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ABSTRACT

For latency-critical transactional applications, durability is often
what limits performance. That is, executing transactions is fast,
but guaranteeing that they are durable is slow. As a result, most of
each transaction’s latency is attributable to durability. To address
this problem, some database systems allow applications to sacrifice
durability guarantees in exchange for lower transaction latencies.
These ad hoc techniques are effective, but they can make it difficult
for applications to understand and manage the risks associated with
failures.

In this paper, our goal is to offer a more principled foundation for
these kinds of performance/durability tradeoffs. The major obsta-
cle to doing this is the transaction model itself, because it couples
transaction durability with transaction commit. That is, the model
defines a single point at which a transaction becomes visible and
durable. This forces all transaction guarantees to wait for the slow-
est one, which is often durability.

The primary contribution of this work is a new eventually durable
transaction model, which decouples commit from durability. Trans-
actions commit first, and become durable later. We argue for mak-
ing this model the basis of the contract between transactional data
systems and applications. We describe what it means to correctly
implement eventually durable transactions, and consider how they
can be exposed to applications. We also describe a prototype imple-
mentation of eventual durability in PostgreSQL, and show that it
enables applications to reduce transaction latencies while managing
the durability risks.
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1 INTRODUCTION

Transactions are a fundamental and widely used abstraction for
building reliable concurrent applications over databases. Trans-
actions offer so-called ACID guarantees. ACID is a promise that
transactions are atomic in the face of concurrency and failures, that
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they are isolated until committed, and that they are durable once
committed.

For latency-critical applications, durability is often what limits
performance. That is, executing the transaction is fast, but guar-
anteeing durability when the transaction commits takes a long
time. As a result, most of each transaction’s latency is attributable
to achieving durability. We are not the first to make this observa-
tion [5, 11], but let’s look at some more examples to make this more
concrete.

First, consider high-performance in-memory transaction sys-
tems. Even ten years ago, SILO [28] was reportedly able to execute
more than 20,000 TPC-C transactions per second on a single core.
Since SILO’s workers execute transactions sequentially, this implies
that executing each TPC-C transaction requires only a few tens
of microseconds. However, ensuring that a transaction is durable
(and highly available) may involve storing multiple copies of the
transaction’s effects off-box, ideally in failure-isolated locations.
For example, Amazon’s Aurora [29] replicates transaction logs six
times, across three different availability zones. Network round trip
times between availability zones are typically on the order of a few
milliseconds. Thus, making such a fast transaction durable may be
orders of magnitude slower than actually executing the transaction.
Almost all of the transaction latency observed by the application is
due to durability.

As another example, consider replicated geographically dis-
tributed database systems like CockroachDB [25] or Spanner [4].
If the system maintains a copy of the data locally, close to a client
(which is typically the goal), executing transactions on behalf of that
client can be very fast (sub-millisecond). But durably committing
the transaction requires replicating its effects across geographically
distributed regions, which introduces latencies in the tens or even
hundreds of milliseconds. Again, transaction execution is much
faster than durability.

As an aside, this was not always the case. Fifty years ago, when
the transaction model was very young, database systems were
typically centralized and databases were stored on slow disks. Ex-
ecuting a transaction involved multiple disk I/Os, and making a
transaction durable just added one more disk I/O (for writing a
log record). Thus, transactions were slow, and the marginal cost of
making a transaction durable was relatively low. Over time, though,
this situation has reversed. We have gotten much better at execut-
ing transactions quickly, while our standards for durability and
availability have become more demanding.

How can we reduce transaction latencies for latency-sensitive
transactional applications, in a world where latency is dominated
by durability? This question is the focus of our paper.
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One possible answer to this question is to reduce the cost of dura-
bility by taking advantage of fast networks and low-latency persis-
tent storage systems. This can certainly help. However, to offer a
strong durability (and availability) guarantee, we need to replicate
transactions to failure-isolated locations. As a rule of thumb, the
more failure-isolated the destination is, the slower we should expect
replication to be. For geo-replication, the speed of light imposes a
fundamental limit; we are never going to be able to quickly disaster-
proof a transaction. Thus, we argue that making durability faster
may help, but by itself it is not going to make this problem go away.

The other approach is to sacrifice durability in exchange for lower
latency. This approach is common enough that widely used database
systems can be configured to support it. For example, PostgreSQL
can be configured to use asynchronous commits, which means that
the database system acknowledges a transaction as committed be-
fore it is durable. That is, before the transaction’s write-ahead log
records are known to be written to persistent storage. Another
example of this is lazy replication [12], in which transactions are
allowed to commit quickly and then they are lazily replicated, after
commit, for durability.

Database systems provide these options because latency-
sensitive applications demand them. They are very effective at
hiding durability latency but, of course, they introduce the risk
that the effects of committed transactions will be lost. Because they
move durability outside of the scope of the transaction model, they
make it difficult for applications to understand (and manage) the
resulting risk. For example, how does an application know which
committed transactions are durable, or when they become durable?
Can durable transactions depend on non-durable transactions?
What happens when committed but not-yet-durable transactions
fail? Although it is effective at reducing latency, moving durability
outside of the scope of the transaction model amounts to throwing
the baby out with the bathwater.

In this paper, our goal is to offer a more principled foundation for
these kinds of performance/durability tradeoffs. Instead of moving
transaction durability outside of the scope of the transaction model,
we want to extend the model so that it can capture the tradeoff.
By doing so, we hope to enable the same latency benefits that
existing ad hoc techniques already provide, while at the same time
making it easier for applications to understand and manage the
durability risks that they introduce. We want different database
systems to be able to offer latency/durability tradeoffs based on a
common foundation, so that applications do not have to rely on ad
hoc solutions.

We claim that the major obstacle to supporting durability-aware
applications is the transaction model itself. The root problem with
the transaction model is that it couples transaction durability with
transaction commit. That is, there is a single commit point at which
the transaction becomes visible and is guaranteed to be durable. In
effect, this model forces all transaction guarantees to wait for the
slowest guarantee, which is often durability.

The primary contribution of our work is a new transaction model
that decouples transaction commit from transaction durability. Un-
der this model, transactions commit and then gradually “harden”
against failures after they have committed. All transactional guar-
antees except durability are made at the commit point. We refer to
this as an eventual durability (ED) model, and we argue for making

this model the basis of the “contract” between transactional data
systems and applications.

Eventually durable data systems that implement the eventual
durability model can manage and track transaction hardening. As
we will illustrate, they can implement application-facing interfaces
that enable durability-aware applications to selectively speculate
on transactions’ durability, when and if it makes sense to do so.
Durability-aware applications can control when and where they
are exposed to committed but not durable data, so that applications
can reduce latencies while managing the “blast radius” of failures.
We emphasize that real systems and applications already make
these trade-offs, but in an ad hoc way, outside of the scope of the
transaction model.

The remainder of this paper is organized as follows. First, in
Section 2, we present several hypothetical examples of durability-
aware applications, to illustrate how they could use an eventually
durable database system to manage latency/durability tradeoffs. In
Section 3 we present the eventual durability model in more detail. In
Section 5 we define what it means for a database system to correctly
execute eventually durable transactions. This essentially defines
our proposed contract between an eventually durable database
system and its applications. The ED model does not prescribe a
particular application interface, and in Section 4 we describe a few
examples of application interfaces that could be supported. Finally,
to illustrate what is involved in building an ED database system, we
built an ED version of PostgreSQL, called Pg-ED. Section 6 describes
how we modified PostgreSQL to do this, and Section 7 presents the
results of experiments comparing the performance of Pg-ED to the
original, unmodified PostgreSQL.

2 DURABILITY-AWARE APPLICATIONS

Before diving into a presentation of the eventual durability model,
we start with some discussion of how eventual durability could be
exposed to durability-aware applications. Our goal is to illustrate
how durability-aware applications could benefit from eventually
durable transactions by making explicit trade-offs between perfor-
mance and failure risks.

The eventual durability model does not prescribe a particular
application interface, and in Section 4 we describe various ways that
eventual durability can be exposed to applications. However, for the
sake of the examples described here, we will assume a very simple
interface that relies on transaction tagging. Specifically, whenever
the application commits a new transaction, it may optionally tag
that transaction as fast. We refer to transactions whose commits
are not tagged as safe:

• Safe transactions behave like normal, classical transactions.
When the database system acknowledges the commit of a
safe transaction, the transaction is guaranteed to be durable
and any transactions that it may have depended on are
guaranteed to be durable as well.

• Fast transactions are able to commit quickly because they
are not guaranteed to be durable when they commit. Fast
transactions are visible when their commit is acknowledged,
but they eventually become durable at some point after com-
mitting. It is possible that a fast transaction will fail after
committing, instead of becoming durable. If this occurs, the
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effects of the fast transaction are (atomically) lost from the
database, even though those effects might have been seen
by other transactions prior to the failure.

It is worth emphasizing that all transactions, whether fast or
safe, have all of the other guarantees that are normally associated
with transactions. They are atomic, and their effects remain isolated
until they commit. Thus, there is no risk that the application will be
exposed to data inconsistencies resulting from partial or incomplete
transactions. All transactions are executed serializably as well. In
Section 5, we will more precisely define what it means to execute
transactions serializably under the eventual durability model.

By tagging a transaction as fast, a durability-aware application
is accepting some failure risk in exchange for better performance.
Durability-aware applications can do this at the granularity of indi-
vidual transactions, so that they can control when they are willing
to accept this risk. By tagging a transaction as fast, an application
enables itself to speculate on the eventual durability of that transac-
tion. That is, it can perform additional work, including executing
additional transactions, without waiting for the fast transaction
to become durable. In the likely case in which the fast transaction
eventually becomes durable, the application’s speculation is suc-
cessful, and it has saved time. If the fast transaction fails to become
durable and is lost, the application may lose its speculative work. If
the application chose to expose any of that work, e.g., to end users,
then it must be willing to accept the risk that that work might be
lost.

2.1 Example: Programmatic Advertising

Next, we present a more concrete example to illustrate how a
durability-aware application might use fast and safe transactions.
Our example is a greatly simplified latency-sensitive ad exchange
application, used for programmatic advertising. A publisher is gen-
erating a web page for an end user, and wants to quickly fill an
advertising slot (e.g, a banner) on that web page with a targeted
advertisement. To obtain an advertisement for its ad slot, the pub-
lisher sents a request to an ad exchange, which acts as an interme-
diary between the publisher and advertisers. When it receives the
publisher’s request, the ad exchange runs an auction among the
advertisers, who bid to have their ad displayed to the end user in
the publisher’s ad slot.

The ad exchange maintains a database of auctions and bids.
When it receives the ad request from the publisher, it uses the
following workflow:

(1) It runs a CreateAuction transaction to create a new auc-
tion record in its database, identifying the publisher whose
request triggered the auction.

(2) It broadcasts a request for bids to potential advertisers.
Advertisers evaluate the bid opportunity and respond to
the ad exchange with a bid if they are interested in placing
an ad.

(3) Each time it receives an advertiser’s bid, the ad exchange
runs a NewBid transaction to record the bid in its database,
associating the bid with the publisher’s auction.

(4) At some point, the ad exchange will run a CloseAuction
transaction to mark the auction closed, and choose and
record a winning bid from among those that it received.

Figure 1: Lifecycle of Eventually Durable Transactions

(5) Finally, the ad exchange notifies the publisher of the win-
ning advertisement, and the publisher includes the ad on
the web page it is generating.

Auctions and bids recorded in the ad exchange database are later
used to bill advertisers, pay publishers, and provide analytics to
both.

To ensure timely display of the publisher’s web page, this work-
flow, from receipt of the publisher’s request to notifying it of the
winning advertisement, operates under a tight latency budget. The
workflow’s critical path includes the CreateAuction, NewBid,
and CloseAuction transactions, so the ad exchange is motivated
to execute them as quickly as possible.

Let us suppose that the ad exchange chooses to run CreateAuc-
tion and NewBid as fast transactions, and CloseAuction as safe.
This will eliminate much of the durability latency from the work-
flow’s critical path. In particular, the ad exchange can proceed
speculatively to request advertisers’ bids before the newly created
auction is durable, and bids will become visible quickly in the ad
exchange database. Only the durabilty wait for CloseAuction re-
mains. Until the auction closes, it is possible that failures will cause
individual bids to be lost, potentially resulting in a sub-optimal
bid winning the auction. It is also possible that the auction itself
will be lost before it closes (if CreateAuction fails), which would
prevent the ad exchange from providing an ad to the publisher.
However, the ad exchange can be sure that if CloseAuction’s
commit is acknowledged, then both the auction and surviving bids
will be durable. We emphasize that this kind of reasoning about
latency and failure risks is based on the ED model itself, and not
on specific implementation details or ad hoc mechanisms offered
by a particular underlying database system.

The ED model helps the ad exchange reason about the risks it
will be exposed to by using fast transactions. However, it is up to
the ad exchange - not the model - to determine whether those risks
are acceptable in exchange for the reduced latency offered by fast
transactions. The application can find an acceptable balance by
choosing which transactions will be fast and which will be safe. For
example, the ad exchange could choose to run CreateAuction
as safe rather than fast. This adds extra durability latency to the
workflow, but it ensures that the auction will not fail once it has
been created - though individual bids may be lost.

3 TRANSACTION MODEL

The important feature of the eventual durability transaction model
is that it decouples transaction durability from transaction commit.
Under the classical model, a transaction becomes visible atomi-
cally when it commits, and it is guaranteed to be durable. Aborted
transactions have no effects.
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(a) Classical Transaction Timeline

(b) Eventually Durable Transaction Timeline

Figure 2: Transaction Timeline Comparision

The eventual durability model adds two new transaction states to
the classical model, as illustrated in Figure 1. Transactions become
visible when they commit, as in the classical model, but they are
not durable at commit time. In the happy case, a committed trans-
action eventually hardens (becomes durable) after it commits, and
transitions to the new durable state. In the unhappy case, a failure
might prevent a committed transaction from becoming durable.
Such transactions transition to the new lost state, in which they
are no longer visible to other transactions. Just as transactions be-
come visible atomically when they commit, they become invisible
atomically when they are lost.

The advantage of this model is that it allows transactions to
commit and become visible faster, since commit does not require
durability. Figure 2a illustrates a transaction execution timeline
under the classical transaction model. The transaction’s commit
point does not occur until the transaction is durable. Since the
commit request is not acknowledged until after the commit point,
the acknowledgement must wait for the transaction to become
durable. Figure 2b illustrates a timeline of the same transaction
under the eventual durability model. The transaction reaches its
commit point and becomes visible quickly, without waiting for
durability. Later, the transaction finishes hardening and reaches its
durability point.

Neither transaction model specifies precisely what “durability”
means. In the classical model, where durability is tied to transaction
commit, durability is a promise that a transaction will remain visible
beyond its commit point, even if certain types of tolerated failures
occur. Different types of systems are designed to tolerate different
types of failures. In the eventual durability model, durability is a
promise that an already-committed transaction will remain visible,
despite failures. That is, it is a promise that a committed transaction
will never transition into the “lost” state.

As noted in Section 1, committing transactions before they are
durable is not a new idea. Lazy replication, asynchronous commits,
and other performance optimizations all sacrifice durability for
improved performance. What we are trying to do with eventual
durability is to put such techniques on a firmer foundation by build-
ing the idea of at-risk transactions into the transaction model itself.
This is important because it is the transaction model that forms

the basis of the behavioral “contract” between the database system
and its applications. For example, it allows the database system
to define precisely what happens when a committed transaction
fails, and how other transactions are affected by that failure, and
whether and how to expose these events to the application. This,
in turn, gives applications a basis for understanding and managing
the risks that come with speculation.

4 APPLICATION INTERFACE

The eventual durability model defines separate commit and dura-
bility points for each transaction. However, it does not specify
whether, when, or how to expose those two points to applications.

In Section 2, we described one possible application interface,
which distinguishes fast and safe transactions. In terms of the ED
model illustrated in Figure 2b, these two types of transaction behave
as follows. A commit request for a fast transaction is acknowledged
as soon as the transaction reaches its commit point. Thus, fast trans-
actions are visible when they are acknowledged, but they are not
yet durable. In contrast, the commit request for a safe transactions
is acknowledged after the transaction reaches its durability point.
Thus, like classical transactions, safe transactions will never be lost
once they have been acknowledged. This simple fast/safe interface
allows an application to trade off durability for performance at the
granularity of individual transactions.

Alternatively, an eventually durable data system could acknowl-
edge all transaction commit requests immediately after the commit
point, without waiting for durability. In addition, it could provide a
separate sync operation to allow the application to wait for durabil-
ity when necessary. For example, a connection-level sync operation
would block until all preceding transactions committed on that
database connection have reached their durability points. This is
similar to the behavior of file systems which defer durability guar-
antees on file writes until either the file is closed or an explicit sync
operation is performed. We discuss more examples of this kind of
"bulk" durability acknowledgement in Section 8.

Another interface design decision is whether to provide the ap-
plication with an explicit signal when committed transactions fail
and are lost. Under the eventual durability model, the loss of a
committed transaction is an asynchronous event, triggered by a
failure, which may occur after the transaction commit has been
acknowledged to the application. One interface option is to provide
an explicit callback to the application for each transaction, at the
point where it becomes durable or is lost. Alternatively, assuming
that failures are uncommon, the system could call back to the ap-
plication only in response to lost transactions. The simple fast/safe
interface we described in Section 2 provides no such callbacks.
Transaction loss is manifest only by the atomic removal of the lost
transaction’s effects from the database, which can be discovered on
subsequent transactions’ database reads.

5 CORRECTNESS

In this section, we will consider what it means for a database sys-
tem to correctly execute a set of eventually durable transactions.
We consider two well-known properties of transaction executions,
serializability and recoverability, and consider how to adapt them
for eventually durable transactions.

4736



5.1 Serializability Under Eventual Durability

Serializability and other consistency guarantees constrain what
each transaction should see when it reads the database. Serializ-
ability requires that all committed transactions appear to execute
sequentially, in some order. Thus, a transaction 𝑇 that reads an
item 𝑥 should read the value of 𝑥 that was written by the latest
committed transaction preceding it in the serialization order.

Eventual durability complicates this picture, because it intro-
duces the possibility that a committed transaction might be lost
at some point after it commits. Such a transaction is visible for a
time, but then ceases to be visible. Thus, in our example, we need
to define what 𝑇 should read if the latest committed transaction
preceding it in the serialization order has been lost.

To define serializability, we need to model executions of even-
tually durable transactions. We do this by extending the model
defined by Bernstein, Hadzilacos, and Goodman [2], which we re-
fer to as the classical model. In the classical model, a transaction
consists of a sequence1 of read and write operations, followed by
either a commit event (𝑐) or an abort event (𝑎). To model eventually
durable (ED) transactions, we add two new events: durability (𝑑),
which represents the point at which a committed transaction be-
comes durable, and failure (𝑓 ), which represents the point at which
a committed transaction is lost. A transaction may include either a
𝑑 or 𝑓 , but not both, and these events occur after the transaction
commits. (Aborted transactions do not have durability or failure
events.) Here are examples of ED transaction executions:

𝑇1 = 𝑟1 [𝑥] 𝑤1 [𝑥] 𝑐1 𝑓1
𝑇2 = 𝑟2 [𝑥] 𝑤2 [𝑥] 𝑐2 𝑑2

Transaction𝑇1 reads and writes 𝑥 and then commits, but ultimately
fails and does not become durable. 𝑇2 reads and writes 𝑥 and com-
mits, and eventually becomes durable.

An ED execution history of a set of ED transactions represents
the order in which the transactions’ operations occur during execu-
tion. It is an interleaving of the transactions’ operations, preserving
the operation order of each individual transaction. Here is an exam-
ple of a possible execution history of the two transactions above:

𝐻𝑎 = 𝑟1 [𝑥0] 𝑤1 [𝑥] 𝑐1 𝑟2 [𝑥1] 𝑤2 [𝑥] 𝑐2 𝑓1 𝑑2

Note that we annotate the read operations to indicate which version
of the object is being read, e.g., 𝑟2 [𝑥1] indicates that 𝑇2 reads the
version of 𝑥 that was written by 𝑇1

We want to define whether a given ED history is or is not se-
rializable. In the classical model, a history 𝐻 is serializable if its
committed projection, 𝐶 (𝐻 ), is equivalent to a serial execution. The
committed projection includes all of the operations of transactions
for which there is a commit event in the history. For ED histories,
we need to tweak this definition to account for the fact that commit-
ted transactions may fail. To construct the committed projection
𝐶 (𝐻 ) of an ED history𝐻 , we eliminate the operations of all aborted
transactions, as we would under the classical model. In addition,
we eliminate the operations of all failed transactions, as well as all 𝑑

1The classical model allows operations to be only partially ordered, but we’ll use total
orders here for ease of presentation

operations. For example, the committed projection of 𝐻𝑎 is

𝐶 (𝐻𝑎) = 𝑟2 [𝑥1] 𝑤2 [𝑥] 𝑐2

It does not include any of the operations of 𝑇1, which failed, and it
does not include 𝑇2’s durability event.

With this re-definition of committed projection in hand, we
define serializability for ED histories by appealing to the classical
serializability definition:

Definition 5.1. An eventually durable history 𝐻 is serializable
if, for all prefixes 𝐻 ′ of 𝐻 , 𝐶 (𝐻 ′) is serializable in the classical sense.

This is well-defined because the committed projection of an ED
history is a classical history, i.e., it contains neither durability events
nor failure events. Essentially, this definition requires that at all
times, the history is equivalent to executing the transactions that
have not (yet) failed in some serial order. As an example, consider
the history 𝐻𝑏 :

𝐻𝑏 = 𝑟1 [𝑥0] 𝑟2 [𝑥0] 𝑤1 [𝑥] 𝑐1 𝑤2 [𝑥] 𝑐2 𝑓1 𝑓2

𝐻𝑏 is not ED serializable because the prefix of 𝐻𝑏 without the two
failure operations is not serializable in the classical sense.

Because we define ED serializability by appealing to classical
serializability, we can define other consistency guarantees for ED
histories using a similar approach. For example, we can define an
ED history to be ED snapshot isolated if the committed projections
of its prefixes are snapshot isolated in the classical sense. This is in
keeping with our intention that eventual durability is largely or-
thogonal to consistency guarantees. Consistency guarantees define
what an application should see when it reads the database. Eventual
durability, on the other hand, only affects when the application can
see it.

5.2 Recoverability Under Eventual Durability

In classical histories, recoverability is about ensuring that the data-
base system is in a position to erase the effects of aborted transac-
tions. Classical recoverability demands that any transaction that
has read from an in-flight transaction not be allowed to commit. If
it were to commit and the in-flight transaction were then to abort,
the database system would be stuck. Thus, any classical system
that aims to ensure atomic transaction execution should ensure
recoverability.

As was the case for serializability, recoverability is a bit more
complicated for ED histories, because transactions may fail after
committing. In addition to being in a position to erase the effects
of aborted transactions (like a classical system), an ED system must
also be in a position to erase the effects of committed transactions
that subsequently fail. To account for this, we need to extend the
definition of recoverability for ED histories.

Definition 5.2 (ED Recoverability). An ED history 𝐻 is recov-
erable if both of the following conditions hold:

(1) If transaction𝑇2 reads from transaction𝑇1 in 𝐻 , then𝑇2 does
not commit before 𝑇1 commits.

(2) If transaction𝑇2 reads from transaction𝑇1 in 𝐻 , then𝑇2 does
not become durable before 𝑇1 becomes durable. That is, if
𝑑2 ∈ 𝐻 , then 𝑑1 ∈ 𝐻 and 𝑑1 precedes 𝑑2.
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Just as any classical system should ensure that its schedules are
recoverable, any ED system should ensure that its schedules are
ED Recoverable.

The first ED Recoverability condition matches the classical def-
inition of recoverability. It ensures that committed transactions,
which are visible to the application, do not depend on transactions
that have not committed yet, and which therefore might abort.

The second ED Recoverability condition ensures that the system
is prepared to erase the effects of committed transactions that sub-
sequently fail. Consider the following history, in which 𝑇2 has read
from 𝑇1:

𝐻𝑏 = 𝑤1 [𝑥] 𝑟2 [𝑥1] 𝑤2 [𝑥2] 𝑐1 𝑐2 𝑑2
𝐻𝑏 is a partial history, since 𝑇1 is not yet finished: it is committed,
but it is neither durable nor failed. It is ED Serializable, since it
is equivalent to executing 𝑇1 followed by 𝑇2. However, it is not
ED Recoverable, because it violates the second ED Recoverability
condition: 𝑇2 reads from 𝑇1, but 𝑇2 has become durable though 𝑇1
has not. If 𝑇1 were to fail at this point, like this:

𝐻𝑐 = 𝑤1 [𝑥] 𝑟2 [𝑥1] 𝑤2 [𝑥2] 𝑐1 𝑐2 𝑑2 𝑓1
then the ED transaction system would be "stuck". 𝑇1 became vis-
ible when it committed, and 𝑇2 saw its effects. When 𝑇1 fails, 𝑇2
should not be allowed to become durable, since it depends on 𝑇1.
However, in 𝐻𝑐 , 𝑇2 is already durable. Essentially, ED Recoverabil-
ity avoids this kind of situation by demanding that transactions
become durable only after the transactions they depend on are
durable.

5.3 Read-Only Transactions

We conclude this section with a brief discussion of read-only trans-
actions. Like all ED transactions, read-only ED transactions even-
tually either fail or become durable after commit. Since read-only
transactions make no changes to the database, this may seem like a
distinction without a difference. However, the distinction is actually
important.

If the database system guarantees ED serializability, applications
are guaranteed that a committed read-only transaction has seen a
serializable view of the database. However, committing a read-only
transaction does not guarantee that the data it has read is durable.
The read-only transaction may have read from earlier transactions
that are committed but are not yet durable.

This is where the read-only transaction’s durability point comes
in. As long as the execution is recoverable, the second condition in
Definition 5.2 demands that the read-only transaction’s durability
point occurs only after the data it has read is durable. Thus, the
durability point serves to indicate when the reads are safe. Con-
versely, if the read-only transaction has read from a transaction
that fails after commit, then the read-only transaction must also
fail after its commit.

By enforcing ED Recoverability for all transactions, including
read-only transactions, an ED transaction system offers applications
the ability to control the risks associated with reading non-durable
data. For example, under the simple fast/safe transaction interface
we introduced in Section 2, fast transactions are acknowledged as
soon as they commit, while safe transactions are not acknowledged
until they have reached their durability point. Thus, an application
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Finish Commit(T)

T is durable
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Figure 3: Committing a Transaction (T) in PostgreSQL

can use fast read-only transactions to quickly obtain a serializable
view of the database, which may include not-yet-durable data. Al-
ternatively, by using a safe read-only transaction and waiting for
its commit to be acknowledged, an application can ensure that the
data it has read are durable.

6 EVENTUAL DURABILITY PROTOTYPE

To illustrate the impact of eventual durability on database systems,
we developed an eventually durable variant of PostgreSQL, which
we will refer to as Pg-ED. We chose PostgreSQL as our starting
point because it is widely used, and because it offers some flexibility
(via configuration options) in the way that transactions are com-
mitted. We begin by providing a brief overview of transactions in
PostgreSQL, with a focus on how PostgreSQL makes transactions
durable and visible. Suzuki [23] offers a more detailed and thorough
description. We then describe the changes that we made to convert
PostgreSQL to Pg-ED.

6.1 PostgreSQL Transaction Overview

When PostgreSQL client initiates a connection, PostgreSQL’s super-
visor process spawns and assigns a backend process for that client.
PostgreSQL assigns each update transaction a unique identifier,
called an xid. PostgreSQL maintains a list of backend processes,
and each process records the xid of the transaction it is currently
executing. By scanning the server process list, PostgreSQL can iden-
tify the current set of active xids, i.e., those update transactions
that are currently in progress.

When clients make update requests, the backend process updates
the database and records the update on a write-ahead log, called
the xlog, which is shared by all backend processes. When the client
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asks to commit its current transaction, the backend process inserts
a commit record for the transaction in the xlog. Each record in the
xlog is assigned a log sequence number (LSN). As the name suggests,
LSNs increase monotonically as new log records are inserted. This
means that each transaction’s commit record will have a larger LSN
than that transaction’s update records, since the commit record is
logged last. After logging a transaction’s commit record, the server
marks the transaction as committed in another structure, called the
clog. Figure 3 summarizes the commit flow in PostgreSQL.

6.1.1 Transaction Durability. PostgreSQL makes transactions
durable using the write-ahead log. It ensures that a transaction
is durable by waiting until all log records up through the transac-
tion’s commit record’s LSN have been flushed to persistent storage
before making the transaction’s updates visible and acknowledging
the transaction’s commit. Since LSNs increase monotonically, a
transaction’s commit record will have a higher LSN than all other
log records written for that transaction.

PostgreSQL can also be deployed in a high-availability (HA)
configuration, with a primary server and a standby. The standby
holds a copy of the database and the log, and clients can fail over
to the standby if the primary is lost. In this HA configuration, the
primary server streams log records, in LSN order, to the standby,
which stores them persistently and then acknowledges receipt to
the primary. PostgreSQL waits until a transaction’s log records are
persistently stored at both the primary and standby sites before
considering the transaction to be committed.

6.1.2 Transaction Visibility. PostgreSQL’s database is a multi-
version row-store, and each new record (row) version records two
xids, called xmin and xmax. xmin records the xid of the transac-
tion that created it. xmax records the xid of the transaction that
deletes that version, or replaces it with an updated version. Each
PostgreSQL transaction reads from a logical snapshot of the data-
base that is defined to include all and only the updates that were
committed before the transaction starts.2 In order for 𝑇 ’s updates
to be included in subsequent transactions’ snapshots, i.e., in order
for 𝑇 to be visible, two conditions have to be satisfied. First, 𝑇 must
be marked as committed in the clog. Second, 𝑇 must no longer
be active. As illustrated in Figure 3, a transaction remains active
until its log records are durably stored. Thus, this second condition
ensures that only durably committed transactions are visible.

6.2 Implementing Eventual Durability

To expose fast and safe transactions to Pg-ED clients, we over-
load PostgreSQL’s existing synchronous_commit parameter, which
controls when PostgreSQL acknowledges transaction commits. A
transaction that is committed with synchronous_commit = OFF
is handled by Pg-ED as a fast transaction. Fast transactions be-
come visible and are acknowledged as soon as they are committed,
without waiting for durability. A transaction that is committed
with synchronous_commit = ON is handled by Pg-ED as a safe
transaction. It becomes visible as soon as it commits, but it is not
acknowledged to the client until it is durable.

2This assumes that PostgreSQL is running with a transaction isolation level of Repeat-
able Read or higher.
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Figure 4: Transaction Commit Flowchart for Pg-ED

To support eventual durability in Pg-ED, we need to address
two problems. The first is providing early visibility. Under the ED
model, all transactions, whether fast or safe, should become visible
as soon as they commit, without waiting for durability. Second, we
need to enforce ED Recoverability (§ 5.2). In the remainder of this
section, we describe how Pg-ED addresses these two problems.

6.2.1 Early Visiblity. Figure 4 illustrates the commit procedure
in Pg-ED, for both safe and fast transactions. To implement early
visibility for transaction𝑇 , we changed the commit flow so that each
transaction 𝑇 is marked as “done” immediately after the commit
decision is recorded in the clog, without waiting for durability. As
a result,𝑇 ’s database updates will be included in the read snapshots
of any subsequent transactions, though 𝑇 might not be durable.

One limitation of our prototype is that certain database resources,
such as table-level locks, that may be associated with a safe trans-
action 𝑇 are held until 𝑇 becomes durable, as shown in Figure 4.
This conservative design decision was made for simplicity. It does
not directly impact transaction latencies, but it does miss some
opportunity for throughput optimization, as we show later, in § 7.4.

6.2.2 Enforcing Recoverabilty. ED Recoverabilty (§ 5.2) imposes
two conditions on Pg-ED. First, no transaction should commit until
the transactions it has read from have committed. Second, no trans-
action’s durability point should precede the durability points of the
transactions it has read from. The second condition is important
because Pg-ED may not acknowledge a safe transaction’s commit
prior to its durability point.

The first condition is enforced by PostgreSQL’s existing snapshot
mechanism, which is maintained in Pg-ED. Every transaction 𝑇

reads from a database snapshot that (a) is defined before 𝑇 ’s first
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read, and (b) only includes the effects of transactions that were com-
mitted before the snapshot was defined. Thus, Pg-ED transactions
read only committed (though not necessarily durable) updates.

Enforcement of the second ED Recoverabilty condition is simpli-
fied by the fact that transactions become durable in order of their
commit LSNs. This means that if 𝑇 is a read-write transaction that
reads from 𝑇 ′ and 𝑇 ’s own updates are durable, then 𝑇 ′ must also
be durable, since 𝑇 must commit after 𝑇 ′ and thus must have a
larger commit LSN than 𝑇 ′. Thus, to ensure that 𝑇 is durable, it is
sufficient for Pg-ED to wait for 𝑇 ’s own commit record to become
durable. This is exactly what Pg-ED does (Figure 4).

However, this argument does not hold if 𝑇 is a read-only trans-
action. Read-only transactions do not produce log entries, so𝑇 will
not have a commit LSN to wait on before it can be declared durable.
If 𝑇 reads from 𝑇 ′, ED Recoverability demands that Pg-ED wait for
𝑇 ′ to be durable before 𝑇 can be considered durable.

To handle read-only transactions, we introduced two new mech-
anisms to Pg-ED. The first is an in-memory structure that records
the xid and commit LSN of each non-durable update transaction.
Transactions are added to the structure when they commit, and
removed from the structure once the system’s durable LSN high-
water-mark has advanced past the transaction’s commit LSN. The
second mechanism tracks transactions’ direct read dependencies.
When transaction 𝑇 reads a tuple, Pg-ED records the xid of the
transaction that created the tuple as a direct read dependency of 𝑇 .
When𝑇 commits, and if it is read-only, Pg-ED uses the non-durable
transaction structure to check whether any of𝑇 ’s direct read depen-
dencies are non-durable. If any are, 𝑇 ’s commit acknowledgement
is delayed until all have become durable. Since Pg-ED transactions
become durable in commit LSN order, this delay is sufficient to
ensure that 𝑇 ’s indirect read dependencies will be durable as well.

This mechanism ensures that commit acknowledgements are
delayed only for safe read-only transactions that have read recently
updated (and hence not yet durable) data. However, read depen-
dency tracking does add some overhead to transaction processing.
Pg-ED tracks read dependencies for all transactions, not just read-
only transactions. This is because Pg-ED may not know whether
a transaction will be read-only when it starts reading. Read de-
pendencies tracked for update transactions are simply ignored at
commit time.

7 EVALUATION

We designed a series of microbenchmarks with which we charac-
terize the impact of eventual durability on transaction latency and
throughput by comparing Pg-ED against baseline PostgreSQL. In
addition, we explored the impact of eventual durability in a more
realistic setting, using the TPC-C benchmark.

7.1 Experimental Setup

Our experiments were run using Amazon Web Services (AWS). Un-
less otherwise specified, experiments were run in a high-availability
configuration, with primary and standby servers running on
m5.large instances, each having two Intel(R) Xeon(R) Platinum
8175M CPUs @ 2.50GHz, 8 GiB of memory, and an attached 100
GiB Elastic Block Storage (EBS) volume. The servers are configured
to log to their EBS volumes. A third server, on an AWS c5.4xlarge

instance, is used as a client node. The client node is only used for
running test scripts and workloads against the PostgreSQL servers.
We use pgbench [21] on the client node to generate workloads. All
workloads were run at PostgreSQL’s serializable isolation level.

The baseline PostgreSQL server used in our experiments is com-
piled from source, using the 15.1 release of PostgreSQL. Pg-ED is
also based on the 15.1 PostgreSQL release.

7.2 Impact of Durability on Latency

First, we present a simple experiment intended to show the impact
of durability on transaction latency in our setting. The experiment
uses a database with a single table containing two columns (integer
keys and values) and one million rows. There is a single client
which generates one transaction at a time, with no think time
between successive transactions. Each transaction updates a value
in a single row, selected uniformly at random. We run the client
for two minutes, and measure and report the mean transaction
latency observed by the client. We ran this experiment using several
server configurations, which offer different levels of durability and
availability:

non-durable: In this configuration, there is no standby server,
and the primary is configured to use asynchronous commit. This
means that the server acknowledges transaction commits to the
client without waiting for the transaction’s commit record to
be written to the transaction log on EBS. In this configuration,
committed transactions are not guaranteed to survive a restart
of the PostgreSQL server or loss of the server instance. Thus, this
experiment measures transaction latency without durability.
1AZ: The 1AZ configuration is identical to the non-durable con-
figuration, except that the PostgreSQL server is configured with
synchronous_commit=local. This means that the server waits
for each transaction’s commit record to be flushed to the transac-
tion log on the server’s attached EBS drive before acknowledging
the transaction’s commit to the client. Since the EBS volume is
independent of the database server, durable transactions will sur-
vive a loss of the database server. Internally, EBS replicates writes
within an availability zone (AZ) but not across AZs. Thus, trans-
actions run in this configuration are not guaranteed to survive a
failure of the server’s AZ.
1Region: This configuration is identical to the 1AZ configura-
tion, except that the standby server is located in a different AZ
within the same AWS region as the primary. (The primary is lo-
cated in us-east-1a, and the secondary in us-east-1b.) In this
configuration, durable transactions are guaranteed to survive a
failover to the standby server, even if the primary’s AZ is lost.
However, durable transactions are not guaranteed to survive a
disaster that causes loss of the entire us-east region in AWS.
2Regions: Finally, we tested a disaster-tolerant 2Region con-
figuration that is identical to the 1Region configuration ex-
cept that the standby server is placed in a remote AWS region
(ca-central). This ensures that durable transactions will even
survive a failover to ca-central in the event of a complete loss
of the us-east region.

In all configurations, the client is located in the same availability
zone as the primary server (us-east-1a).
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Figure 5: Impact of Durability on Transaction Latency

Figure 5 compares transaction latencies in each of these configu-
rations. Transaction latency in the 1AZ configuration is roughly
5x that of the non-durable baseline. Thus, roughly 80% of latency
in the 1AZ configuration is due to durability. If the system is con-
figured with a standby in a different AZ (1Region configuration),
which is common practice, more than 90% of transaction latency is
attributable to durability. Replicating the transaction to a remote
region can increase latency by another order of magnitude or more,
depending on the distance to the remote.

7.3 ED Transaction Latency

Our next experiment shows the latency of fast and safe ED trans-
actions in Pg-ED. For this experiment, we use the same database
as in Section 7.2. Four concurrent pgbench clients each send one
transaction at a time, with no think time between requests. Two of
the clients issue update transactions, each of which updates a single
randomly selected row from the table. One of the two update clients
issues fast transactions, and the other issues safe transactions. The
two remaining clients issue read-only transactions, each of which
reads a single randomly selected row from the table. Again, one of
the read-only clients issues fast read-only transactions, while the
other issues safe ones. Each experimental run lasts for 2 minutes,
and we measure the mean client-side latency of each of the four
types of transactions. We ran this experiment three times, using
the 1AZ, 1Region, and 2Region server configurations, which offer
successively stronger durability guarantees.

Figure 6a shows the latencies of fast and safe update transactions
in Pg-ED, as well as update transaction latency in baseline Post-
greSQL, under all three configurations. As expected, the latency
for safe update transactions in Pg-ED is similar to that of baseline
updates, since both provide the same durability guarantee. Fast up-
date transactions offer much lower latency than safe transactions in
Pg-ED, because they avoid durability-related delays. The advantage
increases for server configurations that offer stronger durability
guarantees. Pg-ED’s fast update transactions have slightly higher
latency than non-durable updates in baseline PostgreSQL. This
difference is due to read dependency tracking in Pg-ED. The ad-
vantage of using fast update transactions in Pg-ED is that Pg-ED is
aware of when such transactions eventually become durable. This
allows it, for example, to determine a durability point for read-only
transactions, as discussed next.

Figure 6b shows the latency of read-only transactions. Fast read-
only transactions in Pg-ED have latencies similar to those of read-
only transactions in the baselines. Latencies for safe read-only trans-
actions are slightly higher than those of fast transaction, because
Pg-ED’s read-dependency tracking will ensure that their commits
will not be acknowledged until all of the data they have read are
durable. The latency gap between safe and fast transactions is very
small in this experiment because there is little data contention.
Thus, it is not likely that a safe read-only transaction will read
very recently updated data. We would expect the latency gap be-
tween Pg-ED’s safe and fast read-only transactions to increase with
increasing contention.

Reads in baseline PostgreSQL are both safe and fast because
PostgreSQL transactions may read from an earlier and slightly
staler snapshot of the database than a similar transaction in Pg-
ED. Figure 7 explains why this is. It shows the timelines of three
read-write transactions (𝑇 0,𝑇 1, and𝑇 2) and a read-only transaction
(𝑇𝑟 ) in both PostgreSQL and Pg-ED. Recall that transactions read
from a snapshot of the database that includes the updates of all
transactions that commit before the reader starts. Thus, in Figure 7a,
in PostgreSQL𝑇𝑟 reads from a snapshot that includes updates made
by 𝑇0, but that does not include 𝑇1 or 𝑇2. Since transactions in
PostgreSQL are durable when they commit, 𝑇𝑟 ’s read snapshot
includes only durable updates. Furthermore, 𝑇𝑟 ’s latency is not
affected by the latencies of 𝑇1 and 𝑇2, since their updates are not
included in 𝑇𝑟 ’s read snapshot.

Figure 7b illustrates the same set of transactions in Pg-ED, where
each transaction commits first and becomes durable later. In this
case, 𝑇𝑟 ’s read snapshot includes the updates of both 𝑇0 and 𝑇1,
since both commit before 𝑇𝑟 starts. Thus, in Pg-ED, 𝑇𝑟 actually
sees a later read snapshot than in it would have seen in the baseline
system. However, that snapshot may include both durable and
non-durable updates, such as those of transaction 𝑇1, which is
committed but not yet durable at the time 𝑇𝑟 starts. If 𝑇𝑟 is a fast
transaction, Pg-ED can acknowledge its commit immediately, even
though 𝑇𝑟 ’s read set includes 𝑇 1’s non-durable updates. Thus, 𝑇𝑟 ’s
latency in Pg-EDwill be similar to its latency in the baseline system,
though it sees more recent updates in Pg-ED. However, if 𝑇𝑟 is a
safe transaction, then Pg-ED cannot acknowledge𝑇𝑟 ’s commit until
any non-durable updates it has read from its snapshot have become
durable. In the example in Figure 7b, assuming 𝑇𝑟 reads from 𝑇1,
𝑇𝑟 cannot be acknowledged until 𝑇 1 becomes durable. This is why
a read-only transaction may have higher latency if it is safe than if
it is fast, and higher latency than a similar transaction would have
in the baseline system.

7.4 Contention

Although the primary motivation for eventual durability is to pro-
vide latency-sensitive applications with a tool for reducing transac-
tion latencies, eventual durability can also improve database system
throughput by reducing data contention. Eventual durability can
reduce contention because transactions commit quickly, without
waiting for durability. Thus, commit-released resources, such as
locks, will be held for less time in an ED database system.
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Figure 6: Transaction Latencies

(a) Baseline Example

(b) Eventual Durability Example

Figure 7: Transaction Read Examples

To demonstrate this, we ran an experiment in which both Pg-ED
and baseline PostgreSQL are offered a simple high-contention work-
load. In each case, the database system configuration was the same
as that used in the 1Region latency experiments. The test database
consists of a single small table with two integer columns (key and
value) and 256 rows. We configured pgbench with 128 clients, each
of which submits simple transactions that each update the value
of a single row, selected uniformly at random. We controlled the
offered load, i.e., the aggregate rate with which the clients try to
submit transactions to the server.

We ran a series of experiments in which the offered load ranged
from 2000 transactions per second (TPS) to 50000 TPS. In Post-
greSQL (both the baseline and our ED prototype), write/write data
contention can manifest as latency or as transaction aborts. In
these experiments, we configured the clients to automatically retry
aborted transactions up to five times, so that almost all transactions

Figure 8: Transaction Throughput Under High Contention

eventually commit. In each experiment, we measured the actual
transaction rate sustained by the server, i.e., the actual rate at which
transactions successfully committed.

Figure 8 shows the result of this experiment. The "baseline" result
shows our measurements for the baseline PostgreSQL system. The
"ED Fast" and "ED safe" results show our measurements for Pg-ED
when the clients submitted fast or safe transactions.

In these experiments, the baseline system’s throughput reached
a maximum of a little over 4000 TPS. With safe transactions, the
ED prototype reached a maximum throughput of roughly 12000
TPS. In both cases, the clients are not exposed to any failure risks;
transactions are not acknowledged until they are durable. However,
since the ED prototype is able to release locks at commit time
(well before the transaction is acknowledged), there is less data
contention and less chance that a transaction will have to be aborted
and retried due to a write-write conflict. At peak load, roughly 30%
of the work done by the baseline PostgreSQL system was due to
transaction retries. For Pg-ED, retries made up only about 5% of
total work.
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In our experiment, Pg-ED was able to run fast transactions at
about 23000 TPS. Ideally, we would expect to see similar perfor-
mance from Pg-ED in this experiment for both fast and safe trans-
actions, since both types of transactions are committed quickly
(before durability). The gap between fast and safe transaction per-
formance is due to a limitation of Pg-ED. It releases some, but not
all, transaction locks when a transaction commits. Specifically, it ef-
fectively releases row locks at commit time, but "object" locks (those
that are visible in pg_locks) are not released until the transaction
is durable. This overly conservative lock release strategy simplified
Pg-ED, but it leaves some performance on the table, as shown by the
experiment. An implementation with more aggressive lock release
should be able to achieve safe transaction throughput comparable
to that of fast transactions, which release all locks at commit time.

Finally, we note that by releasing ED transaction locks at commit
time, the ED prototype is essentially realizing the same benefits that
are obtained by early lock release [6, 10, 15] for normal (non-ED)
transactions. We discuss this further in Section 8.

7.5 TPC-C

Our intention in running a TPC-C workload is to explore how an
application might trade durability for performance. As a baseline
scenario, we first run TPC-C against Pg-ED with all transactions
safe. Then, we consider an alternative scenario in which we run
NewOrder transactions as fast, and all other transactions as safe.
Under this alternative, the application should see (significantly)
lower latency for NewOrder transactions than it did in the baseline.
However, there is a risk that acknowledged NewOrder transactions
might be lost. By running the remaining transactions as safe, the
application can manage and limit this risk. In particular, since Or-
derStatus is safe, any order reported by an OrderStatus transaction
is guaranteed to be durable. Similarly, any order that is paid for
(Payment) or delivered (Delivery) is guaranteed to be durable.

We ran both TPC-C scenarios against Pg-ED. The setup of this
experiment is similar to the one used for the contention tests, but
we used a 1Region configuration rather than a 1AZ configuration.
(The results are qualitatively similar in the 1AZ configuration, but
the latencies are lower in 1AZ.) We use CMU’s benchbase [7] – with
minor modifications to control transaction durability – to carry out
the TPC-C test. We wanted to keep the experiment setting simple,
so we used a scale factor (number of warehouses) of 10 and 100
terminals. The test ran for 10 minutes at a rate of 300 TPS, and we
recorded the latencies of the different transaction types.

Figure 9 shows the latency measurements for both TPC-C sce-
narios. In our test configuration, the application can cut the latency
of NewOrder transactions almost in half by running them as fast
transactions. As expected, the latencies of the remaining transaction
types are about the same under both scenarios.

8 RELATEDWORK

Durability’s impact on performance has been a known problem
for decades. One strategy for reducing the performance impact of
durability is group commit [5]. When an application requests to
commit a transaction, the system first decides whether it is willing
to allow the transaction to commit. If it is, then the transaction is

Figure 9: TPC-C Transaction Latencies

said to be pre-committed, without durability. Pre-committed trans-
actions are made durable in batches (groups). The system waits
for durability before acknowledging the commit to the application,
which is unaware of pre-commitment.

Group commit can improve performance in several ways. First,
making transactions durable in batches can be more efficient than
making them durable individually. For example, a single disk write
can be used to carry the commit records of multiple transactions to
the disk. Second, the system can release database locks and other
resources at pre-commit time instead of holding them until dura-
bility, thus potentially reducing contention for those resources. Of
course, this means that updates made by pre-committed transac-
tions might be read by subsequent transactions. Some mechanism,
such as explicit dependency tracking, is needed to ensure that such
transactions do not commit before their dependencies do.

This approach was described by DeWitt et al [5], and was im-
plemented by IBM’s IMS/VS as part of its FastPath feature for
in-memory data [9]. It was also implemented in Shore-MT [15] and
by Graefe et al for foster B-Trees [10]. Graefe et al also proposed
a similar technique, called controlled lock violation [11], which
retains locks past the pre-commit point and uses them as the means
of tracking dependencies.

Similar ideas have been applied in distributed settings. COCO [18]
amortizes the cost of durably committing transactions by divid-
ing transaction execution into epochs and committing all of the
transactions in an epoch as a batch. More recently, Concurrent Pre-
fix Recovery (CPR) [22], which is implemented in a transactional
key value store called Faster, pushed this idea further. With CPR,
pre-commited transactions are periodically made durable in bulk
using an efficient transaction-consistent snapshotting technique,
and commits are also acknowledged to the database application in
bulk. Distributed Prefix Recovery [17] extends the CPR approach
to a distributed setting.

There are two main differences between pre-commit and even-
tual durability. First, pre-commit is purely a system performance
optimization, and is transparent to database applications. Pre-
committed transactions are never acknowledged before they are
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durable. Thus, pre-commit does not demand any changes to the
transaction model, which forms the contract between system and
application. Second, although pre-commit/group commit tech-
niques can improve transaction throughput by reducing resource
contention, they do not directly reduce transaction latencies, since
commits are not acknowledged before durability. Indeed, they may
increase individual transaction latencies in order to accumulate
batches of transactions so that they can be made durable in bulk.

Eventual durability can be seen as pushing the pre-commit ap-
proach further, in that committed but not-yet-durable transactions
may be exposed to applications. This provides opportunities for
speculation at the application level, provided that the application is
able to manage and accept the risk of failed transactions. The even-
tual durability model also naturally exposes the same performance
optimization opportunities that are exploited by pre-commit. In
particular, resources held by eventually durable transactions can
be released at the commit point, without waiting for durability. In
this sense, the commit point of an ED transaction is analogous to
the pre-commit point of a classical transaction.

ExposingNon-Durable Transactions.Many database systems
offer the ability to sacrifice durability for performance. Examples in-
clude asynchronous commit options in PostgreSQL [27, Ch. 30.4] and
Oracle TimesTen [20], which acknowledge a transaction’s commit
before the transaction is guaranteed to be durable. We refer to these
as ad hoc techniques, since their behavior is system-dependent.
They make it difficult for applications to manage failure risks, as it
is difficult for the application to tell when transactions have become
durable, or whether data read from the database are durable.

Chang et al [3] propose a notion of weak durability called ACID−,
under which transactions are not durable when they commit. The
ACID− proposal prescribes a specific API, under which committed
transactions become durable if and only if durability is requested
by the application via a special persist operation. In contrast,
eventual durability proposes a more general extension of the under-
lying transaction model. The ED model can used to define a variety
of APIs, and it treats durability as a system-managed property: all
transactions (hopefully) become durable sometime after commit.
More importantly, our work shows how to adapt classical notions of
recoverability and consistency (e.g., serializabilty) to the the ED set-
ting (Section 5). Unlike ACID−, which essentially describes a form
of crash consistency, the ED model can capture a variety of failures
that cause transactions to be lost, ranging from crash-and-restart
to more localized partial failures in large-scale systems.

Persistent Memory. Durability is also an issue for the design
of in-memory data structures for persistent memory, or for hy-
brid memories, which include both volatile and persistent state.
Israelevitz et al [14] observe, as we have, that demanding that all
operations be durable when they are acknowledged is likely to
be expensive. They introduce buffered durable linearizability as a
correctness condition for such systems. Like ED serializability, it
requires that operations be ordered when they return, and it allows
for the possibility that some transactions at the tail of the sequence
might be lost as a result of a crash.

File Systems. File systems often persist updates lazily, deferring
any durability guarantees until the file is closed or until explicit
synchronization, e.g., POSIX fsync [26]. xsyncfs replaces explicit

program-issued synchronization operations with an external con-
sistency guarantee: file writes are guaranteed to be durable before
any process outputs (e.g., terminal I/O) that might depend on those
writes can be exposed. This provides some opportunity for lazy
persistence without requiring explicit durability fences.

Replicated Distributed Systems. In replicated distributed sys-
tems, durability is achieved by storing multiple copies of updates.
Updates are propagated to all copies, either synchronously or asyn-
chronously. These two strategies were termed eager and lazy by
Gray et al [12], who summarized the advantages of each approach.
Replicated distributed database systems, like Spanner [4], Cock-
roachDB [24], and TiDB [13] typically use eager replication to
ensure consistency and durability, but some systems offer lazy
replication as an option. For example, both PostgreSQL [27, Ch. 27]
andMicrosoft SQL Server [19] can be run in high-availability config-
urations in which transactions are replicated to multiple locations,
and both systems offer an asynchronous replication option.

Li et al. [16] introduce the idea of RedBlue consistency, which
allows users to issue fast (blue) operations that execute locally and
are lazily replicated, alongside slow (red) operations which provide
strong consistency and serializability guarantees. This work focuses
on consistency, rather than durability, but we note it here because
it exposes different consistency guarantees to the application by
tagging transactions (red vs. blue) in much the same way that our
example API distinguishes fast and safe transactions.

Saucr [1] reduces the cost of durability by dynamically adjust-
ing whether updates are written to disk on each node, or only to
memory. If enough nodes are up, Saucr writes only to memory,
trusting that a failed system can recover lost state from another
system’s memory. Otherwise, Saucr uses a more expensive path in
which updates are pushed to local persistent storage (disk). How-
ever, in either case, Saucr must communicate with a majority of
the replicas before it can acknowledge any updates. Orca [8] re-
duces update latency by deferring durability guarantees for updates
until those updates are later read, a technique which is referred to
as consistency-aware durabilty. ED recoverability (§ 5.2) imposes
a similar requirement at the transaction level: a transaction that
reads an update cannot itself become durable until the updating
transaction is durable.

9 CONCLUSION

We have proposed a model of eventually durable transactions. It
offers a foundation for fine-grained application-managed durabil-
ity/performance tradeoffs. We showed how traditional notions of
correctness, such as serializability and recoverability, translate to
the eventual durability setting. We also presented Pg-ED, a modi-
fied version of PostgreSQL which supports eventual durability. Our
goal for this work is to enable eventually durable data systems sup-
porting durability-aware applications, with the eventually durable
transaction model as the basis of the contract between them.
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