target infrastructures to increase perfor-
mance, e.g., regarding the communication protocols like RDMA, NCCL, and MPI.

Performance of distributed infrastructures can be measured, e.g., in terms of throughput, la-
tency and energy consumption. Besides the raw maximum performance of the hardware, another
important factor is the communication protocol, e.g., whether RDMA is used. Further important
questions are how the hardware components are composed to avoid bottlenecks. Li et al. [100]
have performed a comprehensive performance evaluation of recent GPU interconnects. In terms
of energy consumption, Wang et al. [181] provide evaluations that compare FPGAs to GPUs.

3.2 Parallelization Methods

DL comes with many possibilities for parallelization. Here, we introduce the three predominant
parallelization methods in DL, namely data, model and pipeline parallelism, as well as hybrid forms
of parallelism.

3.2.1 Data Parallelism. In data parallelism, a number of workers (machines or devices, e.g.,
GPUs) loads an identical copy of the DL model (see Figure 4). The training data is split into non-
overlapping chunks and fed into the model replicas of the workers for training. Each worker per-
forms the training on its chunk of training data, which leads to updates of the model parame-
ters. Hence, the model parameters between the workers need to be synchronized. There are many

2RoCE is a network protocol that supports Ethernet as the underlying protocol for remote direct memory access (RDMA).
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Fig. 4. Data parallelism.

Fig. 5. Model parallelism.

challenges in the problem of parameter synchronization. We discuss those challenges and state-
of-the-art approaches to tackle them in Section 3.3.

The main advantage of data parallelism is that it is applicable to any DL model architecture
without further domain knowledge of the model. It scales well for operations that are compute-
intensive, but have only few parameters, such as CNNs. However, data parallelism is limited for op-
erations that have many parameters, as the parameter synchronization becomes the bottleneck [82,
91]. This problem could be alleviated by using larger batch sizes; however, this increases data stale-
ness on the workers and leads to poor model convergence. A further limitation of data parallelism
is that it does not help when the model size is too large to fit on a single device. It is worth to
note that in many data parallel training schemes, it is assumed or required that the training data is
independent and identically distributed (i.i.d.), so that parameter updates computed by the parallel
workers can simply be summed up to compute the new global model parameters [196].

3.2.2 Model Parallelism. In model parallelism, the DL model is split, and each worker loads
a different part of the DL model for training (see Figure 5). The worker(s) that hold the input
layer of the DL model are fed with the training data. In the forward pass, they compute their
output signal which is propagated to the workers that hold the next layer of the DL model. In the
backpropagation pass, gradients are computed starting at the workers that hold the output layer
of the DL model, propagating to the workers that hold the input layers of the DL model.

A major challenge of model parallelism is how to split the model into partitions that are as-
signed to the parallel workers [113]. A common approach to find a good model splitting is to use
reinforcement learning [117, 118]: Starting from some initial partitioning, permutations on that
partitioning are performed, and performance is measured (e.g., for one training iteration). In case
of an improvement, the permutation is maintained, and further permutations are performed, until
the measured performance converges. Streaming rollout [47] is a specialized solution that only
works for RNNs.
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Fig. 6. Pipeline parallelism. “B”—Backpropagation. Figure adapted from Huang et al. [70].

The main advantage of model parallelism is the reduced memory footprint. As the model is split,
less memory is needed for each worker. This is useful when the complete model is too large to fit
on a single device. This can be the case when the device consists of specialized hardware such as
GPUs or TPUs. The disadvantages of model parallelism are in the heavy communication that is
needed between workers. As DL models are hard to be split effectively, there may occur stalling
of workers due to communication overhead and synchronization delays. Hence, increasing the
degree of model parallelism does not necessarily lead to training speedup [118].

3.2.3 Pipeline Parallelism. Pipeline parallelism combines model parallelism with data paral-
lelism. In pipeline parallelism, the model is split and each worker loads a different part of the DL
model for training (see Figure 6). Further, the training data is split into microbatches. Now, every
worker computes output signals for a set of microbatches, immediately propagating them to the
subsequent workers. In the same way, in the backpropagation pass, the workers compute gradients
for their model partition for multiple microbatches, immediately propagating them to preceding
workers. By streaming multiple microbatches through the forward and backpropagation pass in
parallel, the utilization of workers can be significantly increased compared to pure model paral-
lelism, where only one batch is processed at a time. At the same time, the advantages of model
parallelism are maintained, as a single worker does not need to hold the complete model. Current
approaches that support pipeline parallelism are GPipe [70] and PipeDream [57, 58].

3.2.4 Hybrid Parallelism. Often, DL models are complex and composed of many different layers
that follow a completely different architecture, which, in turn, requires different parallelization
methods. Hence, hybrid approaches that mix data, model and pipeline parallelism are common.

Mesh-TensorFlow [161] is a language extension of TensorFlow that allows for combining data
parallelism and model parallelism. In Mesh-TensorFlow, tensors can be split across a “mesh” of
processors (such as CPUs, GPUs, or TPUs). To achieve data parallelism, data is split into shards;
to achieve model parallelism, tensors are split along any of their attributes.

There are a couple of papers that propose optimizations of parallelization that are manually
designed by domain experts. Krizhevsky [91] proposed to apply data parallelism for convolutional
and pooling layers, as those layers are compute-heavy and only have few parameters, and model
parallelism for fully connected layers, as they are light in computation, but have many parameters.
In Google’s Neural Machine Translation System (GNMT) [191] that powers Google Translate, they
apply data parallelism, but combine it with hand-crafted model parallelism for each model replica.
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Fig. 7. Parameter server architecture. Fig. 8. All-reduce architecture.

Beyond manually designed hybrid models, recently, automated optimization approaches have
been developed. Jia et al. [81] propose “layer-wise” parallelization. For each layer of a DNN, an
optimal parallelization method is chosen along the tensors’ dimensions at the layer. To do so, they
employ a cost model and a graph search algorithm on a reduced graph that models the solution
space. FlexFlow by Jia et al. [82] is an automatic parallelization optimizer that employs an execu-
tion simulator. It optimizes parallelism across four dimensions, referred to as the SOAP space: the
sample, operation, attribute, and parameter dimension. The sample dimension refers to batches of
training data and corresponds to data parallelism. The operation dimension refers to artificial neu-
rons, the attribute dimension refers to the attributes of the tensors, and the parameter dimension
refers to the weights and other model parameters. Together, the operation, attribute and parameter
dimensions correspond to model parallelism [81].

3.3 Optimizations for Data Parallelism

Parameter synchronization in data-parallel DL systems poses three major challenges. The first
challenge is how to synchronize the parameters. Should the workers synchronize via a central-
ized architecture or in a decentralized manner? The second challenge is when to synchronize the
parameters. Should the workers be forced to synchronize after each batch, or do we allow them
more freedom to work with potentially stale parameters? The third challenge is how to minimize

communication overhead for synchronization.

3.3.1 System Architecture. The system architecture describes how the parameters of the differ-
ent workers are synchronized. One of the major challenges is to provide a scalable system archi-
tecture than can deal with a large number of parallel workers that regularly update the DL model
as well as receive an updated view of the model for further training. The second challenge is to
keep the system easy to configure, i.e., it should be possible to yield good performance without
needing extensive parameter tuning. The third challenge is to exploit lower-level primitives, e.g.,
communication primitives such as offered by NCCL, in an optimal way.

(1) Centralized. In the (logically) centralized architecture, workers periodically report their com-
puted parameters or parameter updates to a (set of) parameter server(s) (PSs) (see Figure 7). Roots
of the PS architecture go back to the blackboard architecture [164] and MapReduce [39], as Alex
Smola reports [163]. The PS architecture is the most prominent architecture of data parallel DL
systems. A common approach is to use sharding of the model parameters and distribute the
shards on multiple PSs, which then can be updated in parallel [38]. Among the systems that use a
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parameter server architecture are GeePS [36], DistBelief [38], TensorFlow [4], Project Adam [27],
Poseidon [206], SINGA [134], SparkNet [120], and the system by Yan et al. [197].

(2) Decentralized. The decentralized architecture works without a PS. Instead, the workers ex-
change parameter updates directly via an allreduce operation (see Figure 8). In doing so, the topol-

ogy of the workers plays an important role. A fully connected network, where each worker com-
municates with each other worker, has a communication cost that is in O (n2) with n workers, so
that communication becomes a bottleneck. A common alternative is to employ a ring topology
(referred to as ring-allreduce). Horovod [160] from Uber uses NCCL to implement ring-allreduce.
Baidu had one of the first proposals of using ring-allreduce for data parallel DL training [50]. The
multi-GPU framework in Tencent’s Mariana DL system [211] employs a similar linear topology
for parameter exchange across workers. Other topologies that have been proposed are “Butter-
fly” [207], a tree [6], and a graph that is built based on a Halton sequence [101]. Wang et al. [183]
propose a parameter sharing protocol that allows for arbitrary loop-free worker topologies that
can also be dynamically changed at system run-time. The main drawback of alternative topolo-
gies, different from the fully connected topology, is that the propagation of parameter updates to
all workers needs more time, as there may be multiple hops between a pair of workers.

The topology of the workers is not the only knob to reduce network load. Ako by Watchara-
pichat et al. [186] employs a fully connected network of workers, but partitions the gradients that
are exchanged between workers (partial gradient exchange). In each round of synchronization,
each worker only sends a single partition of the gradients to every other worker; in particular, it
may send different partitions to different workers. Clearly, the communication overhead depends
both on the size of a partition (which itself depends on the number of partitions) as well as on
the number of workers. The number of partitions is adapted automatically in such a way that the
network bandwidth remains constant independently of the number of workers.

Comparison to centralized architecture. The advantages of the decentralized architecture com-
pared to the centralized one are the following, according to Li et al. [101]. By using the decentral-
ized architecture, one avoids the need to deal with the inconveniences of implementing and tuning
a parameter server. This is not only a matter of the complexity of the system code but also eases the
deployment. One does not need to plan which resources to allocate for the parameter servers and
for the workers. A further advantage is that fault tolerance can be achieved more easily, because
there is no single point of failure such as the parameter server. When a node in the decentralized
architecture fails, other nodes can easily take over its workload and the training proceeds without
interruptions. Heavy-weight checkpointing of the parameter server state is not necessary.

The decentralized architecture also has disadvantages. First and foremost, communication in
the decentralized architecture increases quadratically with the number of workers, if no counter-
measures are taken. As discussed above, those counter-measures, such as changing the topology
or partitioning the gradients, induce new complexities and trade-offs. Overall, there is no silver
bullet for the problem of synchronizing parallel parameter updates.

A case study by Lian et al. [105] indicates that the decentralized architecture can, under certain
conditions, perform better than the centralized architecture if the communication network is slow.
However, their study is limited to synchronous parameter updates and the centralized architecture
they compare to employs only a single parameter server. In such a setting, the network connect-
ing the single central parameter server quickly becomes the bottleneck. Similar results have been
reported by Iandola et al. [74] who also prefer a tree-structured allreduce architecture to a single
parameter server.

Both centralized and decentralized learning are widely implemented in open-source DL frame-
works. Some frameworks, such as TensorFlow and MXNet, even support both. In TensorFlow, the
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decentralized architecture is applied to training on a single compute node with multiple GPUs, as
efficient allreduce implementations such as NCCL allreduce can be used. However, the centralized
architecture is applied to multi-node training [171].

(3) Federated. Both the centralized and the decentralized architecture assume a controlled en-
vironment (such as a data center), a balanced and i.i.d. distribution of the training data to the
workers, and a network with homogeneous, high bandwidth. In contrast to this, federated learn-
ing [90] evolves around a scenario where the training data is kept locally on users’ mobile devices,
and a global model is trained based on updates that the users compute on their local devices. That
way, training data, which may contain privacy-sensitive information, can be completely kept lo-
cally, which can also decrease the bandwidth requirements between the mobile devices and the
central data center.

The low and asynchronous bandwidth (i.e., the uplink is usually much slower than the downlink)
of a mobile device’s Internet connection makes it impossible to repeatedly upload the updated pa-
rameters of a large model to a centralized parameter server or to decentralized peer nodes. Konecn̆ý
et al. [90] study different forms of parameter sampling and compression to mitigate this problem.
McMahan et al. [114] propose the federated averaging algorithm for reducing the parameter up-
dates. Their algorithm is round-based: In each round, a fraction of the clients is selected. Each
selected client computes the gradient of the loss function over all the training data that it holds. To
reach convergence, it is important that the model instances on the client start from the same ran-
dom initialization. Finally, a central server aggregates the gradients from the selected clients. In a
comparative performance study by Nilsson et al. [130], the authors show that federated averaging
is the best algorithm for federated learning, and is practically equivalent to the centralized archi-
tecture when i.i.d. training data is used. However, in the non-i.i.d. case, the centralized approach
performs better than federated averaging.

Federated learning is still in an early stage and is not widely supported yet in open-source DL
frameworks. Recently, first tools for federated learning were made available. TensorFlow Feder-
ated [173] is a simulator for experimenting with federated ML. PySyft [144, 153] is a Python library
that enables privacy-preserving federated learning within PyTorch. In particular, PySyft applies
differential privacy methods [5] to federated learning to prevent that sensitive information about
the training data can be extracted from the model.

3.3.2 Synchronization. The question when to synchronize the parameters between the parallel
workers has received a lot of attention. The main challenge in parameter synchronization is to
handle the trade-off between the potential loss in training quality or convergence speed when
workers perform training on a stale DL model and the synchronization cost to update the DL
model on the workers. Overall, there are three different main approaches: Synchronous, bounded
asynchronous, and asynchronous training. Table 1 provides an overview and categorization of the
most relevant publications.

(1) Synchronous. In synchronous training, after each iteration (processing of a batch), the work-
ers synchronize their parameter updates. Such a strict model can be implemented by well-known
abstractions such as the Bulk Synchronous Parallel (BSP) model [175], which are in many cases
already available in data analytics platforms such as Hadoop/MapReduce [39], Spark [115, 200], or
Pregel [111]. The advantage of strict synchronization is that reasoning about the model conver-
gence is easier. However, strict synchronization makes the training process prone to the straggler

problem, where the slowest worker slows down all others [28].
GeePS [36] by Cui et al. is a parameter server implementation that is tailored to GPUs. This

includes a couple of optimizations such as pre-built indexes, caching, data staging and mem-
ory management. While GeePS supports synchronous, bounded asynchronous and asynchronous
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Table 1. Categorization of Approaches on Parameter Synchronization in Data-parallel Training

Synchronization Model System Architecture

Ref. Name Sync. Bound. Async. Async. Centralized Decentralized Federated Year Main Concepts

[149] Hogwild x x 2011 Lock-free updates

[38] Downpour
SGD

x x 2012 Parameter sharding,
asynchronous SGD

[28] Cipar et al. x x 2013 Introduces Stale
Synchronous Parallel (SSP)

[133] Dogwild x x 2014 Distributed Hogwild [149]

[35] Cui et al. x x 2014 Applies SSP [28]

[102] Li et al. x x x x 2014 Flexible consistency

[37] Dai et al. x x 2015 Introduces Eager SSP

[101] MALT x x 2015 Shared memory
abstraction

[204] Hogwild++ x x 2016 NUMA-aware
Hogwild [149]

[36] GeePS x x x x 2016 GPU-specialized PS

[83] Jiang et al. x x 2017 Dynamic learning rates on
SSP [28]

[184] A-BSP x x x 2018 Aggressive
synchronization

[89] CROSS-
BOW

x x 2019 Synchronous model
averaging

[19] Bonawitz
et al.

x x x 2019 Synchronous federated
learning

parameter synchronization, it is designed to minimize the straggler problem on GPUs and, hence,
achieves best convergence speed when using the synchronous approach. Wang et al. [184] pro-
pose an aggressive synchronization scheme that is based on BSP, named A-BSP. Different from
BSP, A-BSP allows the fastest task to fetch current updates generated by the other (straggler) tasks
that have only partially processed their input data. The authors have implemented A-BSP both on
Spark [115, 200] as well as on the Petuum system [196]. CROSSBOW [89] by Koliousis et al. intro-
duces synchronous model averaging (SMA). In SMA, data-parallel workers access a global average
model to coordinate with each other. In particular, the workers independently train their model
replica on their respective shard of the training data, but correct their model parameters according
to the difference of their local models to the global average model. Bonawitz et al. [19] discuss a
system design that is tailored to synchronous training for federated learning. The main challenges
they address are how to deal with fluctuating device availability and churn, interrupted connectiv-
ity and limited device capabilities. To solve these challenges, they propose to employ a centralized
architecture with a parameter server. The training process is divided into subsequent rounds; after
each round, locally computed gradient updates are collected from the participating devices and
aggregated on the parameter server using federated averaging. By selecting a new set of devices
for participation in each training round, the parameter server can balance the load among devices
and can flexibly react on dynamics such as device churn.

Synchronous training is implemented in a wide range of open-source DL frameworks, such
as TensorFlow [4, 171] and MXNet [24, 122]. It is especially suitable for parallel training on a
single, multi-GPU compute node, where communication delays are small and computational load
is balanced, such that the straggler problem is not significant [123, 171].

(2) Bounded asynchronous. Asynchronous training makes use of the approximate nature of DL
training. Recall, that DL models are mathematical functions that approximate the target function
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f ∗ as good as possible (cf. Section 2.2). Hence, small deviations and non-determinism in the training
process do not necessarily harm the model accuracy. This is different from “strict” problems in data
analytics, such as database queries, which are required to return a deterministic result. In bounded
asynchronous training, workers may train on stale parameters, but the staleness is bounded [28].
Bounded staleness allows for a mathematical analysis and proof of the model convergence proper-
ties. The bound allows the workers for more freedom in making training progress independently
from each other, which mitigates the straggler problem to some extent and increases throughput.

Cipar et al. introduced the Stale Synchronous Parallel (SSP) model [28]. Different from the BSP
model, SSP allows for bounded staleness of the workers, i.e., there may be a delay between a
worker updating the parameters and the effects of that update being visible to other workers. This
delay is given in terms of a number of iterations. A follow-up paper by Cui et al. [35] proposes an
implementation of SSP for ML jobs. Dai et al. [37] perform a theoretical analysis of SSP, comparing
it against a theoretically optimal (but practically not implementable) approach. In the course of
their analysis, they propose Eager SSP (ESSP), which is a novel implementation of the SSP model. In
ESSP, workers eagerly pull updates from the parameter servers, as opposed to SSP where updates
are only pulled when the worker state becomes too stale. ESSP is implemented in the Petuum
system [196]. The parameter server by Li et al. [102] has a flexible consistency model that also
supports bounded delays. Jiang et al. [83] propose to use dynamic learning rates on top of SSP to
account for heterogeneous workers. Depending on a worker’s speed, its learning rate is adapted
such that stale updates have a less significant effect on the global parameters than fresh updates.

The bounded asynchronous model is not widely implemented in DL frameworks, as Zhang
et al. [203] notice. Li [123] noted in a Github discussion that SSP was not implemented in MXNet,
because the observed delays were only small due to the uniform performance of GPU-intensive op-
erations, such that the benefits of SSP were not significant enough. There are some exceptions. The
Parallel ML System (PMLS) uses Bösen [187], a bounded-asynchronous parameter server. However,
PMLS and Bösen are no longer actively developed. CNTK [158] implements blockwise model up-
date and filtering (BMUF) [23], a variant of bounded asynchronous training. Petuum, which is a
commercial product, implements the bounded asynchronous model [196].

(3) Asynchronous. In asynchronous training, workers update their model completely indepen-
dently from each other. There are no guarantees on a staleness bound, i.e., a worker may train on
an arbitrarily stale model. This makes it hard to mathematically reason about the model conver-
gence. However, it provides the workers the greatest possible flexibility in their training process,
completely avoiding all straggler problems.

Hogwild [149] by Recht et al. is an asynchronous implementation of parallel SGD. The param-
eter update scheme of Hogwild grants the workers access to shared memory without any locks,
i.e., workers can overwrite each other’s updates of the model parameters. This seems dangerous
due to the lost update problem: New model parameters written by one worker could directly be
overwritten by another worker and, hence, would not have any effect. However, the authors show
that as long as the updates of the single workers only modify small parts of the model, Hogwild
achieves nearly optimal convergence. By foregoing locks, Hogwild performs by an order of magni-
tude faster than update schemes that lock the model parameters before each update. The Hogwild
scheme has been successfully applied to the training of neural networks [42]. Dogwild [133] by
Noel and Osindero is a distributed implementation of Hogwild. The authors report that using UDP
congested the network stack, while using TCP did not fully utilize the communication bandwidth
and also caused latency spikes, so that they use raw sockets instead. Hogwild++ [204] by Zhang
et al. is an adaptation of Hogwild to NUMA-based memory architectures. Downpour SGD [38] by
Dean et al. is an asynchronous SGD procedure tailored to large clusters of commodity machines.
Among the main concepts of Downpour SGD are the sharded parameter server and the application
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Table 2. Categorization of Approaches on Efficient Communication in Data-parallel Training

Communication Optimization Synchronization Model System Architecture

Ref. Name Precision Compress. Comm. Sched. Sync. Bound. Async. Async. Centralized Decentralized Federated Year

[159] Seide et al. x x x 2014

[102] Li et al. x x x x x 2014

[55] Gupta et al. x x x x x x x 2015

[187] Bösen x x x 2015

[110] MLNet x x x x 2015

[209] DoReFa-Net x x x x x x x 2016

[8] QSGD x x x x x 2017

[190] TernGrad x x x 2017

[106] Lin et al. x x x x 2018

[170] eSGD x x x 2018

[154] HALP x x x x x x x 2018

[60] TicTac x x x 2019

of adaptive learning rates [44]. Different from Hogwild, which is lock-free, Downpour SGD uses
lock-guarded parameter increments. MALT [101] by Li et al. is an asynchronous ML framework
that follows the decentralized architecture. It provides a shared memory abstraction for the work-
ers that provides a scatter/gather interface as well as a higher-level vector object library.

The same as synchronous training, asynchronous training is well-established; there are many
implementations in current open-source DL frameworks, such as TensorFlow [171], MXNet [122],
CNTK [31], and PyTorch [145].

3.3.3 Communication. Synchronizing the model replicas in data-parallel training requires com-
munication between workers and between workers and parameter servers (in the centralized ar-
chitecture). The main challenge in optimizing the communication is to prevent that communica-
tion becomes the bottleneck of the overall training process, which would leave compute resources
under-utilized. We identified three main approaches for communication efficiency: (1) Reducing
the model precision, (2) compressing the model updates, and (3) improving the communication
scheduling. The current landscape of communication approaches is categorized in Table 2.

(1) Reducing the model precision. Reducing the precision of the parameters of the model saves
communication bandwidth when parameter updates need to be transferred over the network. Ad-
ditionally, it reduces the model size, which can be useful when the model is deployed on resource-
constrained hardware such as GPUs. Precision reduction can be achieved by reducing the precision
of the parameters’ data types, e.g., from double precision to single floating point precision or even
less.

Gupta et al. [55] limited the numerical precision of DL models to 16-bit fixed-point arithmetic.
They found that when applying stochastic rounding as opposed to the common round-to-nearest
method, the scheme with limited precision achieves nearly the same model accuracy as when
applying the traditional 32-bit floating point arithmetic that is typically used in DL. This allows
for reducing the model size by half. When applied to a data-parallel DL system, this will also
reduce the network bandwidth needed for communicating parameter updates between workers
and parameter servers; the approach itself does not depend on a specific synchronization method
or parallel architecture. DoReFa-Net [209] by Zhou et al. focuses on CNNs. Their main idea is to
reduce the numerical precision of weights, activations, and gradients to different bit-widths. They
report to use 1-bit weights, 2-bit activations, and 6-bit gradients on the AlexNet CNN [92] and
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still reach an accuracy that is competitive to a 32-bit representation. High-accuracy low-precision
(HALP) by De Sa et al. [154] is an algorithm that combines two optimization techniques to reach
high model accuracy despite of limited parameter precision. First, they use stochastic variance-
reduced gradient (SVRG) [85] to reduce noise from gradient variance. Second, to reduce noise from
parameter quantization, they introduce a new technique called bit centering, i.e., re-centering and
re-scaling of the fixed-point representation of the parameters as the model converges. Same as
Gupta et al. [55], they rely on stochastic rounding for quantization.

Model quantization is commonly applied to reduce the size of already trained models for more
efficient inference, e.g., on mobile devises. Such post-training quantization is implemented, e.g., in
TensorFlow Lite [172], MXNet [126], and PyTorch [147]. Model quantization at training time is
less common; it is not widely implemented in DL frameworks.

(2) Compressing the model updates. The model updates communicated between workers and be-
tween workers and parameter servers can be compressed. Lossless compression is limited in the
achievable compression rate, as redundancy in the parameter updates is typically limited. Instead,
lossy compression is applied. The main methods in the literature are gradient quantization (reduc-
ing the number of bits per gradient) and gradient sparsification (communicating only important
gradients that have a significant value).

Seide et al. [159] report on quantizing the gradients in a speech DNN to one single bit. To still
achieve high accuracy, they propose a technique called error-feedback. In error-feedback, when
quantizing gradients, they save the induced quantization error and add it into the respective next
batch gradient before its quantization. Hence, the gradients’ information is not lost by quantiza-
tion, but all gradients are eventually added into the model. TernGrad [190] by Wen et al. introduces
ternary gradients, i.e., the gradient can have the value −1, 0, or 1. To improve on the model accu-
racy, they propose layer-wise ternarizing (i.e., using a different quantization for each layer) and
gradient clipping (i.e., limit the magnitude of each gradient before quantizing it). QSGD [8] by
Alistarh et al. follows a similar approach. They apply stochastic rounding (cf. Gupta et al. [55]
and De Sal et al. [154]) and statistical encoding; the key idea of the latter is that not all values are
equally likely, which is exploited in the encoding scheme.

Besides quantization, another common technique is gradient sparsification. It is based on the
observation that in the training process, many gradients are very small (i.e., have a value close to
0) and do not contribute much to the training. By leaving out gradients with insignificant values,
the communication volume can be reduced. The parameter server by Li et al. [102] allows for gra-
dient sparsification via user-defined filters. eSGD [170] is a gradient sparsification approach for
federated architectures. Lin et al. [106] propose a gradient sparsification approach that is based
on a threshold. Only gradients larger than the threshold are transmitted. The rest of the gradients
are accumulated until the threshold is reached. This is similar to the error-feedback that Seide
et al. [159] proposed for quantization. Lin et al. combine their sparsification approach with momen-

tum correction to mitigate issues introduced by the transmission of accumulated small gradients.
Further, they apply gradient clipping.

Gradient quantization and sparsification at training time are implemented in a number of
open-source DL frameworks. CNTK implements the 1-bit stochastic gradient descent by Seide
et al. [159]. MXNet supports 2-bit quantization with error-feedback; 1-bit quantization and spar-
sification techniques are on the roadmap [124].

(3) Communication scheduling. Communication patterns in data-parallel DL are typically bursty,
especially in strictly synchronous systems: All workers may share their updated parameters at the
same time with their peer workers or parameter servers. To prevent that the network bandwidth
is exceeded and communication is delayed, the communication of the different workers can be
scheduled such that it does not overlap. Furthermore, when bandwidth is constrained, but too
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many parameter updates are to be sent, communication scheduling can prioritize specific messages
over others, e.g., depending on freshness or on significance for the model convergence.

Bösen [187] by Wei et al. maximizes network communication efficiency by prioritizing updates
that are most significant to the model convergence. TicTac [60] by Hashemi et al. is a system for
communication scheduling in synchronous centralized architectures. They observe that in many
ML and DL systems such as TensorFlow and PyTorch, parameters are transmitted randomly in
the training and inference process. This results in high variance in iteration time, which slows
down the process. To overcome that problem, TicTac enforces a schedule of network transfers that
optimizes the iteration time. MLNet [110] by Mai et al. is a communication layer for centralized
data-parallel ML. They combine a tree-shaped communication overlay with traffic control and
prioritization to mitigate network bottlenecks.

Sophisticated communication scheduling algorithms have not found their way into open-source
DL frameworks yet. This may be due to the novelty of the methods.

3.4 Scheduling and Elasticity

The scheduling problem in DL refers to how to map the (possibly parallel) DL training processes
to the processing nodes in the distributed infrastructure. We identified three different aspects of
scheduling in DL.

First, there is single-tenant scheduling (Section 3.4.1): How to map the processes (e.g., workers
and parameter servers) of a single tenant, i.e., training job, to the available infrastructure? In case
that mapping is dynamic, and we can change the number of training processes (e.g., number of
workers and number of parameter servers) as well as the infrastructure (e.g., number of compute
nodes), we also talk about elasticity in the scheduling problem.

Second, there is multi-tenant scheduling (Section 3.4.2): Given multiple competing training jobs
(each having a number of processes), how to map them to the available infrastructure? The multi-
tenant case introduces additional challenges such as a larger complexity and additional require-
ments or constraints such as fairness among the tenants.

Third, there is a specific scheduling problem that concerns the creation of training jobs in DL,
namely, the model architecture and hyper-parameter search (Section 3.4.3). This problem is tightly
coupled to single-tenant and multi-tenant scheduling.

3.4.1 Single-tenant. In single-tenant scheduling, we assume a dedicated, but possibly dynamic,
set of resources (compute nodes, CPUs, GPUs) that is available to host a set of processes that
originate from a single DL training job. With training job, we refer to all processes involved
in performing the training of a single DL model. Depending on the parallelization method, this
may comprise workers that train complete (data parallelism) or partial (model parallelism) model
replicas as well as parameter servers. Now, scheduling needs to answer the following questions:
(1) Which process is placed on which resource (such as compute node, CPU, or GPU)? (2) When
or in what order are the processes that are placed on the same resource executed? (3) When and
how are the number of processes and/or resources adapted?

In model parallelism, one of the major problems to be solved is to partition the model into
multiple parts. We have discussed this issue and state-of-the-art approaches for addressing it in
Section 3.2. Once the model is partitioned, the next important questions are where to place the
model parts and when to train which partition of the model. As a training iteration of a model
partition can only be executed when all input data of that partition is available, there are de-
pendencies in scheduling the different model partitions. Mayer et al. [113] have formalized the
scheduling problem in model-parallel DL. While they propose a couple of heuristic algorithms,
none of them have been implemented in the context of DL systems. In particular, there are
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interdependencies between the model partition and the scheduling problem, which are yet to be
fully explored. Additional challenges arise with the advent of dynamic control flow [79, 199] that
renders static scheduling infeasible. Park et al. [138] propose layer placement, which is, however,
limited to CNNs. STRADS [88] by Kim et al. is a model-parallel ML framework with an advanced
scheduler. In particular, STRADS can take into account dependency structures in model partitions
and is capable of prioritizing computations. To do so, the user has to implement his training task
via three functions schedule, update, and aggregate. While the paper contains example imple-
mentations of classical ML algorithms such as LASSO and topic modeling, it is not straight-forward
to implement a model-parallel DL training job via the STRADS interface.

Litz [146] by Qiao et al. is an elastic ML framework that exposes an event-driven programming
model. In Litz, computations are decomposed into micro-tasks that are dynamically scheduled
on a cluster. The scheduler takes into account dependencies and consistency requirements of the
ML model. To enable interruption-free elasticity, the input data is “over-partitioned” across logical

executors, which are dynamically mapped to physical resources. This allows even for transparent
scaling of stateful workers, i.e., workers that keep local state that is not shared via the parameter
servers or directly with peer workers. This property is useful when different model state is affected
by the training of different ranges of input data, such that for faster access that portion of the model
state is directly kept at the worker.

Proteus [59] by Harlap et al. exploits transient resources such as Amazon EC2 spot instances and
Google Compute Engine preemptible instances. Its main concepts are a parameter server frame-
work that is optimized for bulk addition and revocation of transient resources, and a resource
allocation component that dynamically allocates transient resources to minimize the overall mon-
etary cost per work based on highly dynamic spot markets.

CROSSBOW [89] by Koliousis et al. is a decentralized data-parallel DL system that can auto-
matically tune the number of workers at run-time. To do so, the number of workers is increased
during the training until no more increase in training throughput can be observed. This way, the
available infrastructure can be utilized in an optimal way. Further, CROSSBOW comes with a dy-
namic task scheduler to execute workers on GPUs based on resource availability. FlexPS [71] by
Huang et al. takes on the problem of varying workloads during the execution of ML training. As
sources of varying workloads, Huang et al. mention adaptive hyper-parameters (specifically, the
batch size), and advanced SGD methods such as SVRG [85]. As a result of this problem, the paral-
lelism degree, i.e., the number of workers, needs to be adapted to re-balance the trade-off between
communication and computation in data-parallel training.

3.4.2 Multi-tenant. In a multi-tenant environment, multiple training jobs (tenants) share a com-
mon set of resources. Hence, a resource scheduler is responsible to schedule the processes of the
different tenants on the resources. There is a large variety of general purpose resource schedulers
such as Mesos [64], YARN [178], and Borg [179]. However, these are not tailored to the specific
properties of DL training tasks. For instance, in DL, the convergence rate of a training task varies
over time. Typically, in the beginning of training, progress is made very quickly; however, as train-
ing evolves over many epochs, the improvements on model accuracy decrease. Further, different
DL training jobs may have very different training curves [205]. Taking into account these DL-
specific properties allows for formulating new, DL-specific optimization goals, e.g., maximizing
the overall training progress over all scheduled training jobs. Hence, new DL resource schedulers
are being proposed.

Dolphin [98] by Lee et al. is an elastic centralized data-parallel ML framework. In Dolphin, the
configuration of the parameter servers and workers is adapted dynamically according to a cost
model and continuous monitoring. Here, the configuration refers to the number of servers and
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workers, the distribution of training data across workers and the distribution of model parameters
across parameter servers. The system is implemented on top of Apache REEF [188], a framework
for distributed applications. Optimus [141] by Peng et al. is a system that dynamically adjusts the
number and placement of workers and parameter servers of a training job at run-time to achieve
the best resource efficiency and training speed. To do so, it builds performance models based on
sampling that estimate the number of training epochs needed until convergence and the impact of
different configurations (number of workers and parameter servers) on the training speed. Then, a
greedy algorithm computes the best allocation of resources to workers and parameter servers. Con-
sidering multiple concurrent training jobs to be scheduled, Optimus aims to minimize the average
job completion time. An additional challenge tackled by Optimus is to divide the model parame-
ters onto the parameter servers such that the load is balanced. Compared to the general-purpose
scheduling policies Dominant Resource Fairness [49] and Tetris [52], Optimus shows significant
improvements in average job completion time and makespan.3 Jeon et al. [78] analyze log traces
from a large-scale DL cluster system. In particular, they analyze the trade-off between locality con-
straints and queuing delays for large training jobs that occupy a lot of (GPU) resources. Further,
they observe that co-locating different jobs on the same server may significantly impact their per-
formance. Finally, they also analyze failures in DL training and the root causes why they occur.
They differentiate between failures caused by the infrastructure, by the DL framework, and by the
user. Based on their analysis, they propose a couple of best practices for multi-tenant DL schedul-
ing. First, they emphasize that locality is a major design goal of schedulers that should definitely be
taken into account. Second, they highlight that isolation of jobs is important to avoid performance
interference. Third, they propose that new jobs should first be tested on a small dedicated set of
servers before being admitted to the cluster. Ease.ml [104] is an ML service platform that employs
a multi-tenant resource scheduler. Users define their training jobs in a declarative language and
submit them to ease.ml via a web interface. Then, ease.ml not only schedules that job on the avail-
able resource but also automates model architecture and hyper-parameter search. The overall goal
of ease.ml is to maximize the average model accuracy achieved among all tenants, i.e., users of the
system. SLAQ [205] by Zhang et al. has a similar goal but supports a broader set of optimization
goals. It does not only maximize average accuracy but also solves a min-max problem to provide
fairness among the tenants. Ray [121, 132] from UC Berkeley is a distributed system that is special-
ized to support the requirements of reinforcement learning. The design of Ray makes it necessary
to dynamically schedule millions of tasks per second, where each task represents a remote func-
tion invocation that may only take as little as a few milliseconds to complete. The scheduler in
Ray is hierarchical with two levels: one single global scheduler and a local scheduler per node. As
long as a node is not overloaded, the local scheduler schedules its tasks autonomously. However,
if a local scheduler detects overload, it forwards tasks to the global scheduler, which assigns them
to other nodes.

Besides publications that describe concrete multi-tenant schedulers, there are publications that
describe DL services. IBM Fabric for Deep Learning [18] (FfDL) is a cloud-based deep-learning
stack used at IBM by AI researchers. Based on FfDL, IBM offers DL as a Service (DLaaS) [17], a
fully automated cloud solution for DL. Hauswald et al. [61] describe Djinn, an open infrastructure
for DL as a service in large-scale distributed infrastructures, as well as Tonic, a suite of DL appli-
cations for image, speech, and language processing. They analyze the workloads of their system
and propose a design for large-scale infrastructures that is suitable to DL workloads. One of their
findings is that employing GPUs for DL training and inference can reduce total cost of ownership

3The makespan of a set of training jobs is the total time elapsed from the arrival of the first job to the completion of all
jobs.
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tremendously compared to applying only CPUs. In their analysis, they take into account upfront
capital expenditures, operating costs, and financing costs. While GPUs have a higher purchase
price, such investment pays off due to lower operating costs when processing DL workloads.

3.4.3 Model Architecture and Hyper-parameter Search. Model architecture and hyper-
parameter search is a crucial problem in DL training. Given a specific task (e.g., image classifica-
tion), what is the best model architecture (e.g., CNN with how many layers and what layer dimen-
sions) that can reach the best accuracy? And what are the best hyper-parameter settings to reach
model convergence quickly? Finding the answer to those questions is difficult. The typical ap-
proach is to repeatedly try out different architectures and hyper-parameter settings to find the best
one, i.e., a search based on experimental evaluations [166]. The search can be random [16] or guided
by more sophisticated models, such as random forests and Bayesian optimization [73] or even re-
inforcement learning [12, 210]. What all of those methods have in common is that they repeatedly
spawn new training jobs with new configurations (architectures and hyper-parameter settings)
that need to be scheduled on a shared set of distributed resources. Here, we discuss scheduling ap-
proaches that explicitly take into account workloads that are generated by such search strategies.

TuPAQ [166] by Sparks et al. is a system for automatically generating and executing model
search configurations. Based on performance profiles provided by a domain expert, TuPAQ auto-
matically optimizes the amount of resources for data parallel training. Batching together training
jobs that access the same training data reduces network load and allows for further optimizations in
the execution. HyperDrive [148] by Rasley et al. is a scheduler that optimizes the hyper-parameter
search more aggressively than TuPAQ does. In particular, HyperDrive supports early stopping of
the training of poorly configured jobs. Further, by incorporating the trajectory of learning curves
of the trained models, HyperDrive predicts the expected accuracy improvement. Based on that,
more resources are assigned to training jobs that have a high expected accuracy improvement
compared to other configurations. HiveMind [127] by Narayanan et al. is a system designed to
optimize the execution of multiple DL training jobs on a single GPU. The system executes a batch
of models jointly and performs cross-model optimizations such as operator fusion (e.g., shared
layers on different model architectures) and shared I/O (e.g., using the same training data for dif-
ferent configurations). Gandiva [195] by Xiao et al. is a system that schedules sets of jobs for
hyper-parameter search simultaneously on a cluster of GPU-powered compute nodes. By exploit-
ing early feedback, subsets of the jobs can be killed and resources can be freed. Based on profiling
of job execution times, Gandiva employs a fine-grained application-aware time-slicing of the GPU
resources to exploit them optimally. To place the jobs on GPUs, Gandiva also takes into account
their memory footprint as well as communication intensity to minimize interference between job
executions.

3.5 Data Management

One of the great challenges of large-scale DL is handling the data that is involved. On the one
hand, this refers to the management of training data, whose volume easily exceeds the capabilities
of a single disk or multiple disks on a single server. On the other hand, it refers to the management
of the DL models, both fully trained as well as snapshots of models currently in the training phase.
The training and model data need to be handled in a suitable manner, while taking into account the
available distributed infrastructure, the running training processes and the resource scheduling in
the data center.

3.5.1 Training Data. Obtaining large labeled training data sets is a hard problem. One approach
to achieve this is to resort to manual labeling. For instance, to build the ImageNet data set, the
authors relied on crowd sourcing via Amazon Mechanical Turk, which led to high accuracy of the
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labels [40]. However, manual labeling is expensive and time-consuming. Hence, there are several
approaches to allow for training with highly noisy training data that can be easily obtained, e.g.,
from web image search. Xiao et al. [194] embed a label noise model into a DL framework. They
train two CNNs: one of the CNNs predicts the label while the other CNNs predicts the noise type
of the training data set. For training, they first pre-train both CNNs with clean training data. Then,
they train the models with the noisy data, but mix in data with clean labels to prevent model drift.
Overall, learning from noisy data is a vast research area (cf., e.g., References [119, 168]), which we
will not cover in its entirety in this survey.

Besides obtaining data (noisy or clean), preprocessing of the training data is an important step in
data management. This includes normalization such as cropping, resizing and other adjustments
on image data [29], or data augmentation such as creating spectrograms from speech data [53].
Beyond normalization and augmentation, training a DL model with distorted training data can
increase the model’s robustness to noisy input data [208]. Hence, preprocessing of training data
takes an important role in the overall DL architecture. For instance, Project Adam and Facebook
both describe that preprocessing is performed on distinct data servers [27, 62].

Once the training data is obtained and preprocessed, it has to be provided to the training servers
for feeding it into the DL models in the training iterations. Ozeri et al. [136] use simple and cheap
object storage to store and provide the training data. The shortcoming of object storage is that the
bandwidth of data provisioning is limited to about 35 MB per second for a single request, while
the throughput of training data on a machine with 4 GPUs can reach up to 570 MB per second
according to the authors’ own measurements. They add a FUSE-based file system to the DL stack,
which translates POSIX API requests into REST API requests. To overcome the read throughput
limitation, their storage layer converts a single read request into multiple concurrent requests
to the object storage to yield higher aggregate bandwidth. Kubernetes Volume Controller [94]
(KVC) is an advanced interface for training data management on Kubernetes clusters. It provides
an abstraction on training data that can be used by the training processes, and internally manages
data placement and replication transparently to the user. Hoard [142] by Pinto et al. is a distributed
caching system that stripes the training data across local disks of the worker machines for fast
access. Training data is loaded from the backend only once and can then be provisioned from the
cache for subsequent epochs and across training tasks that use the same training data (e.g., at
exploratory architecture and hyper-parameter search).

3.5.2 Model Data. Managing the trained models is as important as the training process itself.
According to Vartak et al. [177], model management involves tracking, storing and indexing of
trained models. The goal of model management is to facilitate the sharing, querying and analyzing
of the DL models. To make that possible, there are a number of current initiatives and approaches.

To facilitate interoperability between different DL frameworks, the Open Neural Network Ex-
change Format (ONNX) [3] is being developed. ONNX is the de-facto standard for exchange of
model data between DL frameworks. DL frameworks that natively support ONNX are Caffe2,
Chainer [7, 174], CNTK [158], MXNet [24], PyTorch [139], PaddlePaddle [137], Matlab, and
SAS [155]. Moreover, model converters are available for TensorFlow [4], Keras, Apple CoreML [33],
SciKit-learn [140], XGBoost [193], LIBSVM [22], and Tencent ncnn [128]. ModelDB [177] by Var-
tak et al. is a system for model management that provides automatic tracking of ML models, in-
dexing, and querying via SQL or via a visual interface. Beyond the models themselves, ModelDB
also manages meta data (e.g., hyper-parameters of the training process), quality metrics and train-
ing and test data sets for each model. ModelHub [116] by Miao et al. is a system that serves a
similar purpose as ModelDB. Beyond providing a versioned model storage and query engine and
a domain specific language for model architecture and hyper-parameter search, ModelHub also
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provides a repository-based model sharing system for easy exchange of DL models between dif-
ferent organizations.

4 COMPARISON OF DEEP-LEARNING FRAMEWORKS

Since the rise of DL, a large number different DL frameworks and tools have been developed and
many of them are open source. They implement different concepts of parallelization and distribu-
tion, which we have discussed in Section 3. Having a large choice of open-source DL frameworks
is one of the drivers of innovative DL research. In this section, we review and compare current
open-source DL frameworks and tools.

4.1 Evaluation Criteria

We discuss and compare the frameworks according to the following criteria.
(1) APIs. DL frameworks should support a large range of programming languages, so that ex-

perts from different domains have easy access to them. Moreover, they should provide high-level
abstractions so that a running DL use case can be created quickly without many obstacles.

(2) Support for distribution and parallelization. In a cloud environment, resources are available
abundantly and on demand. DL frameworks should allow for easy and intuitive support for distri-
bution and parallelization without need for custom code. We specifically examine this point with
regard to the parallelization methods and optimizations we have discussed in Section 3. Here, we
also discuss the possibility for users to fine-tune their deployment according to their needs. This
relates to the DL frameworks’ support for custom definitions of the DL model and loss functions
and developing custom code for parameter servers or custom topologies in decentralized systems.

(3) Community. As the field of DL is dynamically evolving, with new DL model architectures and
parallelization methods being proposed, it is crucial for a DL framework to have an active com-
munity that discusses and implements the most promising approaches. We measure community
activity by the number of commits on the official Github repositories in the past six months (i.e.,
between October 2018 and March 2019) as well as the total number of topics with the respective
tags on StackOverflow4 (https://stackoverflow.com/).

We emphasize that we do not discuss and compare the performance of DL frameworks; a com-
prehensive performance evaluation of DL frameworks is out of the scope of this survey article.
There are other studies that compare performance, e.g., by Liu et al. [108] or Jäger et al. [77].

4.2 Detailed Analysis

In the following, we discuss the frameworks in more detail. Table 3 provides an overview.
Caffe is a DL framework developed by Berkeley AI research and community contributors. It

comes with command line, Python and Matlab APIs. A specialty of Caffe is the model zoo, a col-
lection of pre-trained models for an easy start. It runs on CUDA platforms (using the cuDNN
library) for easy parallelization on GPUs. Caffe does not support distributed training out-of-the-
box. However, there are forks and extensions of Caffe such as Intel Caffe5 and CaffeOnSpark6 that
support distributed training. There is only little information available in the Caffe documentation
of how to customize the framework, e.g., to develop new loss functions. As Caffe does not sup-
port multi-node deployment, custom parallelization techniques can not be implemented either.

4Due to limitations of the StackOverflow search, we did not confine the search to recent topics, but we report the overall
numbers without time constraint.
5https://github.com/intel/caffe.
6https://github.com/yahoo/CaffeOnSpark.
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Table 3. Comparison of Open-source DL Frameworks and Libraries

Name Papers API Distribution and Parallelization Community

Caffe [80] CLI, Python, Matlab No native support for distribution. Github: 2
StOv: 2,750

Caffe2 n/a C++, Python • Decentralized only
• Synchronous only
•Model quantization supported
• Gradient quantization not supported
• Communication scheduling not supported

Github: n/a
StOv: 116

Chainer [7, 174] Python • Decentralized only
• Synchronous only
•Model quantization not supported
• Gradient quantization not supported
• Communication scheduling not supported

Github: 3,939
StOv: 132

CNTK [158] C++, C#, Python,
Brain-Script

• Centralized and decentralized
• Bounded asynchronous training via BMUF [23]
•Model quantization not supported
• 1-bit gradient quantization [159] supported
• Communication scheduling not supported

Github: 138
StOv: 488

DL4j n/a Java • Centralized and decentralized
• Synchronous and asynchronous
•Model quantization not supported
•Modified 1-bit gradient quantization by

Strom [43, 167] supported
• Communication scheduling not supported

Github: 390
StOv: 243

Keras n/a CNTK, DL4j, TensorFlow,
Theano

•Model quantization supported
• Higher-level concepts must be implemented in

the DL framework that employs Keras

Github: 310
StOv: 14,630

MXNet [24] C++, Go, Java-Script,
Julia, Matlab, Perl,
Python, R, Scala, Wolfram

• Centralized only
• Synchronous and asynchronous
•Model quantization supported
• 2-bit gradient quantization with

error-feedback supported [124]
• Communication scheduling not supported

Github: 837
StOv: 455

PyTorch [139] C++, Python • Centralized and decentralized
• Synchronous and asynchronous
•Model quantization not supported
• Gradient quantization not supported
• Communication scheduling not supported

Github: 3,484
StOv: 2,413

SINGA [134] C++, Python • Centralized and decentralized
• Synchronous and asynchronous
•Model quantization not supported
• Gradient quantization not supported
• Communication scheduling not supported

Github: 44
StOv: 0

TensorFlow [4] C++, Go, Java,
Java-Script, Python, Swift

• Centralized
• Synchronous and asynchronous
•Model quantization supported
• Gradient quantization not supported
• Communication scheduling not supported

Github: 10,930
StOv: 39,334

Theano [15] Python No native support for distribution. Github: 55
StOv: 2,389

StOv: StackOverflow.

Commit activity on Github has almost completely ceased. On StackOverflow, there are 2,750 ques-
tions tagged with “Caffe,” a high value compared to other frameworks.

Caffe2 is a successor of the Caffe framework developed by Facebook and community contrib-
utors. The API is available in C++ and Python. The models from Caffe can be easily converted to
work with Caffe2. Beyond that, Caffe2 provides its own model zoo as well. Caffe2 extends Caffe
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in the following points. First, Caffe2 naturally supports distributed training. There is native sup-
port for decentralized data-parallel training using the synchronous model; there is no support for
(bounded) asynchronous training and no parameter server architecture. There is also native sup-
port for quantized models, i.e., models with reduced data type precision. Recently, the code of
Caffe2 has been merged into PyTorch. This makes it hard to assess the update frequency of the
Caffe2 code. On StackOverflow, there are 116 questions tagged with “Caffe2,” a rather low value
compared to other frameworks.

Chainer is a DL framework developed by the Japanese company Preferred Networks with sev-
eral industrial partners and community contributors. It is written in Python and only has a Python
interface. There is good documentation on how to write custom functions, optimizer, and trainers.
ChainerMN is an extension package that enables distributed and parallel DL on multiple nodes. It
supports data parallelism via a decentralized all-reduce architecture using the synchronous train-
ing method (no parameter server or asynchronous training are supported). There were 3,939 com-
mits to the official Github repository in the past six months, which is a comparably high value.
On StackOverflow, there are 132 questions tagged with “Chainer,” a rather low value compared to
other frameworks.

CNTK (Microsoft Cognitive Toolkit) is a DL framework developed by Microsoft and community
contributors. The API is available in C++, C# and Python. Additionally, CNTK provides a custom
model description language called BrainScript. The model evaluation function can also be used
from Java programs. Data-parallel and distributed training is supported out-of-the-box. The 1-bit
stochastic gradient descent by Seide et al. [159] is integrated into the framework. CNTK supports
the centralized architecture with parameter servers, using asynchronous training or blockwise
model update and filtering (BMUF) [23], a variant of bounded asynchronous training. Currently,
model parallelism is not supported by CNTK. Extending CNTK is easy. New operators, loss func-
tions, and so on, can be implemented with an API. There were 138 commits to the official Github
repository in the past six months, which is a comparably low value. On StackOverflow, there are
488 questions tagged with “CNTK,” an average value compared to other frameworks.

Deeplearning4j is a DL framework developed by the company Skymind and community con-
tributors organized in the Eclipse foundation. The framework is written in Java and C++ (for core
components), and the API is available in Java, which makes it accessible for Java, Scala and Clo-
jure projects (but not from Python). It supports distributed and parallel training by using Spark.
There are two variants of data-parallel training implemented. First, a decentralized asynchro-
nous approach proposed by Strom [167] that also incorporates quantization of gradients. Second,
centralized synchronous training with a single parameter server. There is no support for model
parallelism. It is easily possible to create custom layer implementations, but more sophisticated
customization (loss functions, parallelization configurations, etc.) is not supported. There were
390 commits to the official Github repository in the past six months, which is an average value.
On StackOverflow, there are 243 questions tagged with “Deeplearning4j,” a rather low value com-
pared to other frameworks.

Keras is not a DL framework, but a DL library that can be integrated into many other DL frame-
works, such as CNTK, Deeplearning4j, TensorFlow, and Theano. It is developed as a community
project, initiated by F. Chollet. Keras is written in Python, which allows for its easy integration
into other Python-based frameworks. Parallel training on GPUs is naturally supported; higher-
level parallelization concepts must be implemented by the DL framework that uses Keras. Model
quantization (to 8-bit model weights) is supported directly in Keras. The library is easily extensible
with new modules. There were 310 commits to the official Github repository in the past six months,
which is an average value. On StackOverflow, there are 14,630 questions tagged with “Keras,” a
very high value compared to other frameworks.
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MXNet is a DL framework and an Apache project (incubating). Its API is available for C++,
Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl, and Wolfram Language. MXNet supports a
wide range of parallelization approaches. Model parallelism is supported for multiple GPUs on
a single node; there is no support for multi-node model parallelism though. Data parallelism is
realized via the centralized architecture with support for using multiple parameter servers via a
sharded key-value store. Both synchronous and asynchronous training are supported out-of-the-
box. MXNet also supports post-training 8-bit model quantization tailored to the Intel(R) Math
Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) [126]. In the training process,
2-bit gradient quantization with error-feedback is supported [124]. It is easy to implement cus-
tom operators or layers as well as loss functions. There were 837 commits to the official Github
repository in the past six months, which is an average value. On StackOverflow, there are 455
questions tagged with “MXNet,” an average value compared to other frameworks.

PyTorch is a DL framework developed by Facebook and community contributors. Its API is
available for C++ and Python. PyTorch has native support for distributed, data-parallel training,
as well as model-parallel training. For data-parallel training, PyTorch implements the decentralized
architecture and supports synchronous as well as asynchronous training. PyTorch supports model
quantization via the QNNPACK library [147]. Gradient quantization is not supported out-of-the-
box. Writing new operators or layers is easily done via extending an interface; it is also possible
to write custom loss functions. There were 3,484 commits to the official Github repository in the
past six months, which is a comparably high value. On StackOverflow, there are 2,413 questions
tagged with “PyTorch,” a rather high value compared to other frameworks.

SINGA is a DL framework and Apache project (incubating) that is developed by community
contributors. The initiators of the project are from the National University of Singapore. It has
APIs in C++ and Python. Singa has native support for distributed, data-parallel and model-parallel
training, as well as hybrid parallelism (combining data and model parallelism). Data parallelism is
implemented via the centralized approach with support for multiple parameter servers. However,
the decentralized architecture can be emulated by employing each worker with a local parameter
server. Both synchronous and asynchronous training are supported. There is no support for model
or gradient quantization. Customization is more difficult than in the other frameworks: The docu-
mentation does not contain any hints on how to implement custom layers or loss functions. There
were 44 commits to the official Github repository in the past six months, which is a comparably
low value. On StackOverflow, there are no questions tagged with “Singa” or “Apache Singa,” and
only one single question is returned when searching for the keyword “Singa.”

TensorFlow is an ML framework developed by Google and community contributors. The API is
available for C++, Go, Java, JavaScript, Python, and Swift. Additionally, the community offers bind-
ings for C#, Haskell, Ruby, Rust, and Scala. TensorFlow natively supports distributed and parallel
training. In particular, it supports both model parallelism and data parallelism. In data parallelism,
the centralized approach via parameter servers is supported, using either asynchronous or syn-
chronous training. Trained models can be quantized using TensorFlow Lite [172]. Currently, there
is no native support for gradient quantization or communication scheduling. Customization of
layers and loss functions is straight forward via implementing the available interfaces. There were
10,930 commits to the official Github repository in the past six months, which is an extremely
high value. On StackOverflow, there are 39,334 questions tagged with “TensorFlow,” which is the
highest number among all analyzed DL frameworks.

Theano is a DL framework developed by Montreal Institute for Learning Algorithms at the Uni-
versité de Montréal. The API is available only for Python. There is no support for distributed train-
ing on multiple nodes. However, using multiple GPUs on a single node is supported. Theano sup-
ports model parallelism, but no data parallelism. New layers can be implemented via an interface.
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It is also possible to define custom loss functions. At the time of writing this survey, commits to the
official Github repository have a low frequency. According to a posting on the Theano mailing list7,
major development of Theano ceased with the release of version 1.0.; however, new maintenance
releases have been issues since then. There were still 55 commits to the official Github repository
in the past six months. On StackOverflow, there are 2,389 questions tagged with “Theano,” a rather
high value compared to other frameworks.

Others. There are a couple of other frameworks that we do not cover in detail in our comparison
for various reasons. Minerva [182] is an open-sourced DL system, but has not been maintained for
the past 4 years. SparkNet [120] allows for distributed DL on Spark, but has not been maintained for
the past 3 years. Neon [129] is another DL framework that has ceased development for more than
1 year. Scikit-learn [140] is an ML framework and it is not specific to DL. While neural network
training is implemented, there is no support for using GPUs or distributed training. The Weka
workbench [48] is a collection of ML and data mining algorithms. WekaDeeplearning4j [189] is a
DL package for the Weka workbench. As backend, it uses Deeplearning4j, which we have discussed
above.

5 CONCLUSIONS AND OUTLOOK

DL is becoming increasingly important in industry and academia and is without doubt one of
the most impactful revolutions in computer science in the past years. However, the rapid pace in
which the field is developing makes it difficult to keep an overview. In particular, DL is currently
investigated from many different perspectives and in different communities. In this survey, we
took a deeper look into DL from the perspective of scalable distributed systems. We investigated
the main challenges to make DL systems scale, and have reviewed the common techniques that
have been proposed by researchers to tackle those challenges. This included an analysis of the dis-
tributed infrastructures used in DL training as well as techniques for parallelization, scheduling
and data management. Finally, we provided an overview and comparison of the current open-
sourced DL systems and tools, and analyzed which of the techniques developed in research have
actually been implemented. We saw that the wide range of techniques for scalable DL are imple-
mented in open-source DL frameworks. This shows that there is a fruitful interaction between
research and practical applications, which is one of the reasons why DL has gained such a large
momentum.

We can draw from our survey a couple of insights on how to design future DL infrastructures
and tools. In our opinion, management of training and model data becomes a larger challenge
with the proliferation of more training data and more DL models. This demands better tool sup-
port such that new bottlenecks and limitations for DL scalability can be mitigated. Furthermore,
current developments and advances in decentralized training, e.g., federated learning, may change
the requirements and design of DL infrastructures and tools. If the infrastructure becomes more
heterogeneous, then this must be reflected in DL tools that can not only just deal with such het-
erogeneity, but even exploit it to optimize the training process.

Looking into the future, we see a couple of trends that will be important in the next years.
While research on scalable DL was mostly focused on the parallelization and distribution aspects
of DL training, there is a need to investigate other parts of the DL environment, such as data man-
agement and multi-tenant scheduling. This is a large field for research in the distributed systems
and database community. Furthermore, DL serving, i.e., using trained DL models for inference,
receives growing attention [34, 54, 76]. Although DL serving is closely related to DL training, the
requirements and, hence, the solutions are totally different. Another important aspect of DL is

7https://groups.google.com/forum/#!topic/theano-users/7Poq8BZutbY.
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privacy [5, 103, 162], which receives growing attention due to an increasing awareness in the soci-
ety for privacy issues in the era of Big Data, fueled by legislative reforms such as the General Data
Protection Regulation (GDPR) in the European Union. There is an interesting trade-off between
the ever-increasing demand for more training data to improve DL models and the principle of data
avoidance and data economy to protect privacy.
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