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ABSTRACT
Indexes for multidimensional data based on the R-Tree are popu-

larly used by databases for a wide range of applications. Such index

trees support point and range queries but are costly to construct

over datasets of millions of points. We present the Non-Intersecting

R-Tree (NIR-Tree), a novel insert-efficient, in-memory, multidimen-

sional index that uses bounding polygons to provide efficient point

and range query performance while indexing data at least an or-

der of magnitude faster. The NIR-Tree leverages non-intersecting

bounding polygons to reduce the number of nodes accessed during

queries, compared to existing R-family indexes. Our experiments

demonstrate that inserting into a NIR-Tree is 27× faster than the

ubiquitous R*-Tree, with point queries completing 2× faster and

range queries executing just as quickly.
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1 INTRODUCTION
Multidimensional indexes are an important part ofmodern databases

[10, 12, 20]. Correlated data, such as points in space or the RGB

values of a pixel, can be stored and retrieved together in multidimen-

sional indexes. These indexes need to support efficient querying

and retrieval of data for many popular application domains, such as

infectious disease tracking, continental road networks, video game

states, and scientific simulations of entire galaxies. The volume and

variety of such multidimensional data demand indexes that can

deliver high performance through low latency querying of data.

Solutions to indexing multidimensional data [3, 14, 22] are based

largely on the conceptual structure that originates from the R-Tree
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Figure 1: An R-Tree exhibiting scatter during search.

[11]. R-Trees recursively group multidimensional data into bound-
ing rectangles that represent an approximation of the data group’s

local region of space.When executing search queries, bounding rect-

angles are consulted to direct the search into continually smaller,

more specific rectangular regions that meet the search criteria.

When data groups are poorly represented by large or intersecting

bounding rectangles, search is slowed by accessing regions whose

data does not meet the search criteria.

To illustrate, consider Figure 1 depicting an R-Tree with nodes

and associated bounding rectangles shown in the same colour. R-

Trees require parent bounding rectangles to enclose their children’s

bounding rectangles, and so 𝑅’s black bounding rectangle encloses

children 𝐴 and 𝐵 with blue and yellow bounding rectangles respec-

tively. The search for the black point in Figure 1, indicated by the

dashed red line, is slowed by scattering into logical nodes 𝐴 and 𝐹 .

This search spuriously accesses 𝐴 and 𝐹 which do not contain the

desired point because their associated bounding rectangles unde-

sirably enclose the point. Bounding rectangle pairs 𝐴, 𝐵 and 𝐸, 𝐹

create scatter and thus slow search with their intersection.

Figure 2: NIR-Tree exhibiting no scatter during search.

A desirable, efficient multidimensional index would support

search by minimizing intersection between bounding rectangles. As

a running example, consider the same point from Figure 1 indexed

by the reconfigured geometry in Figure 2. This improved R-Tree

design, which we call the NIR-Tree, removes the intersection area

between bounding polygon pairs 𝐴, 𝐵 and 𝐸, 𝐹 . By doing so, search
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for the same black data point no longer scatters to nodes 𝐴 and

𝐹 . This 40% reduction in accessed nodes, again highlighted by a

dashed red path in Figure 2, translates into a faster search.

Prior proposals improved ways to organize bounding rectangles

[3, 14, 22] while other approaches [13, 15] abandoned rectangles

entirely in favour of more complex geometric objects. Although

these approaches reduce intersection area they, unlike our proposed

NIR-Tree, cannot eliminate it entirely. Proposals which use arbitrar-

ily shaped bounding objects [13, 15] suffer from slow, complicated

geometric tests to determine if a point is enclosed by a bounding

object.

In this paper, we present the NIR-Tree, a new, entirely in-memory

tree that adaptively replaces bounding rectangles with bounding

polygons. The NIR-Tree guarantees zero-area intersection between

bounding polygons which accelerates point queries by reducing the

number of nodes accessed compared to existing R-family indexes.

Our experiments demonstrate that inserting into a NIR-Tree is an

order of magnitude faster than the ubiquitous R*-Tree, with point

queries completing in half the time and range queries executing

just as quickly.

Concretely, our contributions to multidimensional indexing are:

(1) The design and implementation of the NIR-Tree, a novel in-

memory technique to create axis-aligned bounding polygons

from bounding rectangles.

(2) A zero-area intersection guarantee among bounding poly-

gons in the NIR-Tree, including an analysis and proof of this

guarantee.

(3) Extensive evaluation on both real and synthetic datasets,

demonstrating that the NIR-Tree is 27.8× faster to construct,

2.2× faster to point query, and up to 8% faster to range query

than the R*-Tree.

Section 2 discusses how bounding polygons can eliminate inter-

section area, Section 3 presents the design of the NIR-Tree, Section

4 analyzes the zero-area intersection guarantee, and Section 5 pro-

vides an experimental evaluation of the NIR-Tree compared with

prior approaches. Related work is covered in Section 6, and Section

7 concludes our work. Without loss of generality, we discuss the

two dimensional versions of trees throughout the paper (with the

exception of Section 4) to simplify the presentation.

2 BACKGROUND
Scatter, which degrades search performance in an R-Tree, is caused

by positive intersection area. Insertions induce intersections when

bounding rectangles are expanded to enclose a new point.

When expansion is required, a bounding rectangle that will

contain the new point is selected for expansion based on a cost

function called a metric. Bounding rectangles within the R-Tree

are selected to minimize the amount of additional area required

to enclose a new point. Figure 3a depicts the R-Tree’s metric in

action. A new black point must be enclosed either by the blue

or the yellow rectangle. Since the yellow rectangle requires less

additional area than the blue rectangle to enclose the new point

the yellow rectangle is selected and expanded.

Bounding rectangle intersection is not limited to the R-Tree’s

metric. For example, a simple alternative metric that selects bound-

ing rectangles based on minimum distance to the new point is

depicted in Figure 3b, yet intersection may still occur. For another

example, the R*-Tree [3] considers perimeter of the expanded bound-

ing rectangle (Figure 3a) and additional intersection area (Figure

3c). However, all of these alternatives may cause intersection. The

yellow rectangle in Figure 3 always minimizes the given metric in

each case, yet its selection and expansion invariably causes posi-

tive intersection area. Note that this happens even when the metric
optimizes for intersection area directly.

Figure 3: Expansion causing intersection in three examples.

In contrast with existing R-family trees, when the NIR-Tree’s

bounding rectangles cause intersection, they are replaced with

bounding polygons that do not intersect. NIR-Tree bounding poly-

gons are sets of rectangles that, when treated as a logical whole,

form an axis-aligned polygon like the collection of blue {𝐴1, 𝐴2}
and green {𝐹1, 𝐹2, 𝐹3} rectangles illustrated in Figure 2. By form-

ing bounding polygons from bounding rectangles during insert,
the NIR-Tree achieves zero-area intersections between bounding

polygons (Figure 2) where the R-Tree fails to do so.

3 THE NIR-TREE
In this section, we outline the logical structure of the NIR-Tree

and then describe in detail how the NIR-Tree creates, expands, and

splits bounding polygons (and associated nodes) during insert.
Afterwards, the deletion operation remove is detailed, and the sec-

tion concludes with an explanation of point and range search
operations.

3.1 Structure and Data Layout
The NIR-Tree is structured as a tree of nodes, each associated with

a bounding polygon. Nodes may be one of two types: routing or

leaf. Routing nodes contain a set of branches, where branches are

a pointer to a child node 𝑐ℎ𝑖𝑙𝑑𝑖 and a bounding polygon P𝑖 repre-

senting the geometric region of that child.

Definition 1. A routing node is a tuple

⟨𝑝𝑎𝑟𝑒𝑛𝑡, {⟨𝑐ℎ𝑖𝑙𝑑0,P0⟩, . . . , ⟨𝑐ℎ𝑖𝑙𝑑𝑛,P𝑛⟩}⟩
Leaf nodes contain a set of points, which are optionally asso-

ciated with some value. Both types of nodes contain a pointer to

their parent to enable upwards tree traversal.

Definition 2. A leaf node is a tuple ⟨𝑝𝑎𝑟𝑒𝑛𝑡, {𝑝0, . . . , 𝑝𝑛}⟩



NIR-Tree: A Non-Intersecting R-Tree SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

Figure 4: Insertion is shown with polygon expansion, fragmentation, refinement, and splitting. Maximum Fanout = 3.

As in other multidimensional indexes, nodes must contain no

more branches or data points than some maximum fanout𝑚 as-

signed at tree construction time. Nodes that contain more than𝑚

branches or data points are said to overflow and must be split. In

contrast to nodes, bounding polygons may be composed of as many

—or as few— rectangles as desired.

For notational convenience, we will use 𝑁 .𝑝𝑜𝑙𝑦 to denote the

bounding polygon associated with node 𝑁 . Concretely, if 𝑁 is a

child of parent 𝑃 , denoted 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 , then 𝑁 .𝑝𝑜𝑙𝑦 is the bounding

polygon associated with 𝑁 ’s branch in 𝑃 .

3.2 Updating
Updates define the geometric structure of the NIR-Tree and greatly

influence the performance of other operations. The primary update

operation insert is carried out in two stages: (i) a downward root-

to-leaf sweep expanding bounding polygons along the insertion

path, carried out by chooseLeaf (Algorithm 1), and then (ii) an

upward leaf-to-root sweep along the same path, splitting nodes

whenever they overflow, carried out by adjustTree (Algorithm 2).

We will use Figure 4 as a running example for the steps executed

during insert, described next.

3.2.1 Insert Downward Sweep. Insertion starts with the NIR-Tree

illustrated in Figure 4a. Note that all bounding polygons have zero-

area intersection and every bounding polygon is completely en-

closed by its parent’s bounding polygon. During the downward

sweep, chooseLeaf (Algorithm 1) executes the following process

at every level, starting at the root. First, the stopping condition

must be checked (line 2). If the current node is a leaf, then execu-

tion stops because a leaf has been successfully chosen. Otherwise,

chooseLeaf uses the NIR-Tree’s area minimization metric to select

bounding polygons for expansion on each level (line 6). Bounding

polygons within the NIR-Tree are selected to minimize the amount

of additional area required to enclose a new point (Figure 3b). Every

rectangle within each bounding polygon is evaluated using this

metric, and the bounding polygon with the constituent rectangle

that needs the least additional area is selected. Our metric mini-

mizes additional area because future steps force intersection area

to be zero.

Algorithm 1 chooseLeaf(𝑁 , 𝑝)→ 𝐿

Require: 𝑁 is the root, 𝑝 a new point, 𝐿 is a leaf

1: 𝐿 = 𝑁

2: while 𝐿 is not a leaf do
3: if ∃𝐵 ∈ 𝐿.𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 such that 𝑝 ∈ 𝐵.P then
4: 𝐿 = 𝐵.𝑐ℎ𝑖𝑙𝑑

5: else
6: Let 𝐵 be the branch of 𝐿 for which 𝐵.P requires least

additional area to enclose 𝑝 .

7: Expand 𝐵.P to contain 𝑝

8: for ∀𝐵′ ∈ 𝐿.𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 where 𝐵′.P not disjoint from 𝐵.P
do

9: 𝐵.P = fragment(𝐵.P, 𝐵′.P)
10: end for
11: 𝐵.P = 𝐵.P ∩ 𝐿.P
12: refine(𝐵.P)

13: 𝐿 = 𝐵.𝑐ℎ𝑖𝑙𝑑

14: end if
15: end while
16: return 𝐿

In the best case, the new point already lies within an existing

bounding polygon and no expansion is necessary (line 3). Unfortu-

nately, the new point in Figure 4a is not enclosed by any existing

bounding polygon. Instead, bounding polygon 𝐵 is selected for ex-

pansion because it requires the least additional area to enclose the

new point. Specifically, the rectangle within bounding polygon 𝐵

requiring the least additional area is expanded to enclose the new

point. Since 𝐵 contains only one rectangle, it is trivially selected for

expansion. Now, as concretely observed between bounding poly-

gons 𝐵 and 𝐶 in Figure 4b, expansion may cause sibling bounding

polygons to have positive intersection area.

If expanding a bounding polygon (line 7) causes intersection

area between sibling bounding polygons to become positive, then

the NIR-Tree replaces the selected rectangle within the selected

bounding polygon with a set of new rectangles that do not intersect

its sibling bounding polygons (line 9). We call this process fragmen-
tation because the offending rectangle is replaced with fragments of
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Figure 5: Polygon fragmentation in two dimensions.

itself. We start by discussing fragmentation generally using Figure

5 before applying the process to our running example in Figure 4c.

Since the fragmentation process must generalize to any number

of dimensions, one dimension is processed at a time. In Figure 5a,

bounding polygon P = {𝑅} has expanded and intersects bounding

polygon P ′ = {𝐵}. To aid our analogy, the 𝑦 dimension is consid-

ered first, where a ceiling 𝐶𝑦 and floor 𝐹𝑦 are created by bounding

copies of 𝑅 with the “top” and “bottom” of 𝐵 in𝑦 (Figures 5b and 5c).

The process is then repeated for the 𝑥 dimension where a ceiling

𝐶𝑥 is created; bounded now not only by the “top" and “bottom”

of 𝐵 in 𝑥 , but also all previously created ceilings and floors. The

fully bounded ceiling is depicted in orange in Figures 5d and 5e.

Notice that a floor 𝐹𝑥 is not created for the 𝑥 dimension because

the “bottom” of 𝐵 in 𝑥 lies outside of 𝑅. After all ceilings and floors

in all dimensions have been computed this way, P is set to be these

resulting fragments. That is, P = {𝑅1, 𝑅2, 𝑅3} as depicted in Figure

5f. Each rectangle is fragmented into at most 2 × 𝑑 pieces in R𝑑 .
If the bounding polygon P ′

had been a set of multiple rectangles

{𝐵1, 𝐵2, 𝐵3} instead of a set consisting of a single rectangle {𝐵}, then
the process just described would be executed for each of 𝐵1, 𝐵2, 𝐵3
with any fragments of 𝑅 created during previous iterations.

Applying the above process to our running example, the single

rectangle within 𝐵 is replaced with two rectangles 𝐵1, 𝐵2 (Figure

4c), achieving zero-area intersection with bounding polygon 𝐶 . To

maintain a valid NIR-Tree, we prune away any area of the produced

fragments outside the selected node’s parent bounding polygon

(line 11). Since no area of 𝐵1 or 𝐵2 in Figure 4c is outside of the area

of 𝑅, 𝐵1 and 𝐵2 remain the same.

If as a result of fragmentation or expansion 𝐵’s geometric region

could be enclosed using fewer rectangles, then refine (line 12,

Figure 6) will reduce the number of rectangles in 𝐵 if 𝐵 matches

one or more of the following patterns. First, when a rectangle is

also a line and lies on the perimeter of another rectangle (Figure

6a), the line rectangle is removed. Second, when a rectangle is

enclosed by another rectangle (Figure 6b), the enclosed rectangle is

removed. Finally, when rectangles are organized into a column or

row of constant width or height and have positive intersection area

(Figure 6c), the row or column is replaced with a single rectangle.

In Figure 4c, 𝐵1 and 𝐵2 do not exhibit any of the three patterns so

𝐵 is left unaltered.

Figure 6: Refinement reducing polygon size in rectangles.

After the execution of rectangle fragmentation and refinement

are complete for the current level, insertion moves down the tree

(line 13) into the selected child node (𝐵 in our running example).

Selection, expansion, fragmentation, refinement, and descent are

repeated until there exist no more children to be selected. As a

result, we see in Figure 4 that 𝐸 is expanded to enclose the new

point, and then 𝐸 is fragmented and refined into 𝐸1, 𝐸2, 𝐸3 in Figure

4e so as to eliminate intersection with 𝐹 . Since 𝐸 is a leaf, we place

the new point in 𝐸, and we pass 𝐸 to the second stage of insert,

adjustTree.

Algorithm 2 adjustTree(𝑁 )

Require: 𝑁 is a leaf, ∃𝑚 a maximum fanout

1: while 𝑁 not root do
2: if |𝑁 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 | > 𝑚 or |𝑁 .𝑑𝑎𝑡𝑎 | > 𝑚 then
3: ⟨𝑁𝐿,P𝐿⟩, ⟨𝑁𝑅,P𝑅⟩ = splitNode(𝑁 , partitionNode(𝑁 ))

4: Add ⟨𝑁𝐿,P𝐿⟩ to 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

5: Add ⟨𝑁𝑅,P𝑅⟩ to 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

6: Remove ⟨𝑁,P⟩ from 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

7: end if
8: 𝑁 = 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡

9: end while

3.2.2 Insert Upward Sweep. During execution of the upward sweep,
adjustTree (Algorithm 2) splits overflowing nodes (line 3). If plac-

ing the resulting nodes into the parent (line 4) causes the parent to

overflow, then the split propagates upwards by splitting the parent.

If eventually the root overflows, then a new node will be allocated

and set to be the root. Each of the two nodes created from the old

root become the new root’s children. For example, assume that 𝐸

already contains three points before being selected to contain the

new point in Figure 4d. 𝐸 will then contain 4 points, exceeding the

maximum fanout of𝑚 = 3, and thus must be split.

The splitting of nodes always begins at the leaf level. To split

a node, data and bounding polygons are divided along some line

determined by partitionNode (Algorithm 4). This dividing line

is called a partition line. NIR-Tree partition lines are determined

by computing a 𝑑-dimensional average point called the geometric
median (lines 4, 8). For leaf nodes, the median is the average of data
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Algorithm 3 splitNode(𝑁 , 𝑙 , 𝑑) → ⟨𝑁𝐿,P𝐿⟩, ⟨𝑁𝑅,P𝑅⟩
Require: 𝑁 is a node, 𝑙 ∈ R, 𝑑 a dimension

1: if 𝑁 not root then
2: P𝑟𝑒 𝑓 = 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦

3: else if 𝑁 is leaf then
4: P𝑟𝑒 𝑓 = {𝑅} where 𝑅 is the smallest rectangle enclosing all

points in 𝑁 .𝑑𝑎𝑡𝑎

5: else
6: P𝑟𝑒 𝑓 = {𝑅} where 𝑅 is the smallest rectangle enclosing all

polygons in 𝑁 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

7: end if
8: P𝐿,P𝑅 = left and right side of P𝑟𝑒 𝑓 sliced along 𝑙 in dimension

𝑑

9: 𝑁𝐿 = 𝑁𝑅 = ⟨𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡, ∅⟩
10: Branch 𝑙𝑒 𝑓 𝑡 = ⟨𝑁𝐿,P𝐿⟩
11: Branch 𝑟𝑖𝑔ℎ𝑡 = ⟨𝑁𝑅,P𝑅⟩
12: for 𝑝 ∈ 𝑁 .𝑑𝑎𝑡𝑎 do
13: if 𝑝 ∈ P𝐿 and 𝑝 ∈ P𝑅 then
14: 𝑁𝑡𝑖𝑒 = 𝑁 with smaller of |𝑁𝐿 .𝑑𝑎𝑡𝑎 | and |𝑁𝑅 .𝑑𝑎𝑡𝑎 |
15: 𝑁𝑡𝑖𝑒 = {𝑝} ∪ 𝑁𝑡𝑖𝑒 .𝑑𝑎𝑡𝑎

16: else if 𝑝 ∈ P𝐿 then
17: 𝑁𝐿 .𝑑𝑎𝑡𝑎 = {𝑝} ∪ 𝑁𝐿 .𝑑𝑎𝑡𝑎

18: else if 𝑝 ∈ P𝑟 then
19: 𝑁𝑅 .𝑑𝑎𝑡𝑎 = {𝑝} ∪ 𝑁𝑅 .𝑑𝑎𝑡𝑎

20: end if
21: end for
22: for 𝐵 ∈ 𝑁 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 do
23: if 𝐵.P ∩ P𝐿 = ∅ then
24: 𝑁𝑅 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 = ⟨𝐵.𝑐ℎ𝑖𝑙𝑑, 𝐵.P⟩ ∪ 𝑁𝑅 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

25: 𝐵.𝑐ℎ𝑖𝑙𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑁𝑅

26: else if 𝐵.P ∩ P𝑅 = ∅ then
27: 𝑁𝐿 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 = ⟨𝐵.𝑐ℎ𝑖𝑙𝑑, 𝐵.P⟩ ∪ 𝑁𝐿 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

28: 𝐵.𝑐ℎ𝑖𝑙𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑁𝐿

29: else
30: Branches 𝑏𝐿, 𝑏𝑅 = splitNode(𝐵.𝑐ℎ𝑖𝑙𝑑 , 𝑙 , 𝑑)

31: 𝑁𝐿 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 = ⟨𝑏𝐿 .𝑐ℎ𝑖𝑙𝑑, 𝑏𝐿 .P⟩ ∪ 𝑁𝐿 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

32: 𝑏𝐿 .𝑐ℎ𝑖𝑙𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑁𝐿

33: 𝑁𝑅 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 = ⟨𝑏𝑅 .𝑐ℎ𝑖𝑙𝑑, 𝑏𝑅 .P⟩ ∪ 𝑁𝑅 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

34: 𝑏𝑅 .𝑐ℎ𝑖𝑙𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑁𝑅

35: end if
36: end for
37: refine(P𝐿)

38: refine(P𝑅 )

39: return 𝑏𝐿, 𝑏𝑅

points. For routing nodes, the median is the average of bounding

polygon rectangle corners. These medians determine a possible

partition line in each dimension. For leaf nodes the dimension with

highest sample variance is chosen (line 3). For routing nodes the

dimension whose line divides the fewest bounding polygons is

chosen (line 9). Tangibly, Figure 4f shows the two possible partition

lines 𝑃1 and 𝑃2 of the leaf 𝐸. We will assume that the most variate

dimension is 𝑥 , and thus 𝑃1 is chosen to be the partition line.

With a partition line computed, splitNode (Algorithm 3) divides

the current node along it (line 8). In Figure 4g, 𝐸1 lies entirely to the

Algorithm 4 partitionNode(𝑁 )→ 𝑙, 𝑑

Require: 𝑁 is a node, 𝑙 ∈ R, 𝑑 a dimension

1: if 𝑁 is a leaf then
2: 𝑆 = {(𝑣, 𝑑) | 𝑣 = 𝜎2 (𝑁 .𝑑𝑎𝑡𝑎𝑑 )}
3: 𝐺 =geometricMedian(𝑁 .𝑑𝑎𝑡𝑎)

4: 𝑑 ′ = 𝑠 .𝑑 where 𝑠 ∈ 𝑆 such that 𝑠 .𝑣 is maximum

5: else if 𝑁 is a routing node then
6: 𝑅 =

⋃
𝐵∈𝑁 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 𝐵.P .𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠

7: 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 =
⋃

𝑟 ∈𝑅{𝑟 .𝑙𝑙, 𝑟 .𝑢𝑟 }
8: 𝐺 =geometricMedian(𝑐𝑜𝑟𝑛𝑒𝑟𝑠)

9: 𝑑 ′ = 𝑑 such that the line 𝑎 = 𝐺𝑑 passes through minimum

number of 𝑟 ∈ 𝑅

10: end if
11: return 𝐺𝑑′ , 𝑑 ′

left of the partition line, so it is converted into the bounding polygon

for a new left-hand node 𝐺 . 𝐸2, 𝐸3 are entirely to the right of the

partition line so they remain the bounding polygon for the now

right-hand node 𝐸. Data points are divided based on containment

in left- and right- hand nodes (line 13), 𝐸 and 𝐺 respectively in our

example. If a point lies on the perimeter of both the left- and right-

hand bounding polygons, then the tie is broken by choosing the

node containing fewest data points.

Continuing our example, at the level above 𝐸, 𝐵 receives the

new node 𝐺 (Figure 4f) and overflows, requiring the split of 𝐸

to be propagated by splitting 𝐵. New partition lines 𝑃3 and 𝑃4

are computed as described above; because 𝑃3 splits one bounding

polygon and 𝑃4 splits two, 𝑃3 is used. Both partition lines divide 𝐵’s

child 𝐹 ’s bounding polygon, and 𝐹 is therefore split by a recursive

call to splitNode (line 30). The current partition line is passed to

the recursive call so 𝐹 is split along the same line as its parent, 𝑃3

in Figure 4g. Importantly, using the partition line computed for 𝐵

means 𝐹 is split into 𝐹 and 𝐻 even though it does not exceed the

maximum fanout𝑚. 𝐹 and 𝐻 (Figure 4h) lie entirely on opposite

sides of 𝑃3 and are placed into 𝐵, and 𝐵’s new sibling 𝐼 , respectively.

An identical process follows to split the root.

3.2.3 Deletion. Similarly to insert, the deletion operation remove
also has a forward root-to-leaf and a backward leaf-to-root stage.

In the forward root-to-leaf stage, remove searches for the point to

delete in exactly the same manner as search, which is described

in the next section (Section 3.3). Once the leaf node containing the

requested point is located, deletion proceeds through the second

leaf-to-root stage lazily. In a process almost identical to adjustTree,
deletion walks the tree backward, replacing calls to splitNode
with branch deletions when |𝑁 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 | = 0 or |𝑁 .𝑑𝑎𝑡𝑎 | = 0. No

further reorganization of the tree is required.

3.3 Searching
Finally, we describe the NIR-Tree search (Algorithm 5) opera-

tion that follows from the other operations described above. Point

searches are equivalent to range searches executed with a query

rectangle 𝑅 whose two defining corner points are equal. search
begins at the root of the NIR-Tree and proceeds downward towards

the leaves. At each tree level the query rectangle is tested for inter-

section with the bounding polygon in each of the current node’s
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branches. We determine intersection between the query rectangle

and a bounding polygon (line 3) by computing rectangle-rectangle

intersection between the query and each rectangle comprising the

polygon. Any node whose associated bounding polygon intersects

the query rectangle is recursively searched. Points in leaf nodes

reached by a search are filtered based on containment in the query

rectangle (line 7). Points may be independent or associated with

data items as keys. This choice determines if points themselves

are placed into the output accumulator 𝐴 (line 9) or if the data

associated with the point-keys are placed into 𝐴.

Algorithm 5 search(𝑁 , 𝑅)→ 𝐴

Require: 𝑁 is a node, 𝑅 is a rectangle

1: 𝐴 = ∅
2: for 𝐵 ∈ 𝑁 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 do
3: if 𝑅 ∩ 𝐵.P ≠ ∅ then
4: 𝐴 = 𝐴 ∪ search(𝐵.𝑐ℎ𝑖𝑙𝑑 , 𝑅)

5: end if
6: end for
7: for 𝑝 ∈ 𝑁 .𝑑𝑎𝑡𝑎 do
8: if 𝑝 ∈ 𝑅 then
9: 𝐴 = 𝐴 ∪ {𝑝}
10: end if
11: end for
12: return 𝐴

4 NIR-TREE ANALYSIS
In this section, we provide definitions of the relevant terms used

throughout the paper. We then formally analyze and prove the

zero-area intersection guarantee among bounding polygons in the

NIR-Tree.

4.1 Geometric Primitives
It is assumed that the underlying space discussed is R𝑑 , thus, we
define a point in the obvious way (see Figure 7a for an example):

Definition 3. A point 𝑝 = (𝑝0, . . . , 𝑝𝑑 ) ∈ R𝑑 .
While points have no obvious total sort order we use the related

concept called dominance:

Definition 4. A point 𝑝 ′ dominates a point 𝑝 , denoted 𝑝 ≤ 𝑝 ′,
if and only if ∀𝑖 , 𝑝𝑖 ≤ 𝑝 ′

𝑖
.

Together, points and the dominance relation enable the spec-

ification of rectangles. Note that rectangles, as defined here, are

always axis-aligned. Further, observe that a rectangle is defined

with two characteristic points, 𝑙𝑙 and 𝑢𝑟 , representing the lower left

and upper right respectively (see Figure 7b for an example):

Definition 5. A rectangle 𝑅 = {𝑙𝑙, 𝑢𝑟 ∈ R𝑑 | 𝑙𝑙 ≤ 𝑢𝑟 } with
corner points 𝑙𝑙 and 𝑢𝑟 .

Definition 6. A point 𝑝 is contained by a rectangle 𝑅, denoted
𝑝 ∈ 𝑅, if and only if 𝑅.𝑙𝑙 ≤ 𝑝 ≤ 𝑅.𝑢𝑟 .

From a collection of rectangles, polygons, and what it means

for a point to be in a polygon, are defined. Again observe that

since rectangles are axis-aligned, polygons will also be axis-aligned

(Figure 7c).

Figure 7: Definitional examples.

Definition 7. A polygon is a set of𝑛 rectanglesP = {𝑅0, . . . , 𝑅𝑛}.

Definition 8. A point 𝑝 is contained by a polygon P, denoted
𝑝 ∈ P, if and only if ∃𝑅 ∈ P such that 𝑝 ∈ 𝑅.

4.2 Geometric Relationships
We now explicitly define how geometric primitives interact through

intersection, perimeter, and disjointness.

Definition 9. The intersection of rectangles 𝑅 and 𝑅′ is de-
fined as 𝑅 ∩ 𝑅′ = {min(𝑅.𝑙𝑙, 𝑅′.𝑙𝑙),max(𝑅.𝑢𝑟, 𝑅′.𝑢𝑟 )}. Where max
is the point that result from choosing the coordinate-by-coordinate
maximum of the inputs. Similarly for min.

Since it is useful to talk about points on the “edge”, or “border”,

or “perimeter” of a rectangle, the concept of perimeter is defined

next.

Definition 10. A point 𝑝 is said to be on the perimeter of a
rectangle 𝑅 if and only if ∃𝑑 such that 𝑝𝑑 = 𝑅.𝑙𝑙𝑑 or 𝑝𝑑 = 𝑅.𝑢𝑟𝑑 .

Polygons that intersect may have area (volume, hyper-volume)

in common that is zero or greater. To distinguish between zero-area

and positive-area intersection, we introduce the idea of disjoint

polygons. If polygons are disjoint then their area of intersection is

zero. Visual examples of disjointness and intersection are found in

Figures 7d and 7e respectively.

Definition 11. The intersection of polygons

P ∩ P ′ =
⋃

𝑅∈P,𝑅′∈P′
{𝑅 ∩ 𝑅′}

Definition 12. Rectangles 𝑅 and 𝑅′ are disjoint if and only if:
(1) 𝑅 ∩ 𝑅′ = ∅ or
(2) ∀𝑟 ∈ 𝑅 ∩ 𝑅′, 𝑟 on the perimeter of 𝑅 and 𝑅′

Definition 13. Two polygons P and P ′ are disjoint if and only
if ∀𝑅 ∈ P and ∀𝑅′ ∈ P ′, 𝑅 and 𝑅′ are disjoint.

Rectangle fragmentation is central to insertion (Algorithm 1).

Described in Section 3.2 and illustrated in Figure 5, we now give a

precise definition for the concept of rectangle-rectangle fragmenta-

tion and polygon-polygon fragmentation.

Definition 14. A rectangle fragmented by a rectangle,
fragment(𝑅, 𝑅′) = {𝐶0, 𝐹0, . . . ,𝐶𝑑 , 𝐹𝑑 } where ceilings 𝐶𝑖 and floors
𝐹𝑖 are defined, with 𝑗 ∈ [0, 𝑑], as follows:

(1) 𝐶𝑖 .𝑙𝑙 𝑗 =


max(𝐶0 .𝑢𝑟0, . . . ,𝐶𝑖−1 .𝑢𝑟0) 𝑗 < 𝑖

𝑅′.𝑢𝑟𝑖 𝑗 = 𝑖

𝑅.𝑙𝑙 𝑗 𝑗 > 𝑖

(2) 𝐶𝑖 .𝑢𝑟 𝑗 =

{
min(𝐶0 .𝑙𝑙0, . . . ,𝐶𝑖−1 .𝑙𝑙0) 𝑗 < 𝑖

𝑅.𝑢𝑟 𝑗 𝑗 ≥ 𝑖
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(3) 𝐹𝑖 .𝑙𝑙 obtained similarly by replacing 𝑢𝑟 → 𝑙𝑙 in (2).
(4) 𝐹𝑖 .𝑢𝑟 obtained similarly by replacing 𝑙𝑙 → 𝑢𝑟 in (1).
(5) ∀𝑖,𝐶𝑖 , 𝐹𝑖 are rectangles.
Polygon fragmentation is the pairwise generalization of rectan-

gle fragmentation.

Definition 15. A polygon fragmented by a polygon,

fragment(P,P ′) =
⋃

𝑅∈P,𝑅′∈P′
fragment(𝑅, 𝑅′)

4.3 Zero-Area Intersection Guarantee
Having defined geometric primitives and the relationships between

them, we define the invariant properties for the NIR-Tree, followed

by a proof that the NIR-Tree respects these properties before and

after the execution of any operation. The NIR-Tree’s zero-area

intersection guarantee is exactly Definition 16 property (2).
Definition 16. The invariant, denoted 𝐼𝑉 , for a NIR-Tree𝑇 and

∀𝑁 ∈ 𝑇 consists of:
(1) 𝑁 .𝑝𝑜𝑙𝑦 ⊆ 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦 or ∀𝑝 ∈ 𝑁 .𝑑𝑎𝑡𝑎, 𝑝 ∈ 𝑁 .𝑝𝑜𝑙𝑦

(2) ∀𝑁 ′ ≠ 𝑁 at height ℎ, 𝑁 ′.𝑝𝑜𝑙𝑦 and 𝑁 .𝑝𝑜𝑙𝑦 are disjoint

These invariant properties of the NIR-Tree ensure that children

are entirely enclosed by their parent, and that sibling nodes have

zero-area intersections. These properties are shown to hold by the

following theorem.

Theorem 1. For any NIR-Tree𝑇 , if𝑇 satisfies 𝐼𝑉 before the execu-
tion of insert, search, or delete then𝑇 also satisfies 𝐼𝑉 afterwards.

Proof. Observe that as described above, neither search nor

delete may affect 𝐼𝑉 since neither alters the bounding polygon of

any node. Further, note that Algorithm 1 lines 7-11 and Algorithm 3

are the only operations in insertwhich alter bounding polygons. A
discussion of refine is omitted since it simply removes redundant

rectangles and hence does not alter the logic of this proof.

Observe that Algorithm 1 is executed first and then Algorithm

3 is executed second as part of Algorithm 2. Thus it will suffice to

show that, at the conclusion of Algorithm 1, 𝑇 satisfies 𝐼𝑉 (1) and
𝐼𝑉 (2) and subsequently that at the conclusion of Algorithm 3, 𝑇

satisfies 𝐼𝑉 (1) and 𝐼𝑉 (2).
First, let us consider 𝐼𝑉 (1). On inspection, Algorithm 1 explicitly

satisfies 𝐼𝑉 (1) by intersecting 𝐵.P with 𝐵.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦 and the end

of execution on line 11.

Second, let us consider 𝐼𝑉 (2). Let 𝑁 = 𝐵.𝑐ℎ𝑖𝑙𝑑 from Algorithm

1 line 6. Line 7 possibly causes 𝑁 .𝑝𝑜𝑙𝑦 at height ℎ to violate 𝐼𝑉 (2).
However, suppose 𝑆 is any sibling of 𝑁 . By construction of the

NIR-Tree, 𝑆 is at the same height ℎ as 𝑁 . If, after execution of

line 7, 𝑆.𝑝𝑜𝑙𝑦 is not disjoint from 𝑁 .𝑝𝑜𝑙𝑦 then by definition of

rectangle fragmentation 𝑆.𝑝𝑜𝑙𝑦 is disjoint from 𝑁 .𝑝𝑜𝑙𝑦 after ex-

ecution of line 9. Now suppose 𝑆 is any node at height ℎ in 𝑇 .

Since Algorithm 1 lines 7-11 do not alter 𝑆.𝑝𝑎𝑟𝑒𝑛𝑡 or 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 ,

we know that 𝑆.𝑝𝑜𝑙𝑦 ⊆ 𝑆.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦 and that 𝑆.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦 is

disjoint from 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦. It therefore follows that after line 11,

since 𝑁 .𝑝𝑜𝑙𝑦 ⊆ 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦, 𝑁 .𝑝𝑜𝑙𝑦 is disjoint from 𝑆.𝑝𝑜𝑙𝑦 by

definition of subset and disjointness. Thus 𝐼𝑉 (1) and 𝐼𝑉 (2) are
satisfied for any 𝑁 in 𝑇 after Algorithm 1 is executed.

To complete the proof, we show that 𝐼𝑉 (1) and 𝐼𝑉 (2) hold for

Algorithm 3 if 𝐼𝑉 (1) and 𝐼𝑉 (2) hold before its execution.

First, let us consider 𝐼𝑉 (1). By definition of P𝐿 and P𝑅 at Al-

gorithm 3 line 8, ∀𝑅𝐿 ∈ P𝐿 , 𝑅𝐿 .𝑙𝑙𝑑 ≤ 𝑙 and 𝑅𝐿 .𝑢𝑟𝑑 ≤ 𝑙 . Moreover,

∀𝑅𝑅 ∈ P𝑅 , 𝑅𝑅 .𝑙𝑙𝑑 ≥ 𝑙 and 𝑅𝑅 .𝑢𝑟𝑑 ≥ 𝑙 . Additionally, P𝐿 ⊆ P𝑟𝑒 𝑓 and

P𝑅 ⊆ P𝑟𝑒 𝑓 . Therefore, 𝑁𝐿 .𝑝𝑜𝑙𝑦 = P𝐿 ⊆ 𝑁𝐿 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦 = P𝑟𝑒 𝑓

and 𝑁𝑅 .𝑝𝑜𝑙𝑦 = P𝑅 ⊆ 𝑁𝑅 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦 = P𝑟𝑒 𝑓 since 𝑁𝐿 .𝑝𝑎𝑟𝑒𝑛𝑡 =

𝑁𝑅 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .

If 𝑁 is a leaf then we must show that ∀𝑝 ∈ 𝑁𝐿 .𝑑𝑎𝑡𝑎, 𝑝 ∈ 𝑁𝐿 .𝑝𝑜𝑙𝑦.

When 𝑁 is leaf it suffices to consider only Algorithm 3 lines 12 — 21.

Observe that 𝑁𝐿 .𝑑𝑎𝑡𝑎 = ∅ by construction at line 9. In conjunction

with the definition at line 9, lines 16 and 18 yield 𝑝 ∈ 𝑁𝐿 ⇋ 𝑝 ∈
P𝐿 = 𝑁𝐿 .𝑝𝑜𝑙𝑦. Without loss of generality, the same argument may

be applied to 𝑝 ∈ 𝑁𝑅 .𝑑𝑎𝑡𝑎 and 𝑁𝑅 .𝑝𝑜𝑙𝑦 = P𝑅 . 𝐼𝑉 (1) is therefore
satisfied when 𝑁 is a leaf.

If 𝑁 is not a leaf then we must show that ∀𝐵𝐿 ∈ 𝑁𝐿 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 ,

it is the case that 𝐵𝐿 .P ⊆ P𝐿 upon conclusion of the execution

of lines 22 — 36. If 𝐵𝐿 was placed in 𝑁𝐿 at line 27 it is clear that

𝐵𝐿 .P ⊆ P𝐿 since 𝐵𝐿 .P ∩ P𝑅 = ∅ and it is certainly the case

that 𝐵𝐿 .P ⊆ P𝑟𝑒 𝑓 by our hypothesis that 𝐼𝑉 (1) is satisfied before

execution. Otherwise, 𝐵 placed in 𝑁𝐿 at line 31 implies 𝐵𝐿 .P was

sliced during the recursive call at line 30 along 𝑙 in 𝑑 since 𝑙 and

𝑑 are passed to the recursive call unchanged. Thus, ∀𝑅 ∈ 𝐵𝐿 .P,

𝑅.𝑙𝑙𝑑 ≤ 𝑙 ⇒ 𝐵𝐿 .P ⊆ P𝐿 as desired. Without loss of generality,

the same argument made here may be applied ∀𝐵 ∈ 𝑁𝑅 .𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

with respect to P𝑅 . 𝐼𝑉 (1) is therefore satisfied at the conclusion of

Algorithm 3 for all nodes 𝑁 .

Second, let us consider 𝐼𝑉 (2). Again by construction of P𝐿 and

P𝑅 at Algorithm 3 line 8, we have that ∀𝑝 ∈ P𝐿 ∩ P𝑅, 𝑝𝑑 = 𝑙 and

therefore P𝐿 and P𝑅 are disjoint. Since P𝐿 ⊆ P𝑟𝑒 𝑓 and P𝑅 ⊆ P𝑟𝑒 𝑓

by construction, we have that 𝑁𝐿 .𝑝𝑜𝑙𝑦 = P𝐿 and 𝑁𝑅 .𝑝𝑜𝑙𝑦 = P𝑅 are

disjoint from all 𝑆.𝑝𝑜𝑙𝑦 at height ℎ because 𝑁 .𝑝𝑜𝑙𝑦 = P𝑟𝑒 𝑓 is dis-

joint from all 𝑆.𝑝𝑜𝑙𝑦 at heightℎ by our hypothesis that 𝐼𝑉 (2) is satis-
fied before execution. The same argument may be applied to the re-

cursive call at line 30 since 𝑙 and 𝑑 are passed to 𝐵.𝑐ℎ𝑖𝑙𝑑 unchanged.

The transitivity of subset implies 𝑏𝐿 .P ⊆ P𝐿 ⊆ 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦 and

𝑏𝑅 .P ⊆ P𝑅 ⊆ 𝑁 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑜𝑙𝑦 as desired. The transitivity of subset

is not limited and so this argument may be applied recursively as

many times as necessary to satisfy 𝐼𝑉 (2). With the execution of

Algorithm 3 thus complete, 𝐼𝑉 (2) is satisfied in all cases.

Therefore we have shown that all operations on a valid NIR-Tree

𝑇 satisfying 𝐼𝑉 result in a tree satisfying 𝐼𝑉 (1) and 𝐼𝑉 (2), thus
satisfying 𝐼𝑉 . □

5 PERFORMANCE EVALUATION
In this section, we experimentally demonstrate the performance

advantage of the NIR-Tree over the R-Tree [11], R
+
-Tree [22], and

R*-Tree [3], in terms of search and insertion efficiency using both

real and synthetic datasets.

5.1 Experimental Setup
We first describe our experimental setup and methodology, includ-

ing machine configuration.

5.1.1 Software. We compared the NIR-Tree against our implemen-

tations of the R-Tree [11], R
+
-Tree [22], and R*-Tree [3]. The R

+
-Tree

was selected for comparison because of its similar partition line and

recursive downward split mechanism. The R*-Tree was selected

for comparison due to its popularity and widely accepted baseline
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status. All trees compared against resided entirely in main mem-

ory during experiments. We empirically determined the maximum

fanout𝑚 of all trees so as to provide the best point and range query

performance (𝑚 = 50 for the NIR-Tree, 𝑚 = 100 for all others).

Trees that required a minimum fanout were configured to use half

the maximum fanout.

5.1.2 Hardware. We evaluated trees on a machine with 4× Intel

E5-4620v2 2.60GHz CPUs (32 physical cores and 20MB L3 cache),

256GB of physical memory, and a 400GB Intel S3700 SSD.

5.1.3 Methodology. We constructed each tree by sequentially in-

serting all of the points in each dataset. Point and range queries were

executed on the constructed tree. Statistics such as tree memory

usage and tree height were gathered at the end of each experiment.

Every point in each dataset was queried in the tree exactly once,

and 1000 or more range queries were executed depending on the

dataset. Operation (e.g., search) times reported are averages over

five independent runs. 95% confidence intervals are shown as error

bars (at times barely visible) around each averaged operation time.

5.2 Datasets and Queries
We describe next the six datasets and associated queries used to

evaluate the trees.

5.2.1 Datasets. Each of the four trees were constructed using each

of the following datasets:

• California: A subset of the larger TIGER/Line dataset map-

ping the United States [4, 5]. The data is a mixture of points

and rectangles expressed as doublets or quartets of GPS coor-

dinates. Due to the mixed nature of the data, we represented

rectangles by their centroids. Dimensions = 2. Size = 1.8M

points.

• Biological: A large real collection of points representing

biological features [4, 5]. Points cluster in a pyramid-shaped

region between the X and Y axes with a distinct break before

clustering in two sheets along the X and Y axes. Dimensions

= 3. Size = 11.9M points.

• Forest: Real data describing a 30× 30m section of forest, col-

lected by the United States Forestry Service [4, 5]. Attributes

describing elevation, distance to water, fire, and roadways

are indexed. Data is skewed towards water features and di-

rectional stream patterns are present. Dimensions = 5. Size

= 581K points.

• Canada Roads: A large collection of polygons representing

the road network of Canada created by Statistics Canada [7].

All the corners of each polygon were indexed due to their

axis-unaligned nature. Data is densest around population

centers in the South West and South East, and sparser in the

Mid-West and North. Dimensions = 2. Size = 19.4M points.

• Gaia: A subset of the stars observed by the European Space

Agency’s Gaia mission to map our galaxy [6, 8]. All the

stars within a square portion of the sky, anchored by the

star Proxima Centauri, are indexed. Points describing each

star consist of two coordinates placing each star in the sky,

using degrees, and a third attribute measuring distance from

the Sun in parsecs. Data is dense along the galactic plane,

becoming sparser above and below the plane. Dimensions =

3. Size = 18M points.

• Uniform: A synthetic collection of points distributed in the

unit square. Points are generated by choosing each coor-

dinate from the range [0.0, 1.0] with uniform probability.

Dimensions = 2. Size = 10M points.

5.2.2 Queries. All datasets were queried using rectangles specified
in advance of the experiment. Each query rectangle contained about

1000 points. Query rectangles for California, Biological, and Forest

data were provided by the benchmark [4, 5]. Query rectangles for

Canada Roads, Gaia, and Uniform data were generated prior to

experimentation and in a manner analogous to query rectangles

provided by the California, Biological, and Forest benchmarks to

ensure uniform comparison. In particular, Uniform query rectangles

were generated by selecting a random point in the unit square to

be 𝑙𝑙 of the query rectangle (see Definition 5) and then adding a

value 𝛼 to each coordinate of 𝑙𝑙 to get 𝑢𝑟 . 𝛼 was selected so that

the resulting query rectangle contained 1000 points in expectation.

Query rectangles for Canada Roads and Gaia data were generated

by iteratively increasing 5000 small rectangles centered around

5000 randomly selected points until each rectangle contained about

1000 points.

5.3 Results
We present and analyze the point query and range query times as

well as insertion times for the NIR-Tree and its counterparts. We

find that among the trees that provide consistently competitive

range queries, the NIR-Tree is superior given its categorically faster

point queries and insert operations.

5.3.1 PointQuery Performance. Recall from Section 1 that the NIR-

Tree’s scatter reduction is highly efficient and occurs only when a

point lies on the perimeter of two bounding polygons. Scatter in

the NIR-Tree was extremely rare; no point query in the NIR-Tree

ever accessed more than 7 nodes, in contrast to the R
+
-Tree where,

for example, hundreds of thousands of point queries accessed 14

or more nodes on the Canada Roads dataset. On all datasets, the

NIR-Tree executed 99% or more point queries optimally, clearly

outperforming the second place R
+
-Tree which executed on average

65% of point queries optimally.

Efficient point queries allow the NIR-Tree to out-compete every

tree on every dataset with the sole exception of the R
+
-Tree on the

Biological dataset. The R*-Tree, popular for its strong range query

performance, is outperformed by the NIR-Tree by an average factor

of 2.2×. Additionally, the R*-Tree is usually also outperformed

by the R
+
-Tree. The NIR-Tree saw its closest competition from

the R
+
-Tree instead of the R*-Tree, because the R

+
-Tree uses a

similar partition-line oriented split to reduce intersection and thus

scatter. The R
+
-Tree enjoyed an advantage over the NIR-Tree on

the Biological dataset by being one level shorter. R
+
-Tree height

was not due to better node utilization, but rather to a maximum

fanout twice that of the NIR-Tree. Maximum fanout is set relatively

low for the NIR-Tree to keep bounding polygons simple. In general,

larger fanouts in the NIR-Tree require more complex bounding

because they must remain disjoint, yet enclose more children. In

aggregate, the R
+
-Tree was slightly faster than the NIR-Tree on the
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Figure 8: Point query times (log scale).

Biological dataset through a combination of mild scatter reduction,

and consistently requiring one less randommemory access for point

queries. Despite this, the NIR-Tree used 24% less time than the R
+
-

Tree to perform all point containment operations, and executed

20% more queries optimally. These advantages for the NIR-Tree are

evident in all five other datasets.

On all datasets the NIR-Tree’s competitors were ordered in the

same fashion: the R
+
-Tree was closest, followed by the R*-Tree, and

then by the R-Tree. The difference between R
+
-Tree and R*-Tree

point search times decreased to its lowest point on the California

dataset.

5.3.2 Update Performance. Existingmultidimensional indexes trade

off insertion time for query performance [1, 3, 14, 16, 17]. Breaking

from this norm, the NIR-Tree improves insertion time without com-

promising query times. For example, the NIR-Tree is significantly

faster to construct than the R*-Tree while having better point query

performance (Section 5.3.1), and equivalent range query perfor-

mance (Section 5.3.3). For insertions, the R*-Tree consumes, on

average, a substantial 27.8× the insertion time of the NIR-Tree.

By allowing leaf or routing nodes to be re-inserted once on each

level, the R*-Tree induces a significant amount of tree restructur-

ing during insertion, resulting in a denser tree (Section 5.3.4) and

very high insertion times. The NIR-Tree delivers a large advantage

because it avoids expensive re-insertions. In fact, the R*-Tree runs

in𝑂 (𝑛2) time if there are re-insertions [3]. By leveraging bounding

polygons instead of re-insertions to reduce query scatter, the cost of

NIR-Tree insertions are kept small. These insertion strategies give

rise to the differences between the NIR-Tree and the R*-Tree in Fig-

ure 9. Other trees use neither re-insertions nor bounding polygons,

thereby trading-off insertion time for query performance.

Among all trees, the R*-Tree requires the most amount of time

to insert, followed by the R-Tree, followed by the NIR-Tree, and

then the R
+
-Tree. This ordering is prevalent on all datasets. As

described above, the NIR-Tree is much faster than the R*-Tree due

to quadratic operations present within re-inserts. Next, the R-Tree,

using an 𝑂 (𝑛2) split algorithm but no re-insertions, still under-

performs the NIR-Tree whenever the average size of a bounding

polygon is below 3. The NIR-Tree’s superior insertion performance

is reflected by its average insertion time speedup of 1.3× the R-Tree.

The R
+
-Tree is 81× faster than the R*-Tree and fastest of all the

trees for two reasons. First, the R
+
-Tree’s split algorithm cost metric

is computed using bounding rectangles instead of the more flexible

bounding polygons of the NIR-Tree, yielding faster splits. Second,

by creating stripes and repeatedly splitting within them along the

same dimension, the R
+
-Tree executes fewer downward splits than

the NIR-Tree (see Algorithm 3). Stripes, though computed quickly,

are generally a poor bounding shape and impose a significant cost

during range searches. Long, thin rectangles provide unsatisfactory

range query performance (Section 5.3.3) because range queries

extend across many stripes and waste time filtering data at opposite

ends of the stripes. For example, in the California dataset, the NIR-

Tree has a rectangular side length ratio 7:29, while the R
+
-Tree

stripes have an extreme side length ratio of 3:1226. As expected,

its range query performance is the least desirable among all trees

tested. Overall, no tree with faster construction time than the NIR-

Tree outperformed the NIR-Tree on range queries, as we discuss in

the next section.

Table 1: Tree size by dataset measured in nodes.

Dataset R-Tree R
+
-Tree R*-Tree NIR-Tree

California 30,526 30,386 29,843 75,298

Biological 187,744 198,944 167,306 553,831

Forest 9,222 12,599 8,334 31,945

Canada Roads 310,016 310,219 281,370 699,203

Gaia 286,303 267,943 258,304 709,576

Uniform 2d 155,943 146,131 143,639 325,449

5.3.3 Range Query Performance. Across different datasets and di-

mensions, range queries within the NIR-Tree performed at parity

with its fastest competitor, the R*-Tree (Figure 10). On skewed

datasets, the R*-Tree and R
+
-Tree were the NIR-Tree’s closest com-

petitors. On all other datasets, the R-Tree and R*-Tree were the

NIR-Tree’s closest competitors. The NIR-Tree and R*-Tree range

queries were essentially equivalent, the NIR-Tree being within

8% of the R*-Tree on average, and outperforming the R*-Tree on

the Canada Roads dataset. Examining range query performance

through the lens of dataset skew, we see that the gap between the

R*-Tree and the NIR-Tree is largest on the highly skewed Forest and

Biological datasets, and smallest on map-style datasets (California,

Canada Roads, Gaia), which exhibit less skew.

Range queries within the NIR-Tree and R*-Tree accessed a similar

number of nodes on map-style datasets as well as executing in

a similar amount of time. For example, California dataset range

queries accessed an average of 61 nodes in the NIR-Tree while

accessing an average of 52 nodes in the R*-Tree. Despite indexing
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Figure 9: Insertion times (log scale).

Figure 10: Range query times (log scale).

with more complicated bounding polygons, the NIR-Tree spent 14%

less time than the R*-Tree testing intersection between bounding

objects and the query rectangle, since the dense nodes of the R*-

Tree required manymore intersection tests. The similar intersection

test time, and similar node access time meant the NIR-Tree and

R*-Tree performed similarly across these datasets.

In contrast to map-style datasets, the NIR-Tree accessed more

nodes than the R*-Tree on the highly skewed Forest and Biological

datasets. For example, range queries on the NIR-Tree indexing

Biological data accessed an average of 124 nodes, while accessing

an average of 73 nodes in the R*-Tree. Higher node accesses are

expected since theNIR-Tree indexed using half themaximum fanout

of the R*-Tree (Section 5.3.4). However, with skew increasing the

average number of rectangles per bounding polygon, 4.78 vs. 2.68

for the Gaia dataset, the NIR-Tree and R*-Tree spent an identical

total time of 2.13s performing intersection tests, resulting in the

NIR-Tree not making up for higher node accesses.

Among other trees, dataset distribution and higher dimensional-

ity explain the R-Tree and R
+
-Tree’s relative performance inversion

on Biological and Forest datasets. Higher dimension datasets ame-

liorated the R
+
-Tree’s bounding rectangles’ extreme side length

ratio because they became long and thin in only one dimension

while other dimensions became more rectangular. Consider the For-

est dataset: R
+
-Tree bounding rectangles had an average side length

ratio of 30:112:31:113:413, which while extreme in the 30:413 case,

exhibit much better relative ratios e.g., 30:31 and 30:112, for other

cases. Additionally, the roughly pyramid-shaped data distributions

of Biological and Forest meant striping did not always cause range

queries to filter points on the opposite extreme of the space.

5.3.4 Tree Structure. The unbounded complexity of NIR-Tree poly-

gons may mislead one to assume that the memory usage of the

Table 2: Polygon sizes in the NIR-Tree.

Dataset Total Size of All Polygons Avg. Polygon Size

California 215,256 2.86

Biological 2,649,392 4.78

Forest 194,158 6.08

Canada Roads 1,254,812 1.79

Gaia 1,902,288 2.68

Uniform 2d 446,566 1.37

NIR-Tree is untenable. Our analysis of tree structures show these

concerns to be unfounded. Across all experiments, the average

NIR-Tree polygon was formed using only 3.3 rectangles. Even in

extremely skewed datasets, such as Biological and Forest, the av-

erage polygon was still formed using an average of 5.4 rectangles

(Table 2). As the number of dimensions rise, it is only reasonable

that more rectangles are required to index any given node, because

there are effectively more neighbours which must be avoided.

To index without intersection, the NIR-Tree uses only about 20%

more memory compared to the space-efficient R*-Tree (Table 3).

Memory overhead in the NIR-Tree is largely accounted for by the

storing of bounding polygons. For example, the index for California

stores 3.28MB of bounding polygons, Biological stores 40.42MB,

and Gaia stores 43.5MB. Competitor trees contained no more than

1.2× the number of nodes of any other (Table 1), aligning with

their memory consumption pattern (Table 3). The NIR-Tree’s nodes

had a maximum of 50 children while competitor tree nodes had

a maximum of 100 children. While the NIR-Tree is expected to

use about 2× the number of nodes used by any of its competitor

trees, the slightly higher observed factor of 2.6× for the NIR-Tree is
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Table 3: Memory usage (MB).

Dataset R-Tree R
+
-Tree R*-Tree NIR-Tree

California 32 31 31 38

Biological 300 296 290 349

Forest 23 24 23 27

Canada Roads 335 328 319 386

Gaia 455 446 439 516

Uniform 2d 172 168 164 192

accounted for by the downward splits during Algorithm 3, which

keep the NIR-Tree intersection free. All trees had similar heights,

indexing datasets in 4 levels with the NIR-Tree occasionally using

5 levels for the larger datasets.

6 RELATEDWORK
The field of multidimensional indexing is well studied [21]. We

divide prior approaches into two categories: data partitioning and

space partitioning, and contrast each with the NIR-Tree.

6.1 Data Partitioning
Data partitioning indexes cluster data and normally recursively

form trees from these groups of data. Data partitioning indexes are

a popular type of multidimensional index implemented in main-

stream databases such as PostgreSQL [10] and MySQL [20]. The

NIR-Tree is closely related to the works in this class of partitioning.

The R-Tree [11] is a multidimensional extension of the B-Tree [2].

Rectangular data objects are recursively grouped into rectangular

regions to create a balanced tree. Unlike one dimensional B-Tree

ranges, R-Tree regions may intersect because their volumetric data
objects take up space and may intersect. Unlike an R-Tree, the NIR-

Tree considers points rather than volumetric objects, exploiting the

infinitesimal nature of points to eliminate positive area intersection.

The R*-Tree [3] improves upon the R-Tree by re-inserting the

data or children of overflowing nodes. Re-insertion creates a re-

structuring effect larger than node splits alone, usually resulting

in denser, better organized trees. The R*-Tree also identifies four

axes of optimization along which data partitioning trees may move.

These axes are: area covered by bounding objects, area of intersec-
tion between bounding objects, and perimeter of bounding objects

should all be minimized while at the same time nodes should be

dense and have high utilization. The RR*-Tree [5] matches the

performance of the R*-Tree by considering one additional fac-

tor during splits and chooseSubtree. When selecting a leaf in

chooseSubtree, the RR*-Tree optimizes for minimum area, and

minimum perimeter when the dimensionality of the data is high.

An extra factor, considered during node splits, is the logical number

of children on each side of the split. The RR*-Tree seeks to bal-

ance splits logically while also balancing the splits geometrically.

The NIR-Tree balances leaf splits logically and geometrically while

totally eliminating intersection.

Optimizing for intersection area, the NIR-Tree and R
+
-Tree [22]

both seek to eliminate intersection. The R
+
-Tree lessens intersection

by splitting nodes along a partition line. Any bounding objects lying

across the partition line are recursively split. Volumetric data lying

across the partition line cannot be split and are instead duplicated

to both sides of the split. While the two resulting nodes from a split

are disjoint in an R
+
-Tree, the tree still creates intersection when

expanding bounding rectangles during insertion. By contrast, the

NIR-Tree uses rectangle fragmentation in addition to partition lines

to guarantee disjoint regions on insert.

The Hilbert R-Tree [14] uses a metric predicated on the Hilbert

space-filling curve. Instead of selecting bounding rectangles with

least additional area, or least intersection area (see Figure 3), the

Hilbert R-Tree selects bounding rectangles whose centroids have

a Hilbert number closest to the point of interest’s Hilbert number.

However, computing such numbers requires prior knowledge of

the extreme values in a dataset and does not consider intersection

area between bounding rectangles. The result is a clustering effect,

because Hilbert numbers exhibit an order that approximates spatial

nearness.

Bulk loading data into an R-Tree has been investigated by the

Priority R-Tree [1] that requires the dataset to be known entirely in

advance. Then, the Priority R-Tree creates a maximally dense tree

with optimal range query disk accesses. However, these properties

do not hold if further insertions are executed after bulk loading.

Some trees discard axis-alignment constraints by using arbi-

trarily oriented bounding rectangles. SICC indexes [24] remove

axis-alignment constrains. They group points by temporal locality

of insertion, computing a new axis through each group using incre-

mental principal component analysis (roughly analogous to a line of

best fit), and fitting a bounding rectangle around the points oriented

along this new axis. While incremental analysis and construction is

suitable for observational data, it cannot be applied to the general

point data indexed by other indexes such as the NIR-Tree.

𝑘-discrete oriented polygon (𝑘-DOP) hierarchies [15], P-Trees

[13], and clipped bounding rectangles [23] all illustrate arbitrarily-

shaped bounding objects. Complex polygons achieve low coverage

and intersection area, but quickly become computationally un-

wieldy for dimensions greater than three. 𝑘-DOP hierarchies define

new shapes by having up to 𝑘 axes in 𝑑 dimensional space where

𝑘 >= 𝑑 . However, the complexity of shapes is limited since 𝑘 is fixed

in advance, whereas NIR-Tree polygons are as complex as required

by the data. P-Trees on the other hand allow for any number of

additional dimensions to be introduced. As a result, polygons in the

P-Tree may become arbitrarily complex leading to slowdowns as a

result of excessive range checks. By contrast, NIR-Tree polygons

are constantly culled during insertion (Algorithm 3), resulting in

polygons of small size (Table 2).

Recent work on clipping bounding rectangles [23] removes dead

space from the corners of bounding rectangles. Using a close ana-

log of skylines, called stairlines, clipped bounding rectangles cre-

ate bounding polygons (Definition 7) which tightly enclose their

children. Different from clipped bounding rectangles, NIR-Tree

bounding polygons are created based on siblings.

6.2 Space Partitioning
An alternativemultidimensional indexing approach partitions space

rather than data to implicitly form groups. Grid files [18] are a

popular space partitioning option [10, 12, 20]. These files divide

space into disjoint variable size cells on a grid. Each cell represents
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a page on disk. Cells are split on overflow, and merged on underflow.

Grid files maintain a directory mapping cells to pages. The most

significant drawbacks of this approach are the rapid growth of the

directory size when the data is sparse and the difficulty of choosing

grid granularity appropriately.

Recent approaches build on the grid file by replacing themapping

directorywithmachine learningmodels. In addition to replacing the

mapping directory, Flood [17] uses its models to optimize attributes

of the grid such as resolution. Although Flood is not a static index,

it requires that its models be retrained and its data rearranged

when a data distribution shift occurs. LISA [16] by contrast, is fully

dynamic and uses its models in a hierarchy. LISA is a disk-based

index that has a prediction function locating the cell wherein a point

lies, and a cell-local prediction function selecting which pages to

access. While LISA reduces I/O cost, its CPU cost, the dominant

in-memory factor [19], is higher than that of the R*-Tree’s, which

is equivalent to that of the NIR-Tree’s.

Breaking from the grid file mold, Quad-Trees [9] recursively

divide space into quadrants until a set number of objects are within

each quadrant. However, regular divisions of space lead to deep

trees when the data is skewed in some region(s). Deep trees lead to

long search paths, exacerbated by dense areas that are likely to be

accessed simply because those regions hold more of the data. As

shown in our experiments (Section 5), the NIR-Tree is very short,

needing < 6 levels for even very large or very skewed datasets.

Finally, the Quad-Tree family scales poorly due to its 2
𝑑
fanout

requirement. Conversely, the NIR-Tree can maintain short trees

with fixed fanout independent of the dimension.

7 CONCLUSION
Traditional multidimensional indexes support efficient point and

range searches through expensive insertion-time optimization tech-

niques. By limiting the basic bounding shape to a rectangle, existing

R-Tree family indexes cannot achieve zero-area intersection. The

NIR-Tree introduces flexible bounding polygons as a new type of

bounding shape which provably guarantee optimal (zero) intersec-

tion between bounding shapes to support efficient insertion and

searches. We compared the NIR-Tree with the popular R*-Tree and

observed that constructing a NIR-Tree is on average 27× faster than

constructing an R*-Tree without trading off for query times. The

NIR-Tree achieved equivalent range searches and 2× faster point

searches. With simple yet flexible bounding polygons, the NIR-Tree

is an efficient, state-of-the-art multidimensional index.
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