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Abstract—Reaching agreement in the presence of byzantine
processes is an important task in distributed systems. Theoretical
analysis of algorithms for Byzantine Agreement can provide
insight into their efficiency. However, analysis of algorithms
under varying parameters and practical constraints through
experimental evaluation can be key to understanding the perfor-
mance and trade-offs of theoretically well-performing algorithms.
We compare the performance of two randomized byzantine
agreement algorithms—one using the pull-push approach and
another using the concept of quorums—and a third recent
simple deterministic byzantine agreement algorithm. Through
implementation on a testbed environment using the metrics of
bit complexity, round complexity and latency in the presence of
network sizes and faulty processes, we quantify the performance
of each algorithm. In terms of bit complexity, we show that for
small networks (n < 32) and up to 10% faulty processes, the
simple deterministic algorithm performs best, while for larger
networks, pull-push is the best performing algorithm. The second
randomized algorithm performs best in terms of latency.

Keywords-Distributed systems; Performance; Byzantine fail-
ures; Fault-tolerant; Consensus; Complexity.

I. INTRODUCTION

The Distributed Consensus problem introduced by Pease et

al. [43] is one of the most important and well-studied problems

in distributed systems. In essence, the problem deals with

multiple processes, each with an initial opinion, cooperating

with each other to reach agreement. The motivation for this

problem arises from real-world use cases such as database

transactions, where a number of systems need to agree on

whether to commit or abort a transaction, in aircraft controllers

that need to agree on which plane should take-off or land

first, or in examples such as the Dragon flight system [1],

a reusable aircraft, that is required to be fault-tolerant in

cases when it gets close to the International Space Station.

In the case of aircraft controllers, where the system is safety-

critical, it is essential that they reach an agreement within a

bounded period of time and that all the controllers arrive at the

same decision, whereas in the case of database transactions,

it is only necessary that the system eventually reaches an

agreement. Therefore, any consensus reaching algorithm needs

to satisfy certain correctness conditions that are formally given

as follows [43]:

• Consistency: All correct processes agree on the same

value and all the decisions are final.

• Validity: If all processes start with the same initial value

v, then v is the only allowable decision for all processes.

• Termination: All correct processes reach a decision.

These correctness conditions also define the safety and

liveness conditions that a distributed consensus algorithm must

satisfy. The consistency and validity condition is a safety

condition: safety will be violated if any two processes decide

on different values. The termination condition specifies the

liveness condition. For a system to continue executing cor-

rectly until it terminates, all processes must eventually reach

the same conclusion.

In real-world applications, it would be unrealistic to assume

that the systems involved in solving the problem will continue

to work correctly, for the whole duration, as specified by the

protocol. There may be cases such as when the communication

links between systems break and the system partitions, the

network becomes congested due to too many requests, or the

messages are not delivered in order. To achieve reliability in

distributed systems, protocols are needed which enable the

system as a whole to continue to function despite the failure

of some number of components.

It was shown by Lamport et al. that consensus can never

be reached even between two processes if there is a link

failure [32]. Under the assumption that the links do not display

any kind of fault, one needs to analyze scenarios in the case of

process failures. Generally, the kind of failures that a process

can encounter is either a fail-stop failure or a Byzantine failure.

Fail-stop failures occur when processes fail by stopping. In

the case of a byzantine failure, the processes fail arbitrarily.

Depending on the ratio of faulty processes to all the processes,

consensus may be impossible even when the system is syn-

chronous. The problem of solving consensus in the presence

of byzantine failures is known as the Byzantine Agreement

problem [32]. With the increasing number of malicious attacks

reported in recent times and software bugs leading to processes

behaving arbitrarily, dealing with this problem has become

more important than ever before.

A. Need for Experimental Evaluation

In the past, researchers have tried to optimize either the

message complexity or the round complexity of algorithms in

the worst case scenarios. Worst-case bounds are insufficient

to provide an insight into the trade-offs that exist between
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these two types of optimizations under various conditions such

as varying network sizes, and percentage of faults. However,

experimental evaluation can help greatly by providing detailed

results on guarantees of algorithms under such varying condi-

tions. While the literature is rich in theoretical results, there has

been a lack of extensive practical results for these algorithms.

This can be largely attributed to the fact that simple algorithms

are theoretically inefficient while the more complex ones are

not easy to implement. Theoretical results give us information

about the worst case scenarios but in practice, the system often

does not run in the worst case.

In real-world systems, certain constraints—for example,

communication bandwidths—may exist which are not con-

sidered in theoretical results. Such constraints can reduce

the performance—if the available bandwidth is small—or

can be used to our advantage by tweaking the algorithm to

send multiple packets together instead of in separate rounds.

Furthermore, analytical techniques using the Big ‘O’ notation

can hide large constants which are of significance when we

look at memory or bandwidth consumption in a real-world

system. Many complex algorithms make certain assumptions

about systems, for example, the existence of a large fraction

of faulty processes. However, in practice, only a small fraction

of processes are usually faulty and in such cases the algorithm

would be unnecessarily complex and inefficient.

Analysis of algorithms under such varying conditions and

practical constraints through experimental evaluation can be

key to understanding the performance of theoretically well-

performing algorithms. While some applications require best

performance for either only number of bits required for

communication or for the number of rounds taken to reach

consensus, most applications [40] require optimal results for

both size and number of faults in the application. A com-

parison, therefore, of performant algorithms is necessary to

understand how they perform with respect to each other. A

way to achieve this is by selecting state-of-the-art algorithms

having different designs and implementing them on a common

platform to compare their performance.

Motivated by these needs, we evaluate the performance of

three recently proposed solutions for the Byzantine Agreement

problem. Two of these are randomized algorithms—(1) by

Ben-Or et al. [7], which we call algorithm Quorum through-

out the paper, and (2) an almost-everywhere to everywhere

algorithm by Braud-Santoni et al. [9] combined with the

almost-everywhere algorithm of [28], which we call algorithm

Pull-Push. An almost-everywhere algorithm reaches consensus

among all but a fraction of the processes and an almost-

everywhere to everywhere algorithm reaches consensus among

all the processes. The third is a deterministic algorithm, due

to Kowalski et al. [30], which we refer to as algorithm EIG
(Exponential Information Gathering).

B. Motivation for Chosen Algorithms

A vast amount of work has been done over the years to solve

the Byzantine Agreement problem, and different approaches

have been taken for various models of the problem. In a

well-known result, Fischer et al. [19] showed that reaching

distributed consensus deterministically becomes impossible in

an asynchronous system with even just one faulty process.

Randomized algorithms allow us to overcome the barrier of

this impossibility result in the asynchronous setting. Even in

the synchronous setting, they provide major improvements

over the deterministic algorithms by a factor polynomial in

the size of the network. The probabilistic techniques provide

an advantage—the worst-case scenarios can be eliminated by

giving them a probability of 0 and a probability distribution

is given in the other cases. In cyber-physical systems, logical

synchrony is crucial as in the case of a flight system where the

supervisory control is a global computation [45]. Many of the

reactive systems that are safety-critical require determinism

which is the target of synchronous programs [38], [31].

Algorithm Pull-Push is one of the most recent and best-

known results in terms of communication complexity. The

main contribution of this result has been to give an almost-

everywhere to everywhere solution, which improves the amor-

tized communication complexity to Õ(1) per node1. The

previously best-known result was Õ(n1/2) [25]. The algorithm

uses the model previously considered in [25], [28], [7], [26],

that of a synchronous, full-information model, with a non-

adaptive adversary. They also demonstrate that similar results

can be shown even in the case of an asynchronous model. This

achievement in reducing the communication cost, however,

comes at the cost of a higher round complexity, which is poly-

logarithmic in the size of the network.

This trade-off between communication and round complex-

ity motivated us to pick the algorithm Quorum for comparison.

This algorithm, due to Ben-Or et al., has a round complexity

of O(log n) although it shows a quasi-polynomial commu-

nication complexity of nO(logn). It uses the same setting as

Pull-Push and makes use of the well-known Feige’s protocol

of collective coin-flipping to decide on a small committee with

the same fraction of good processes as in the whole network,

which then runs a leader election protocol for agreement. A

comparison of these two algorithms will allow us to under-

stand how they perform with respect to each other for both

communication as well as round complexity.

While both these randomized algorithms attempt to improve

upon the metrics for performance comparison, they consider

worst-case scenarios when the fraction of adversarial processes

is n/3 and n/4, respectively. However, in a real-world system,

this fraction can actually be quite small. This motivated us

to choose a deterministic algorithm for comparison which

considers this fraction during its execution and thus provides

much better results for both communication and round com-

plexity when the number of adversarial nodes to the size

of the network is really small. EIG is a recent deterministic

algorithm, more efficient than the one by Garay et al. [20] that

meets the bounds on the optimal range of Byzantine processes

and communication rounds. Further, we make modifications to

this algorithm by removing the redundant information being

1Õ is same as O up to a poly-logarithmic factor.
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sent in every round regarding the list of byzantine nodes to

show an improvement in the communication complexity. We

call this algorithm ImprovedEIG.

We vary two parameters to define the workload of the

system—the number of processes, and with that the fraction

of faults in the system. For evaluation, we use three metrics:

communication complexity and round complexity, which are

commonly used for theoretical evaluation, and latency, which

is an important measure of efficiency for empirical results.

We report on the behavior of the algorithms under varying

parameters and analyze their effectiveness using these metrics.

These experimental results allow us to determine the best

algorithms to pick given the workload and requirements of

a system, i.e., the fraction of adversarial nodes, the bandwidth

requirements and latency. For example, in certain scenarios

with low adversarial nodes, the deterministic algorithm per-

forms better than both the other ones.

Section II gives an introduction to the various models used

to solve the distributed consensus problem and provides a

summary of related work in this field. In Section III, we elab-

orate on the three algorithms under comparison. Section IV

and V details the implementation and evaluates the results

obtained from our experimental evaluation. This is followed

by a discussion that includes implementation techniques for

better performance, and Section VI concludes the paper.

II. BACKGROUND

A. Problem Statement

The problem of Byzantine Agreement, in its most basic

form is defined as follows [43]:

Definition 1. Let P be a protocol among n processes P =
{P1, P2, . . . , Pn}, such that B ⊂ P processes are byzantine.
Each process Pi starts with an input bit bi, and Pi outputs a
bit ci at the end of the protocol. P is a Byzantine Agreement
Protocol, if the following conditions hold:
• Consistency: For any two non-faulty processes Pi and

Pj ∈ P\B, ci = cj .
• Validity: If bi = b for all non-faulty processes Pi ∈ P\B,

then ci = b for all non-faulty processes Pi.
• Termination: Protocol P terminates with probability 1.

A protocol is said to be k-fault tolerant if it operates

correctly as long as no more than k processes fail during

execution. The following theorem by [32], [43] shows the

impossibility result when k ≥ n/3.

Theorem 1. There is a k-fault tolerant synchronous protocol
to solve the byzantine agreement problem iff k < n/3.

B. Complexity Measures

The practicality of agreement protocols depends heavily on

their computational complexity. Theoretically, when talking

about complexity measures of algorithms for distributed con-

sensus, one generally uses the following two metrics:

• Round complexity - the number of rounds of message

exchange before all the non-faulty processes decide.

• Communication complexity - the total number of mes-

sages sent per process or the total number of bits sent

per process.

For empirical analysis, we also consider the following metric:

• Latency - the overall CPU time utilization or elapsed real

time from start till all the non-faulty processes decide.

C. Previous Work

1) Deterministic Solutions: Fischer and Lynch [18] proved

that k + 1 is the round complexity in the worst case for a k-

fault tolerant synchronous protocol. If the messages were not

authenticated, the message complexity was initially shown to

be exponential in the number of process by Pease et al. [43].

In 1998, Garay and Moses [20], with modifications to the two

phase protocol of Bar-Noy et al. [5] using the EIG data struc-

ture, improved the message complexity further to polynomial

time. If authenticated messages were sent, Dolev and Reischuk

[13], proposed an algorithm using O(n+ k2) messages. In an

attempt to lower the communication costs, researchers either

lowered the fraction of faulty processes to a smaller number

[14] or increased the maximum number of rounds needed in

the worst case [46]. It was only recently that Kowalski et al.

[30] proposed a simple algorithm that holds for the optimal

range and optimal number of communication rounds while

lowering the communication complexity to O(n3logn).
2) Randomized Solutions: Probabilistic solutions were pro-

posed to circumvent the lower bounds on round and message

complexity imposed by deterministic settings. They used the

idea of a common coin which was seen as ‘sufficiently

random’ by ‘sufficiently many’ random processes. In the

asynchronous setting, using randomized algorithms, Ben-Or

[6] showed that if k < n/5, then consensus is achievable

with probability 1. Rabin [44] showed constant expected round

complexity if k < n/4. Greatly improved results have been

shown in [41], [24], [37] for non-adaptive adversary and in

[27], [3] for an adaptive adversary. Assuming that communi-

cation channels are private between every pair of processes,

the algorithm proposed by Patra et al. [42] shows constant

expected round complexity and Õ(n2) message complexity.

These bounds are also applicable to the asynchronous setting.

Holtby et al. [22] proved an Ω( 3
√
n) lower bound on both

message complexity and round complexity for synchronous

systems, under restrictive assumptions.

3) Almost-Everywhere Solutions: The almost-everywhere

byzantine agreement problem was introduced by Dwork et

al. [15]. It is a relaxed version of the byzantine agreement

problem and requires all but O(log−1n) fraction of the pro-

cesses to agree on a common output. For the algorithm by

King et al. [28], the round and message complexities are

shown to be poly-logarithmic in n. Construction of byzan-

tine agreement from almost-everywhere byzantine agreement,

called almost-everywhere reduction, was proposed in [26],

[25], using Õ(
√
n) bits per process and poly-logarithmic

number of rounds. Papers such as those by King et al. [25]

used push-pull protocols, the complexity of which is dictated

by the complexity of the first push phase and the size of the
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candidate lists, i.e., the number of all possible outputs. Braud-

Santoni et al. [9] propose an almost-everywhere to everywhere

solution using the almost-everywhere algorithm by King et

al. [28].

4) Experimental Evaluations: Many surveys have reported

various theoretical results for the Byzantine Agreement prob-

lem. In a recent paper by Vavala et al. [47] that implements

Bracha’s algorithm [8] to bridge the gap between theory and

practice, it was reported that the literature is poor in the

experimental evaluations of randomized byzantine agreement

algorithms. They showed that Bracha’s algorithm terminates in

constant rounds if only crash failures occur and under normal

conditions, whereas theoretically it takes exponential number

of rounds to terminate due to the worst-case scenario. They

use an averaging method, approximations and stochastic tech-

niques for analysis of the protocol. They ran the experiments

for up to 100 processes and reported the round complexity

results.

Oluwasanmi et al. [39] improve upon the algorithm by King

et al. [26] that was shown to be impractical when implemented

due to large hidden constants, although they weaken the

control of the adversary to only 1/8 fraction of the processes.

They implement and compare their algorithm with Cachin et

al.’s [10] with the size of the network simulated between 103 to

4×106 processors. They used average number of messages and

bits sent per process as well as latency for comparison. Moniz

et al. [35] perform experimental evaluations on Bracha’s algo-

rithm [8] and Cachin et al.’s [10]. However, significantly better

results to both Bracha’s and Cachin et al.’s algorithms have

been shown by Vavala et al. [47] and Oluwasanmi et al. [39],

respectively. Liang et al. [33] implemented and analyzed three

different byzantine broadcast algorithms for fault-tolerant state

machine protocols (1) the classic solution by Pease et al. [43],

(2) a practical BFT protocol by Castro and Liskov [11], and

(3) a network coding based BFT that they propose in the paper.

For state replication protocols, it is important for pro-

cesses to agree upon an order to process the requests. In

this experimental evaluation, the authors concentrated on the

implementation and analysis of the byzantine broadcast part

of the algorithm that is used to reach consensus on the order

of requests to be processed by the state machines. They

reported the latency when the batch size of the requests to

4 servers is varied. Several other experimental evaluations for

state machine replication methods use byzantine agreement

protocols but mostly in the asynchronous settings and some

protocols even require a trusted subsystem [2], [12], [48],

[23], [29]. Other works such as those by Moniz et al. [34],

[36] consider wireless and asynchronous settings, respectively,

which is outside the scope of this paper.

Most of these experimental evaluations have used either a

synchronous model or a partially synchronous model for sim-

plicity. The algorithms we have chosen allow us to differentiate

and compare different randomized as well as deterministic

algorithms which makes it necessary to use a synchronous

setting due to the impossibility results for the asynchronous

case [19].

III. ALGORITHMS

In this section, we describe the model of the network,

adversarial conditions and the algorithms of [7], [9] and [30],

i.e., algorithm Quorum, Pull-Push and EIG, respectively, that

are to be evaluated under these conditions. Table 1 compares

key properties of these algorithms. Note that the algorithms,

theorems and protocols presented in this paper have been

reproduced or condensed from works by Ben-Or et al. [7],

Braud-Santoni et al. [9] and Kowalski et al. [30].

A. Model

Our model is a fully-connected network of n processes,

with authenticated communication channels—the identity of

the sender is known to the recipient and authentication is

not required during the execution of the protocol. We require

the network to be reliable, i.e., a message sent (to a non-

faulty process) will eventually be delivered and in order.

Per Section II, we consider only the synchronous model of

communication. In this setting, the communication proceeds in

rounds and all processes have synchronized clocks; a process

moves on to the next round after all the processes have

completed the previous round.

B. Adversary

The adversary controls a fraction of the processes—a max-

imum of k processes, which are Byzantine processes. Such

processes deviate arbitrarily from the algorithm by crash

failures or sending false messages. The assumption is that the

adversary is non-adaptive for all three algorithms, that is, the

adversary chooses the set of byzantine processes at the start of

the protocol. The adversary is computationally unbounded and

has full information about the state of all processes and the

network, and the communication between any pair of them.

Another characteristic is that the adversary is rushing. This

means that, in a round, the adversary knows all the messages

sent by the good processes in all the previous rounds and the

current round before choosing which messages to send in that

round. This is also known as the full information model [21].

C. Input String

Both the algorithms Quorum and Pull-Push make use of a

string of bits in the final decision. However, algorithm EIG
uses a single bit as input and output decision value.

D. Algorithms

1) Algorithm Quorum[7]: The main result of this algo-

rithm, due to Ben-Or et al., is as follows:

Theorem 2. For any constant ε > 0, there exists a protocol
that reaches Byzantine Agreement in a synchronous full-infor-
mation network tolerating k < (1/4−ε)n non-adaptive Byzan-
tine faults, and runs for expected O(log n/ε2) rounds.

The algorithm makes use of a weaker version of broadcast

known as Graded Broadcast or Gradecast [17], with a des-

ignated authority called the ‘dealer’ that wants to broadcast a

value v. At the end of the protocol, every process outputs a
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TABLE I
A SUMMARY OF FEATURES OF THE ALGORITHMS UNDER EVALUATION

Algorithm Type n Rounds Bit Complexity Decision value Communicating nodes Remarks
Ben-Or, Pavlov, Vaikun-
tanathan [7] (Quorum)

Randomized 4k + 1 O(logn) nO(log n) String of
O(logn) bits

All-to-all communication and
within quorums of size O(logn)

Everywhere byzan-
tine agreement

Braud-Santoni et al. [9]
(Pull-Push)

Randomized 3k + 1 O( log n
log log n ) õ(n) String of

O(logn) bits
With samplers of size O(logn) Almost-everywhere

to everywhere

Kowalski and
Mostefaoui [30] (EIG)

Deterministic 3k + 1 k + 1 O(n3 logn) Single bit All-to-all communication Uses EIG data
structure

value and a number that denotes the confidence of the process

in that value. If the dealer is honest, every honest process

outputs the same value with full confidence.

The quorum protocol proceeds in stages. It makes use of

Feige’s protocol [16] for collective coin-flipping which works

as follows: in the first round, all the processes throw a ball at

random into one of O(n/ log n) bins. The processes which

throw their ball into the lightest bin (bin with least number

of balls) survive. The protocol is invoked recursively on the

O(log n) processes in the lightest bin. Agreement on the

lightest bin is achieved by running sub-protocols among every

subset of processes of size 3
4 log n. These sub-protocols can be

executed in parallel since the decision of one does not affect

the decision of the other.

The key idea is that honest processes are unbiased and the

resulting bin will contain a large fraction of honest processes.

After log∗ n invocations of the process, a leader is elected. The

leader then flips a coin, and broadcasts it, which is the agreed

value. The challenge is that dishonest processes will exhibit

byzantine behavior when throwing their ball into one of the

bins by sending conflicting values to different processes. This

is overcome by using the gradecast protocol described earlier.
2) Algorithm Pull-Push [9]: This algorithm by Braud-

Santoni et al. [9] is the first probabilistic Byzantine Agreement

algorithm whose communication and round complexities are

poly-logarithmic. The authors use the almost-everywhere algo-

rithm by King et al. [28] and extend the protocol to Byzantine

agreement in the complete network. This protocol uses the

pull-push communication model. The following theorem from

[9] states the main result:

Theorem 3. For n processes in an asynchronous full-
information message passing model with a non-adaptive
Byzantine adversary which controls less than a 1/3−ε fraction
of the processes, if more than 3/4 of the processes know a
string gstring (random enough), there is an algorithm such
that with high probability:
• At the end of the algorithm, each correct process knows

gstring.
• The algorithm takes O( logn

log logn ) rounds and Õ(n) mes-
sages are exchanged in total.

The algorithm makes use of quorums to filter requests or

messages sent by other processes. The choice of quorums

used by processes is directed by both deterministically-known

information (like the identity of the process), and random

sources (randomly chosen initial string). Such quorums are

called Samplers.

Each process starts with a candidate string (the string to be

agreed upon). The assumption is that more than half of the

processes are both correct and have the same candidate string.

The algorithm proceeds in two phases. In each of the phases,

messages are sent to or received from only selectively chosen

processes by sampler functions.
Push Phase: In the first phase, each process starts to

diffuse (send) its candidate string gstring. A push occurs when

a process receives information about their candidate string

from other processes without asking for it. To each pair of

string s and process x, the push quorum I(x, s) assigns a

set of O(log n) processes. x may receive pushes for s from

processes in I(x, s) only. If more than half of the processes

in I(x, s) push for s, s is added to x’s candidate list Lx. We

refer the reader to Algorithm 1 in the Appendix for details.
Pull Phase: In the second phase, called the pull phase, the

bogus strings are discarded so that each process keeps only

the correct string. This is done by each process requesting

the strings it received in the push phase to be verified by

some other processes. A pull query is sent out to receive

information about each string as a consequence. Checking

a string s involves a Poll List J(x, rx) and a Pull Quorum

H(x, s), where rx is chosen at random. Algorithms 2, 3 and 4

in the Appendix give a detailed implementation of the sending,

routing and answering of pull requests.
3) Algorithm EIG [30]: This protocol, similar to the classic

protocol by Bar-Noy et al. [4], has two phases. In the first

phase, each process communicates with every other process

for k + 1 rounds and stores the collected information in each

round at a corresponding level in a tree-like data structure. In

the second phase, a bottom-up evaluation is done on each of

the trees at each process. The fundamental difference between

this protocol and past EIG solutions is that after a couple

of rounds, instead of storing and sending proposed values at

each level of the tree, only an array of suspected byzantine

processes is sent. This array is updated after each round using

the confirmation mechanism that works as follows:

• A process pi sends the main information to every other

process in round r.

• At round r + 1, process pj echoes information received

from pi in the previous round to every other process.

• If the main information received from pi in round r is

echoed by at least (n−k) processes in round r+1, then

process pj is said to confirm the information received

from pi in round r.

The rounds 1 to k + 1 follow this protocol:

Round 1 Each process sends its proposed value to all other

processes. val(x) is set to the received value v from process

x where val is a variable of nodes at level 1 of the EIG tree.
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Round 2 Each process echoes the messages received in the

first round. The received messages are set as the value of

variable cval of nodes at level 2. For a node x = jk,

cval(x) = v where v is the value that process pk reports that

it received from pj in the previous round. The confirmation

mechanism is applied to the received echoed messages by

each process pi. The process whose main information is not

confirmed in this round is added to pi’s byzantine list.

Round 3 The echo messages received in round 2 are sent as

echo messages again. The suspected byzantine list is sent as

the main information. Confirmation mechanism is applied to

the echoed information and the byzantine list is updated in

each round from here on.

Round r (4 ≤ r ≤ k + 1) From the 4th round onwards,

the suspected byzantine list of a process is sent as its main

information and byzantine lists received in the previous round

are echoed. Nodes at corresponding levels of the EIG tree

from round 3 onwards, for each process pi, are given values

for val and cval as follows:

• For node x = ykl, val(x) = �, if pl never reported to

pi by round k that it suspects pk, else val(x) = ⊥.

• For node x = yjkl, cval(x) = �, if pl never reported to

pi by round k+1 that pk suspects pj , else cval(x) = ⊥.

• For leaf nodes x = ykl, val(x) = �, if pl did not report

to pi that it suspects pk, else val(x) = ⊥.

where y is a string of ids (possibly empty), and j, k, l are ids

of three different processes.

Importantly, note here that in every round even though the

number of nodes in the EIG tree increases by factor n, the

new information received remains quadratic which allows us

to use arrays to store this information. Even the size of the

echoed messages remains quadratic in every round.

Extracting the final information:
Starting from the leaves, the nodes of the EIG tree are

evaluated bottom-up as follows:

• if x is a leaf, newval(x)← val(x).
• if x is root, newval(x) ← v such that strict majority of

new values of its children are set to v, otherwise it is set

to default value v0.

• otherwise, newval(x)← v if for T = {y | y child of x∧
newval(y) = �}, | T |≥ (n−t− l), and a strict majority

of nodes in T have cval set to v.

4) Algorithm ImprovedEIG: We modify the EIG protocol

slightly to require that instead of sending the complete byzan-

tine list every time, from round 4 onwards only the changes

to this list be sent in every round. We are motivated to do

so since sending information about the existence of a process

in the suspected byzantine list of another process in every

round is redundant. This does not change the correctness of the

algorithm since all the good processes send the same changes

to every other process in a round and in the next round the

confirmation mechanism would confirm these updated lists.

The rest of the algorithm is identical to algorithm EIG. This

means that the number of rounds required to reach consensus

remains unchanged as the information every process has about

the suspected byzantine list of another process at the end of a

round is the same as in algorithm EIG. This implies that the

round complexity is unchanged, and therefore the latency of

the algorithm is unaffected.

IV. IMPLEMENTATION

The implementation of the three algorithms to obtain perfor-

mance results was done using the C++ programming language

along with the Message Passing Interface standard (MPI). The

experiments were run on a 16 node cluster of 64-bit Xeon

machines using 4 cores on each node. Each machine in the

cluster runs the Linux operating system CentOS 6.x. The ma-

chines are connected to each other through a 10Gbps local area

network. The complete implementation is approximately 2K

lines of code and can be found at https://github.com/shreya-

68/Consensus/tree/master/MPI. A basic synchronous peer-to-

peer network framework was set up on top of which the

algorithms were implemented.

A. Input

The input into the system is size of the network, i.e., total

number of processes, along with the input binary value chosen

from a uniform distribution for each of the processes for

achieving consensus. The ratio of the byzantine processes

to the good processes is provided along with a specified

byzantine behavior (see Section IV-H). This behavior allows

the byzantine processes to decide which values to send at every

round of the protocol.

B. Output

The output is the number of rounds carried out, latency in

terms of CPU time utilization and elapsed real time, number

of messages/bits sent per process, and the final decision value

of each process.

C. Testing Parameters

For testing the three algorithms, the number of processes (n)
lies in the range 4 to 64 on a cluster of 1 to 16 machines. The

number of failures (f) lies in the range [0, n/3) for algorithms

Pull-Push and EIG, and in the range [0, n/4) for algorithm

Quorum. The algorithms have been shown to be correct only

in these respective ranges [9], [30], [7].

D. Authentication of Processes

It was assumed that the channels are authenticated and

each receiving entity knows the identity of the sender. The

communication primitives provided by the MPI library implic-

itly provide this functionality and hence, a byzantine process

cannot spoof their identity or hide it.

E. Connection

Each process in the peer-to-peer network had full knowledge

about the network connection of other processes, i.e., the IP

address and port number of the hosts it was connected to.

Using the MPI library this is done by giving a unique ID to

each process from [0, n). The MPI point-to-point operations

were used for sending and receiving messages between (any)
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two processes. The connection provides the same reliability

and ordering guarantees as a TCP connection.

F. Synchronization

To implement a synchronous model of communication

communicators have been used. They are essentially a group

of processes. MPI_Barrier, a synchronization operation

provided by the MPI library, allows one to specify a group

to wait on. A process blocks on this call until all processes in

the specified group reach this call. To keep all the processes

in the network synchronized after each phase, this routine is

used whose group is set to the active processes in the network.

G. Parallelization

To allow programs to execute parts of the protocol that are

independent of each other in parallel, MPI thread level support

has been used. To further improve performance, non-blocking

calls have been used in some places where, for example, the

execution of the next few instructions does not depend on the

completion of a send call. The MPI implementation creates a

system buffer to typically hold data in transit. This is useful

when a process wants to receive messages sent to it by multiple

other processes at a later time. This improves performance

by allowing send-receive operations to be asynchronous. The

non-blocking calls were used such that execution within a

round became asynchronous but not between rounds so as to

ensure correctness. To ensure that messages are not lost by the

overflow of a system buffer, each message was given a unique

tag number which corresponded to a unique system buffer.

H. Types of Byzantine Failures

A process can display either of the following failures:

Active failures:

• Processes send conflicting data to different processes in

the same round. Any data that is not the same or is null

is said to be conflicting.

• Processes send arbitrary content or more messages than

necessary. Byzantine processes may try to do so to choke

the communication and flood the network or overload the

requests that need to be answered.

For analysis of active failures, we inject both of the above

mentioned failures, i.e., processes send conflicting data as well

as attempt to flood the network.

Inactive failures:

• Crash failure: Processes may fail by stopping. Any good

process that fails to send messages or aborts its execution

is considered byzantine. This is a worst-case assumption

to ensure correctness even if for any unknown reason a

good process fails.

• Denial of service: Byzantine processes may deny re-

sponding to requests from good processes or may not

forward messages as required.

For analysis of inactive failures, crashed processes remain

silent and stop sending messages to emulate node crash.

I. Fault Tolerance Against Crash Failures

We assume that once a process suffers a crash failure, it

cannot recover from it. An advantage of using TCP connec-

tions is that it allowed failure discovery in the case of a crash

failure. If a process failed before the start of a phase, no

other process would be able to establish a connection with

it, leading to failure discovery. If a process crashed within

a phase, the wait groups helped in detecting the failure by

using a timeout mechanism. Each phase had to be completed

within a certain amount of time and if all the processes did not

reach the synchronization operation within that allotted time,

it indicated a process failure and the other processes proceeded

with the next phase. By running the system multiple times we

could determine a timeout value that allowed alive processes

to finish the phase with high probability. An alternative to

this method was sending an acknowledgement back for each

received message, but we refrained from using this method

since that meant dealing with twice the number of messages

which added unnecessary overhead for our testing purposes.

J. Message Format

Each message sent over the network was an array of bytes

of the following form: LENGTH, PHASE, MESSAGE
The LENGTH parameter indicated how many bytes of the

message to parse. The PHASE parameter indicated which phase

the message was sent during and also what its purpose in that

phase is. The format of the MESSAGE varied for each of the

algorithms.

V. RESULTS

A. Bit Complexity

For the EIG algorithm, we can see from Figure 1 that as the

network size increases, the bit complexity increases as a cubic

function in accordance with the theoretical Big ‘O’ complexity

of O(n3 log n), where n is the size of the network. This is a

major improvement from classic deterministic algorithms that

have very high polynomial growth of O(n9) [20]. On a linear

scale, we note that the fault ratio affects the bit complexity by

a factor polynomial in n. This is because with a higher ratio,

faulty processes try to dominate the number of bits a good

process receives by claiming all processes are byzantine in

every round. They send n2 bits of information in every round

to every other process, whereas good processes send only n∗k
bits of information. As the number of processes increases, the

trends for each of the fault ratios becomes similar on the log
scale. However, for small networks, the bit complexity on the

log scale is quite diverse for different fault ratios. Overall, we

observe that increasing the fault ratio will affect the bandwidth

consumption linearly for all network sizes.

For the Pull-Push algorithm, as the network size increases

the bit complexity displays a poly-logarithmic growth. This

can be seen in Figure 2. The growth trend is similar for all fault

ratios for small and larger networks. The increase in number

of failures has an effect on the number of bits sent per process

but only by a constant factor. This can be attributed to the fact

that in the protocol, even if byzantine processes try to send
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Fig. 1. Performance results for EIG algorithm (Log Scale)

conflicting values, and a large number of them, to samplers for

the purpose of flooding, the samplers do not receive enough of

them to forward these messages further in the protocol. Also

note that for networks with the same value of log n the bits

sent per process is the same, and it only changes at network

sizes that are powers of 2. This is because good processes

communicate only with samplers of size log n. Hence, for

larger networks, increasing the size of the network by less

than 100% will not affect the bandwidth consumption.

Fig. 2. Performance results for Pull-Push algorithm (Log scale)

From Figure 3, algorithm Quorum shows very high number

of bits per process communication even for small networks. It

increases rapidly as the network size increases. The reason for

this is that Graded broadcast requires all-to-all communication

between processes and the protocol requires processes to run

a deterministic byzantine agreement protocol for every subset

of processes with their ball in the same bin in Stage 2 of

the protocol. The fault ratios do not have much of an effect

on the communication costs. Byzantine processes are unable

to increase bits on the network by participating in more

sub-protocols than the algorithm requires since membership

in a sub-protocol is dictated by their ID, which is fixed.

Hence, increasing the number of byzantine processes does not

influence the (already high) communication cost greatly.

Each of our algorithms for every configuration was run

multiple times. In the analysis, each data point is an average

over 5 independent runs and we obtained confidence intervals

for each of them. The confidence interval for algorithm Pull-
Push was ±1%, ±0.1% for algorithm EIG, and ±0.5% for

Fig. 3. Performance results for Quorum algorithm (Log scale)

algorithm Quorum.

B. Comparison of Bit Complexity

For large networks (n = 64), we vary the ratio of failures

to the number of processes (f/n), which lies in the range

[0, 1/3) for algorithms EIG and Pull-Push, and in the range

[0, 1/4) for algorithm Quorum. As can be seen from Figure 4,

the algorithm Pull-Push performs much better than the other

algorithms for any fault percentage.

Next, we evaluate the modified algorithm ImprovedEIG
introduced in Section III-D4. Even though this does not change

the communication complexity in the worst case, it overall

reduces the communication bits as good processes would send

a bit for every suspected byzantine process only in any one of

the rounds instead of every round. This modified version of

the algorithm performs much better. For small ratios, since the

number of rounds is small, the number of bits sent per process

remains the same. But, as the ratio increases, the performance

varies greatly from that of algorithm EIG.

Fig. 4. Comparison for large networks

For small networks (n < 40), if the fault ratio is small

and in the range [0, 1/15), Figure 5 shows that algorithm EIG
performs much better than any of the other algorithms. This

is because only the first three rounds of this algorithm will

be executed and since the ratio is small, a simple broadcast is

sufficient to gather all the information. Pull-Push and Quorum,

which are more complex algorithms, perform worse in such

scenarios. Figure 6 shows that for higher fault ratios and any

network size, algorithm Pull-Push performs better.
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Fig. 5. Comparison for low % of failures

Fig. 6. Comparison for high % of failures

Depending on the system requirements, such as how fast we

want the information to reach the destination, bandwidth, and

so on, there were two mechanisms we used to send the mes-

sages. In an algorithm like Pull-Push, where multiple message

packets may be sent to the same process by a process in the

same round, one could marshal all the packets into one packet

and then send it. This decreases the number of messages sent

per process while the number of bits sent remains the same.

However, it comes at the cost of parallelization as one has to

first wait to receive all the messages from the previous round,

perform operations and then send out messages all at once.

C. Round Complexity

Round complexity is the number of phases that have to be

executed sequentially by a process and cannot be parallelized.

For example, in algorithm EIG, a round consists of the

broadcast of messages at the same level i in the EIG tree

of each process. For algorithm Quorum, a round consists of

the broadcast of messages during a particular sub-protocol.

There are two ways to analyze the round complexity of this

algorithm. The first is that each of the sub-protocols Sj
i could

be executed in parallel since none of these sub-protocols are

dependent on each other. Hence, all of them together make

one round. But, if parallel execution of these sub-protocols is

not possible due to resource constraints then each of them is

an independent round. We implemented the algorithm to run

the sub-protocols in parallel since that improved the round

complexity. For algorithm Pull-Push, the push phase makes

one round and sending, routing and answering in the pull phase

each form independent rounds.

Fig. 7. Round Complexity comparison

Fig. 8. Round Complexity comparison

A comparison of the round complexities can be seen in Figs.

7 and 8 for fault percentage ∼16.5% and ∼6.5%, respectively.

We can see that for the small ratio of ∼6.5% the round

complexity of EIG is best compared to Quorum as well as

Pull-Push for all network sizes. However, for larger ratios EIG
performs the best for small network sizes among the three

algorithms. It performs worse than the other two algorithms

for larger networks while Quorum performs the best here. For

the fault percentage of ∼16.5% we can see that for larger

networks (n > 40), Quorum starts performing better from

among the three algorithms.

D. Latency

For performance comparison of latency, we compare the

total CPU times and elapsed real time. The total CPU time is

the sum of CPU time consumed by all of the CPUs utilized by

an execution of an algorithm. If a program has parallel tasks,

the total CPU time takes into account the time taken by each

of the tasks. Elapsed real time is simply the time taken from

the start of a computer program until it terminates as measured

by an ordinary clock. From Figures 9 and 10, with increasing

network size, we see that CPU time utilization and elapsed

real time of EIG increases rapidly, and it is significantly more

compared to the other two algorithms. If we look at the elapsed

real time, we can see that algorithm Quorum remains the

fastest throughout. This is because Quorum is highly parallel.
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The trade-off here is that the CPU time utilization of Quorum
is a lot more than that of Pull-Push. This trend is maintained

for all fault ratios.

Fig. 9. CPU time utilization comparison

Fig. 10. Elapsed real time comparison

E. Discussion

As can be seen from the results above, depending on the

requirements and resources available, each algorithm performs

differently. Before implementation, it is crucial to consider

what resources are available and how a system can be de-

signed to obtain optimal results for those available resources.

Implementing the testbed framework on a cluster allowed us to

design, study and test the algorithms under realistic scenarios.

We considered different byzantine behaviors for each metric

analysed. To report on the number of bits sent per process

in the worst case, we considered byzantine processes that

try to flood the network. In this scenario, among the three

algorithms we considered, algorithm Pull-Push performs the

best generally. However, in the case of a small network,

with the number of processes less than 32 and a low fault

percentage—(approximately less than 10%), algorithm EIG
performs better since it considers the number of faults in its

protocol.

If we were to consider a network with its size showing high

variance over time, algorithm Pull-Push has the advantage that

the number of bits sent per node remains the same if the

increase in size is within the next power of 2. For networks

with strict bandwidth constraints, this allows high flexibility

in changing the size of the network. On the other hand, if

we were to look at networks which did not change in size but

had varying fault ratios, algorithm Quorum inhibited a varying

number of byzantine processes from changing the communica-

tion complexity. This, however, is restricted to networks with

high bandwidth in the first place. Our modified version of

algorithm EIG, i.e. ImprovedEIG showed this characteristic

as well. The number of bits sent per node increased very

minimally on increasing the fault ratio and also performed

much better when compared to Quorum or EIG as can be

seen in Figure 4.
Furthermore, we demonstrated a trade-off between the

number of communication bits and the number of rounds:

algorithm Quorum terminated in lower number of rounds than

Pull-Push for all network sizes and fault ratios. This can

be attributed to its highly parallel protocol. Algorithm EIG
displayed growth proportional to the size of the network, and

performed well only for very low fault ratios of < 10%.

This trend is reflected in the latency results as well when we

consider the elapsed real time. However, the total CPU time

utilization increased rapidly for Quorum due to the exponential

increase in the number of sub-protocols executed in parallel

as the network size increased.

Fig. 11. Comparison for crash failures

In the case of a denial of service attack, an increasing

ratio of faulty processes reduced the communication overhead

instead of increasing it. Similar results were also observed

for crash failures. To evaluate the effect of crashes, we tested

the system such that crash failures occurred on a uniform

distribution over time. As can be seen in Fig. 11, an increasing

fault ratio keeps the number of bits sent almost the same.

When the faulty processes sent out arbitrary messages only,

the algorithms executed correctly without hampering the com-

munication cost much even if the ratio of byzantine processes

was increased.
To further optimize the performance, one can improve

certain tasks such as sending a larger message instead of many

smaller messages or executing parallel tasks on multi-core

machines. Another optimization that would have improved

the running time of the system would be to use UDP instead

of TCP since they take up less resources and provide lower

overhead. Even though UDP does not guarantee message

delivery, for a small system it could still be considered highly

reliable. The rationale behind using TCP connections for our
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testbed framework was to model and understand implemen-

tation issues for more realistic distributed systems, which

could have peers separated by geographical distance, requiring

greater reliability.

An analysis of the three algorithms and their performance

for a wide range of number of processes and faults shows

that communication of each process with fewer number of

processes yields good results instead of all-to-all commu-

nication. This inhibits byzantine processes from influencing

values of too many good processes. It is also important that

requests from byzantine processes be throttled at an early

stage. The good performance of the deterministic algorithm

for small fault ratios shows that it is important to consider this

factor when designing an algorithm. Communication between

multiple sets of quorums allows parallel tasks to be executed

and gives good latency results. The combined use of these

techniques would help design improved algorithms to solve

the problem of distributed consensus.

VI. CONCLUSION

In real-world systems, achieving distributed consensus can

be critically important. Consensus algorithms are used fre-

quently in systems that rely on protocols such as those

used in state machine replication and distributed databases.

Thus, understanding the performance of algorithms for various

scenarios occurring in real-time is essential to the overall

performance of such systems. We show that there is a need to

consider implementation issues that come along with any of

these algorithms and not only their theoretical results.

In this paper, we focused on implementation and analysis of

three recently proposed algorithms with best results for their

respective agendas. An Exponential Information Gathering

protocol for consensus [30] (algorithm EIG) showed that

deterministic algorithms have come a long way since the early

results. We further improved upon the results obtained for

this algorithm. In general, the randomized algorithm Pull-
Push [9], performed better than the other two in terms of

communication complexity. When latency was considered, as

can be seen in Fig. 10, algorithm Quorum [7] performed better.

In real-time situations, as the number of processes in a network

increase the probability of having faulty processes naturally

increases. Hence, even though algorithm EIG shows better

performance when the fault ratio is small, under high fault

ratio its performance degrades. Quantifying the performance

of the algorithms empirically provides a practical understand-

ing of how the different algorithms perform under different

conditions to achieve consensus in distributed systems.
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APPENDIX

A. Algorithm Quorum[7]

Definition 2. A protocol P is said to achieve graded broadcast
if, at the beginning of the protocol the dealer D holds a value
v, and at the end of the protocol, every process Pi outputs a
pair (vi, ci) where ci ∈ {0, 1, 2} denotes the confidence of the
process in value vi. With that, the following properties should
hold:

1) If D is honest, then vi = v and ci = 2 for every honest
process Pi.

2) For any two honest processes Pi and Pj , | ci− cj |≤ 1.
3) (Consistency) For any two honest processes Pi and Pj ,

if ci > 0 and cj > 0, then vi = vj .

The graded broadcast algorithm is described in detail as

follows:

Input to the Dealer D: A value v
Output of process Pi: A pair (vi, ci)
Step 1 The dealer D distributes v to all the processes.

Step 2 (For every process Pi) Send vi, the received value from

the dealer, to all other processes.

Step 3 (For every process Pj) Let vji denote the message from

process Pi in Step 2. If there is a value μ such that ≥ n− k
of the vji ’s are equal to μ, then send μ to all the processes.

Else, send ⊥.

Step 4 (For every process Pi) Let numμ denote the number of

players that sent μ to Pi in Step 3.

• If numμ ≥ 2k + 1 for some μ, output (μ, 2).
• If 2k ≥ numμ ≥ k + 1 for some μ, output (μ, 1).
• If numμ ≤ k for all μ, output (⊥, 0).

B. Algorithm Pull-Push [9]

Algorithm 1: Push phase

Input: Process Pi with a random string gstring , a list of all possible
strings Cstring

Output: Each node creates a candidate strings list LPi
gstring ← createRandString();1
broadcast(gstring);2
LPi

← gstring ;3
foreach str ∈ Cstring do4

Istr ← getPushQuorum(str, Pi);5
foreach p ∈ Istr do6

if recv(Istr) == str then7
num + +;8

if num > len(Istr)/2 then9
LPi

← LPi
∪ str;10

Algorithm 2: Sending Pull Request

Input: LPi
, list of candidates for node Pi

Output: String agreed upon
foreach s ∈ LPi

do1
rPi,s

← generateRand();2
Jr,s ← getPollList(rPi,s

, Pi);3
Hs ← getPullQuorum(s, Pi);4
send(POLL, s, rPi,s

, Jr,s);5
send(PULL, s, rPi,s

, Hs);6
Upon event: recv(ANSWER, s, r)⇐ w;7

if w ∈ Jr,s then8
counts + +;9
if counts > 1

2 |Jr,s| then10
has decided ← true;11
finals ← s;12
return s;13

Algorithm 3: Routing Pull Request

Upon event: recv(PULL, s, rx,s, Hs)⇐ x;1
if (gstring == s) and (Pi ∈ Hs) then2

Jx,rx,s ← getPollList(rx,s, x);3
foreach w ∈ Jx,rx,s do4

Hw,s ← getPullQuorum(s, w);5
send(ROUTE, x, s, rx,s, w)⇒ Hw,s;6

Upon event: recv(ROUTE, x, s, rx,s, w)⇐ Pj ;7
Hx,s ← getPullQuorum(s, x);8
Jx,rx,s ← getPollList(rx,s, x);9
if (gstring == s) and (Pj ∈ Hx,s) and (w ∈ Jx,rx,s ) then10

fw counts,x + +;11
if fw counts,x > 1

2 |Hx,s| then12
send(FORWARD, x, s, rx,s)⇒ w;13
fw counts,x ←∞;14

Algorithm 4: Answering Pull Request

Upon event: recv(ROUTE, x, s, rx,s)⇐ z;1
if counts > log2n then2

Wait for has decided;3

Jx,rx,s ← getPollList(rx,s, x);4
HPi,s

← getPullQuorum(s, Pi);5
if (gstring == s) and (Pi ∈ Jx,rx,s ) and (z ∈ H(Pi, s)) then6

fw counts,x + +;7
if (fw counts,x > 1

2 |Hx,s|) and ((x, s) ∈ Polled) then8
counts + +;9
send(ANSWER, s, rx,s)⇒ x;10

Upon event: recv(POLL, s, rx,s)⇐ x;11
Jx,rx,s ← getPollList(rx,s, x);12
if Pi ∈ Jx,rx,s then13

Polled← Polled ∪ (x, s);14
if fw counts,x > 1

2 |Hx,s| then15
counts + +;16
send(ANSWER, s, rx,s)⇒ x;17
fw counts,x ←∞;18

260


