
NIR-Tree: A Non-Intersecting R-Tree
Kyle Langendoen, Brad Glasbergen, Khuzaima Daudjee

{kjlangen,bjglasbe,kdaudjee}@uwaterloo.ca

Cheriton School of Computer Science

University of Waterloo

ABSTRACT
Indexes for multidimensional data based on the R-Tree are popu-

larly used by databases for a wide range of applications. Such index

trees support point and range queries but are costly to construct

over datasets of millions of points. We present the Non-Intersecting

R-Tree (NIR-Tree), a novel insert-efficient, in-memory, multidimen-

sional index that uses bounding polygons to provide efficient point

and range query performance while indexing data at least an or-

der of magnitude faster. The NIR-Tree leverages non-intersecting

bounding polygons to reduce the number of nodes accessed during

queries, compared to existing R-family indexes. Our experiments

demonstrate that inserting into a NIR-Tree is 27× faster than the

ubiquitous R*-Tree, with point queries completing 2× faster and

range queries executing just as quickly.

CCS CONCEPTS
• Information systems → Multidimensional range search.

KEYWORDS
Multidimensional indexing, Tree, Bounding polygon

ACM Reference Format:
Kyle Langendoen, Brad Glasbergen, Khuzaima Daudjee. 2021. NIR-Tree: A

Non-Intersecting R-Tree. In 33rd International Conference on Scientific and
Statistical Database Management (SSDBM 2021), July 6–7, 2021, Tampa, FL,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3468791.

3468818

1 INTRODUCTION
Multidimensional indexes are an important part ofmodern databases

[10, 12, 20]. Correlated data, such as points in space or the RGB

values of a pixel, can be stored and retrieved together in multidimen-

sional indexes. These indexes need to support efficient querying

and retrieval of data for many popular application domains, such as

infectious disease tracking, continental road networks, video game

states, and scientific simulations of entire galaxies. The volume and

variety of such multidimensional data demand indexes that can

deliver high performance through low latency querying of data.

Solutions to indexing multidimensional data [3, 14, 22] are based

largely on the conceptual structure that originates from the R-Tree

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8413-1/21/07. . . $15.00

https://doi.org/10.1145/3468791.3468818

Figure 1: An R-Tree exhibiting scatter during search.

[11]. R-Trees recursively group multidimensional data into bound-
ing rectangles that represent an approximation of the data group’s

local region of space.When executing search queries, bounding rect-

angles are consulted to direct the search into continually smaller,

more specific rectangular regions that meet the search criteria.

When data groups are poorly represented by large or intersecting

bounding rectangles, search is slowed by accessing regions whose

data does not meet the search criteria.

To illustrate, consider Figure 1 depicting an R-Tree with nodes

and associated bounding rectangles shown in the same colour. R-

Trees require parent bounding rectangles to enclose their children’s

bounding rectangles, and so 𝑅’s black bounding rectangle encloses

children 𝐴 and 𝐵 with blue and yellow bounding rectangles respec-

tively. The search for the black point in Figure 1, indicated by the

dashed red line, is slowed by scattering into logical nodes 𝐴 and 𝐹 .

This search spuriously accesses 𝐴 and 𝐹 which do not contain the

desired point because their associated bounding rectangles unde-

sirably enclose the point. Bounding rectangle pairs 𝐴, 𝐵 and 𝐸, 𝐹

create scatter and thus slow search with their intersection.

Figure 2: NIR-Tree exhibiting no scatter during search.

A desirable, efficient multidimensional index would support

search by minimizing intersection between bounding rectangles. As

a running example, consider the same point from Figure 1 indexed

by the reconfigured geometry in Figure 2. This improved R-Tree

design, which we call the NIR-Tree, removes the intersection area

between bounding polygon pairs 𝐴, 𝐵 and 𝐸, 𝐹 . By doing so, search

https://doi.org/10.1145/3468791.3468818
https://doi.org/10.1145/3468791.3468818
https://doi.org/10.1145/3468791.3468818

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Kyle Langendoen, Brad Glasbergen, Khuzaima Daudjee

for the same black data point no longer scatters to nodes 𝐴 and

𝐹 . This 40% reduction in accessed nodes, again highlighted by a

dashed red path in Figure 2, translates into a faster search.

Prior proposals improved ways to organize bounding rectangles

[3, 14, 22] while other approaches [13, 15] abandoned rectangles

entirely in favour of more complex geometric objects. Although

these approaches reduce intersection area they, unlike our proposed

NIR-Tree, cannot eliminate it entirely. Proposals which use arbitrar-

ily shaped bounding objects [13, 15] suffer from slow, complicated

geometric tests to determine if a point is enclosed by a bounding

object.

In this paper, we present the NIR-Tree, a new, entirely in-memory

tree that adaptively replaces bounding rectangles with bounding

polygons. The NIR-Tree guarantees zero-area intersection between

bounding polygons which accelerates point queries by reducing the

number of nodes accessed compared to existing R-family indexes.

Our experiments demonstrate that inserting into a NIR-Tree is an

order of magnitude faster than the ubiquitous R*-Tree, with point

queries completing in half the time and range queries executing

just as quickly.

Concretely, our contributions to multidimensional indexing are:

(1) The design and implementation of the NIR-Tree, a novel in-

memory technique to create axis-aligned bounding polygons

from bounding rectangles.

(2) A zero-area intersection guarantee among bounding poly-

gons in the NIR-Tree, including an analysis and proof of this

guarantee.

(3) Extensive evaluation on both real and synthetic datasets,

demonstrating that the NIR-Tree is 27.8× faster to construct,

2.2× faster to point query, and up to 8% faster to range query

than the R*-Tree.

Section 2 discusses how bounding polygons can eliminate inter-

section area, Section 3 presents the design of the NIR-Tree, Section

4 analyzes the zero-area intersection guarantee, and Section 5 pro-

vides an experimental evaluation of the NIR-Tree compared with

prior approaches. Related work is covered in Section 6, and Section

7 concludes our work. Without loss of generality, we discuss the

two dimensional versions of trees throughout the paper (with the

exception of Section 4) to simplify the presentation.

2 BACKGROUND
Scatter, which degrades search performance in an R-Tree, is caused

by positive intersection area. Insertions induce intersections when

bounding rectangles are expanded to enclose a new point.

When expansion is required, a bounding rectangle that will

contain the new point is selected for expansion based on a cost

function called a metric. Bounding rectangles within the R-Tree

are selected to minimize the amount of additional area required

to enclose a new point. Figure 3a depicts the R-Tree’s metric in

action. A new black point must be enclosed either by the blue

or the yellow rectangle. Since the yellow rectangle requires less

additional area than the blue rectangle to enclose the new point

the yellow rectangle is selected and expanded.

Bounding rectangle intersection is not limited to the R-Tree’s

metric. For example, a simple alternative metric that selects bound-

ing rectangles based on minimum distance to the new point is

depicted in Figure 3b, yet intersection may still occur. For another

example, the R*-Tree [3] considers perimeter of the expanded bound-

ing rectangle (Figure 3a) and additional intersection area (Figure

3c). However, all of these alternatives may cause intersection. The

yellow rectangle in Figure 3 always minimizes the given metric in

each case, yet its selection and expansion invariably causes posi-

tive intersection area. Note that this happens even when the metric
optimizes for intersection area directly.

Figure 3: Expansion causing intersection in three examples.

In contrast with existing R-family trees, when the NIR-Tree’s

bounding rectangles cause intersection, they are replaced with

bounding polygons that do not intersect. NIR-Tree bounding poly-

gons are sets of rectangles that, when treated as a logical whole,

form an axis-aligned polygon like the collection of blue {𝐴1, 𝐴2}
and green {𝐹1, 𝐹2, 𝐹3} rectangles illustrated in Figure 2. By form-

ing bounding polygons from bounding rectangles during insert,
the NIR-Tree achieves zero-area intersections between bounding

polygons (Figure 2) where the R-Tree fails to do so.

3 THE NIR-TREE
In this section, we outline the logical structure of the NIR-Tree

and then describe in detail how the NIR-Tree creates, expands, and

splits bounding polygons (and associated nodes) during insert.
Afterwards, the deletion operation remove is detailed, and the sec-

tion concludes with an explanation of point and range search
operations.

3.1 Structure and Data Layout
The NIR-Tree is structured as a tree of nodes, each associated with

a bounding polygon. Nodes may be one of two types: routing or

leaf. Routing nodes contain a set of branches, where branches are

a pointer to a child node 𝑐ℎ𝑖𝑙𝑑8 and a bounding polygon P8 repre-
senting the geometric region of that child.

Definition 1. A routing node is a tuple

⟨𝑝𝑎𝑟𝑒𝑛𝑡, {⟨𝑐ℎ𝑖𝑙𝑑0,P0⟩, . . . , ⟨𝑐ℎ𝑖𝑙𝑑=,P=⟩}⟩
Leaf nodes contain a set of points, which are optionally asso-

ciated with some value. Both types of nodes contain a pointer to

their parent to enable upwards tree traversal.

Definition 2. A leaf node is a tuple ⟨𝑝𝑎𝑟𝑒𝑛𝑡, {𝑝0, . . . , 𝑝=}⟩

NIR-Tree: A Non-Intersecting R-Tree SSDBM 2021, July 6�7, 2021, Tampa, FL, USA

Figure 4: Insertion is shown with polygon expansion, fragmentation, re�nement, and splitting. Maximum Fanout = 3.

As in other multidimensional indexes, nodes must contain no
more branches or data points than some maximum fanout< as-
signed at tree construction time. Nodes that contain more than<
branches or data points are said toover�ow and must be split. In
contrast to nodes, bounding polygons may be composed of as many
�or as few� rectangles as desired.

For notational convenience, we will use# ”?>;~to denote the
bounding polygon associated with node# . Concretely, if# is a
child of parent%, denoted# ”?0A4=C, then# ”?>;~is the bounding
polygon associated with# 's branch in%.

3.2 Updating
Updates de�ne the geometric structure of the NIR-Tree and greatly
in�uence the performance of other operations. The primary update
operationinsert is carried out in two stages: (i) a downward root-
to-leaf sweep expanding bounding polygons along the insertion
path, carried out bychooseLeaf (Algorithm 1), and then (ii) an
upward leaf-to-root sweep along the same path, splitting nodes
whenever they over�ow, carried out byadjustTree (Algorithm 2).
We will use Figure 4 as a running example for the steps executed
during insert , described next.

3.2.1 Insert Downward Sweep.Insertion starts with the NIR-Tree
illustrated in Figure 4a. Note that all bounding polygons have zero-
area intersection and every bounding polygon is completely en-
closed by its parent's bounding polygon. During the downward
sweep,chooseLeaf(Algorithm 1) executes the following process
at every level, starting at the root. First, the stopping condition
must be checked (line 2). If the current node is a leaf, then execu-
tion stops because a leaf has been successfully chosen. Otherwise,
chooseLeafuses the NIR-Tree's area minimization metric to select
bounding polygons for expansion on each level (line 6). Bounding
polygons within the NIR-Tree are selected to minimize the amount
of additional area required to enclose a new point (Figure 3b). Every
rectangle within each bounding polygon is evaluated using this
metric, and the bounding polygon with the constituent rectangle
that needs the least additional area is selected. Our metric mini-
mizes additional area because future steps force intersection area
to be zero.

Algorithm 1 chooseLeaf(# , ?) ! !

Require: # is the root,? a new point,! is a leaf
1: ! = #
2: while ! is not a leafdo
3: if 9� 2 !”1A0=2�4Bsuch that? 2 �” P then
4: ! = �”2�8;3
5: else
6: Let � be the branch of! for which �” P requires least

additional area to enclose?.
7: Expand�” P to contain?
8: for 8� 0 2 !”1A0=2�4Bwhere� 0”P not disjoint from �” P

do
9: �” P = fragment¹�” P• � 0”Pº

10: end for
11: �” P = �” P \ !” P
12: re�ne(�” P)
13: ! = �”2�8;3
14: end if
15: end while
16: return !

In the best case, the new point already lies within an existing
bounding polygon and no expansion is necessary (line 3). Unfortu-
nately, the new point in Figure 4a is not enclosed by any existing
bounding polygon. Instead, bounding polygon� is selected for ex-
pansion because it requires the least additional area to enclose the
new point. Speci�cally, the rectangle within bounding polygon�
requiring the least additional area is expanded to enclose the new
point. Since� contains only one rectangle, it is trivially selected for
expansion. Now, as concretely observed between bounding poly-
gons� and� in Figure 4b, expansion may cause sibling bounding
polygons to have positive intersection area.

If expanding a bounding polygon (line 7) causes intersection
area between sibling bounding polygons to become positive, then
the NIR-Tree replaces the selected rectangle within the selected
bounding polygon with a set of new rectangles that do not intersect
its sibling bounding polygons (line 9). We call this processfragmen-
tationbecause the o�ending rectangle is replaced with fragments of

SSDBM 2021, July 6�7, 2021, Tampa, FL, USA Kyle Langendoen, Brad Glasbergen, Khuzaima Daudjee

Figure 5: Polygon fragmentation in two dimensions.

itself. We start by discussing fragmentation generally using Figure
5 before applying the process to our running example in Figure 4c.

Since the fragmentation process must generalize to any number
of dimensions, one dimension is processed at a time. In Figure 5a,
bounding polygonP = f ' ghas expanded and intersects bounding
polygonP 0 = f � g. To aid our analogy, the~ dimension is consid-
ered �rst, where a ceiling� ~ and �oor � ~ are created by bounding
copies of' with the �top� and �bottom� of � in ~ (Figures 5b and 5c).
The process is then repeated for theGdimension where a ceiling
� G is created; bounded now not only by the �top" and �bottom�
of � in G, but also all previously created ceilings and �oors. The
fully bounded ceiling is depicted in orange in Figures 5d and 5e.
Notice that a �oor � G is not created for theGdimension because
the �bottom� of � in Glies outside of' . After all ceilings and �oors
in all dimensions have been computed this way,P is set to be these
resulting fragments. That is,P = f ' 1• ' 2• ' 3gas depicted in Figure
5f. Each rectangle is fragmented into at most2 � 3 pieces inR3 .
If the bounding polygonP 0had been a set of multiple rectangles
f � 1• � 2• � 3ginstead of a set consisting of a single rectanglef � g, then
the process just described would be executed for each of� 1• � 2• � 3
with any fragments of' created during previous iterations.

Applying the above process to our running example, the single
rectangle within� is replaced with two rectangles� 1• � 2 (Figure
4c), achieving zero-area intersection with bounding polygon� . To
maintain a valid NIR-Tree, we prune away any area of the produced
fragments outside the selected node's parent bounding polygon
(line 11). Since no area of� 1 or � 2 in Figure 4c is outside of the area
of ' , � 1 and� 2 remain the same.

If as a result of fragmentation or expansion� 's geometric region
could be enclosed using fewer rectangles, thenrefine (line 12,
Figure 6) will reduce the number of rectangles in� if � matches
one or more of the following patterns. First, when a rectangle is
also a line and lies on the perimeter of another rectangle (Figure
6a), the line rectangle is removed. Second, when a rectangle is
enclosed by another rectangle (Figure 6b), the enclosed rectangle is
removed. Finally, when rectangles are organized into a column or
row of constant width or height and have positive intersection area
(Figure 6c), the row or column is replaced with a single rectangle.
In Figure 4c,� 1 and� 2 do not exhibit any of the three patterns so
� is left unaltered.

Figure 6: Re�nement reducing polygon size in rectangles.

After the execution of rectangle fragmentation and re�nement
are complete for the current level, insertion moves down the tree
(line 13) into the selected child node (� in our running example).
Selection, expansion, fragmentation, re�nement, and descent are
repeated until there exist no more children to be selected. As a
result, we see in Figure 4 that� is expanded to enclose the new
point, and then� is fragmented and re�ned into� 1• � 2• � 3 in Figure
4e so as to eliminate intersection with� . Since� is a leaf, we place
the new point in � , and we pass� to the second stage of insert,
adjustTree .

Algorithm 2 adjustTree(#)

Require: # is a leaf,9< a maximum fanout
1: while # not root do
2: if j# ”1A0=2�4Bj ¡ < or j# ”30C0j ¡ < then
3: h# ! •P! i •h# ' •P' i = splitNode(# , partitionNode(#))
4: Add h# ! •P! i to # ”?0A4=C”1A0=2�4B
5: Add h# ' •P' i to # ”?0A4=C”1A0=2�4B
6: Removeh#• Pi from # ”?0A4=C”1A0=2�4B
7: end if
8: # = # ”?0A4=C
9: end while

3.2.2 Insert Upward Sweep.During execution of the upward sweep,
adjustTree (Algorithm 2) splits over�owing nodes (line 3). If plac-
ing the resulting nodes into the parent (line 4) causes the parent to
over�ow, then the splitpropagatesupwards by splitting the parent.
If eventually the root over�ows, then a new node will be allocated
and set to be the root. Each of the two nodes created from the old
root become the new root's children. For example, assume that�
already contains three points before being selected to contain the
new point in Figure 4d.� will then contain 4 points, exceeding the
maximum fanout of< = 3, and thus must be split.

The splitting of nodes always begins at the leaf level. To split
a node, data and bounding polygons are divided along some line
determined bypartitionNode (Algorithm 4). This dividing line
is called apartition line. NIR-Tree partition lines are determined
by computing a3-dimensional average point called thegeometric
median(lines 4, 8). For leaf nodes, the median is the average of data

	Abstract
	1 Introduction
	2 Background
	3 The NIR-Tree
	3.1 Structure and Data Layout
	3.2 Updating
	3.3 Searching

	4 NIR-Tree Analysis
	4.1 Geometric Primitives
	4.2 Geometric Relationships
	4.3 Zero-Area Intersection Guarantee

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Datasets and Queries
	5.3 Results

	6 Related Work
	6.1 Data Partitioning
	6.2 Space Partitioning

	7 Conclusion
	Acknowledgments
	References

