Peer-to-Peer Netw Appl
DOI 10.1007/s12083-009-0054-6

Popularity-aware prefetch in P2P range caching

Qiang Wang - Khuzaima Daudjee - M. Tamer Ozsu

Received: 1 December 2008 / Accepted: 5 June 2009
© Springer Science + Business Media, LLC 2009

Abstract Unstructured peer-to-peer infrastructure has
been widely employed to support large-scale distrib-
uted applications. Many of these applications, such as
location-based services and multimedia content distri-
bution, require the support of range selection queries.
Under the widely-adopted query shipping protocols,
the cost of query processing is affected by the number
of result copies or replicas in the system. Since range
queries can return results that include poorly-replicated
data items, the cost of these queries is usually domi-
nated by the retrieval cost of these data items. In this
work, we propose a popularity-aware prefetch-based
approach that can effectively facilitate the caching
of poorly-replicated data items that are potentially
requested in subsequent range queries, resulting in sub-
stantial cost savings. We prove that the performance of
retrieving poorly-replicated data items is guaranteed to
improve under an increasing query load. Extensive ex-
periments show that the overall range query processing
cost decreases significantly under various query load
settings.

Q. Wang (X))

School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L3G1

e-mail: gbwang@uwaterloo.ca, gangw.2000@gmail.com

K. Daudjee - M. T. Ozsu
University of Waterloo, Waterloo, Ontario, Canada

K. Daudjee
e-mail: kdaudjee@uwaterloo.ca

M. T. Ozsu
e-mail: tozsu@uwaterloo.ca

Published online: 08 July 2009

Keywords Range caching - Prefetching -
Unstructured P2P network

1 Introduction

Peer-to-Peer (P2P) infrastructure is being widely em-
ployed to support large-scale distributed applications.
Besides well-established keyword-based file sharing
and content distribution systems (e.g., Gnutella! and
BitTorrent?), many applications require complicated
query types such as range selection queries® to be
supported.

Range queries are used to retrieve all data that sat-
isfy the specified range constraints. For instance, in on-
demand P2P video systems (e.g., Joost*), video clip data
within a certain time frame are buffered and shared by
some peers, which can be modeled as range data. Peers
can pose a range query over any time frame to search
the video clips that they intend to play, and the video
data satisfying the range constraints are returned to the
query issuer. Similarly, in a P2P location-based service
system, users may request hotel information within a
geographical area around a conference site, which can
be modeled as a range query over the corresponding
location. Range query processing may also be applied
over single values as an advanced functionality of exist-
ing systems. For instance, in a music file sharing system,

Thttp://www.gnutella.com
Zhttp://www.bittorrent.com/

3For conciseness, we use range query and range selection query
interchangeably in the remainder of the paper.

“http://www.joost.com

@ Springer

http://www.gnutella.com
http://www.bittorrent.com/
http://www.joost.com

Peer-to-Peer Netw Appl

song files are identified through title and release year
(e.g., {“Pink Floyd”,“1982”}); a range query “search
all Pink Floyd songs between year 1980 and 1990 will
enhance the system with range-aware functionality.

Existing works on P2P range query processing typ-
ically rely on structured overlay network protocols
(e.g., BATON [11] and P-Tree [5]). While these pro-
tocols guarantee range query processing to complete
within a bounded number of routing hops, they are not
widely adopted in practical systems due to the following
drawbacks: (1) the construction and maintenance, par-
ticularly during network churn, of structured overlay
networks are non-trivial; and (2) these approaches of-
ten disregard the potential of data caching during query
processing, which may affect query execution perfor-
mance significantly.

In contrast, unstructured P2P overlay network archi-
tecture is widely adopted by practical systems, where
constrained flooding mechanisms are usually employed
for keyword-based searching (e.g., in Gnutella and
Bubblestorm [20]). Since data are cached at peers after
retrieval, subsequent queries for the same data can
be answered by multiple caches, facilitating the search
process. In the case of range query processing, the
queries can also be shipped within the network through
flooding. Data retrieved after the query execution are
easily cached at query issuers, which produce distrib-
uted range caches that can potentially be used during
subsequent range query processing.

Since unstructured P2P overlay networks are built
without the knowledge of data placement, average
communication cost (e.g., the number of messages or
latency) per query is inversely proportional to the num-
ber of data copies, or replicas, in the network that
satisfy the query [4]. Those data results that are not
well-replicated may incur a higher cost to retrieve,
delaying the progress of the range query processing.
For simplicity, all peers are assumed to be sufficiently
powerful to keep data replicas and process related
range queries. In practice, peers with heterogeneous
storage and processing capacity may act as super-peers.
Such a general heterogeneous model is not studied in
this dissertation. However, in the proposed approach,
peers may impose different constraints on cache stor-
age capacity, which will affect the computation of the
data correlation parameter t, as detailed in Section 3.1.

It is often the case that range query results include
data items that are not well replicated. For example,
in a location-based hotel reservation system in P2P
networks, “popular” hotels, such as those close to a
conference site, are usually queried first by conference
participants. When these hotels are booked in full, users
tend to relax the range constraints (e.g., with respect

@ Springer

to geographical proximity) to explore other hotel
information, which may not be well replicated in the
network yet. For simplicity, we refer to these data
items that are not well replicated as poorly replicated
data items. The approach proposed in this work will
predict and prefetch those poorly-replicated data items
that may potentially be requested in subsequent range
queries and then facilitate the caching of these data to
improve overall query execution performance.

Existing approaches are not effective in facilitating
the caching of the poorly-replicated data items that may
potentially be queried in the future. In unstructured
P2P overlay networks, uniform replication scheme (de-
ployed in KaZaa) caches each data item at a fixed
number of peers so that it preventively excludes poorly-
replicated data items from the system. However, this
scheme is oblivious to the knowledge of query distribu-
tion such that the fixed number of peers that manage
the data items covered by “popular” queries may be
overloaded. Moreover, the replication scheme requires
strong altruistic cooperation from peers in that peers
may cache data items regardless of whether they are
issuing queries, which may not be feasible in uncooper-
ative P2P environments. In contrast, with the propor-
tional replication scheme that is employed in Gnutella,?
each peer only caches results after query execution such
that caching process is triggered by query processing
and only query issuers rather than arbitrary peers cache
the results. Similarly, square-root replication scheme [4]
makes the number of cached data items proportional
to the square root of the number of the corresponding
queries, improving average query processing perfor-
mance with respect to constrained cache sizes. In com-
parison to the uniform replication scheme, the last two
schemes achieve better load-balancing by considering
query distributions and do not rely on altruism from
peers. However, they disregard the caching of poorly-
replicated data items, which may bottleneck the perfor-
mance of the range query since these data are part of
the range query result.

The key to the problem is to recognize those poorly-
replicated data items that may potentially be requested
by range queries in the future, and to facilitate the
caching of these data items. With respect to unstruc-
tured P2P overlay networks, the following design prin-
ciples are crucial: (1) the approach needs to be purely
decentralized; (2) the approach should be efficient,
without incurring significant communication or compu-
tational overhead; and (3) it is desirable that the ap-
proach can be deployed with existing routing protocols

Shttp://www.gnutella.com

http://www.gnutella.com

Peer-to-Peer Netw Appl

and replication schemes that have been developed for
unstructured P2P networks.

Using the intuition that well-replicated data are
“popular” data cached in the P2P system, we propose
an efficient, decentralized popularity-aware prefetch-
based approach to facilitate the caching of poorly-
replicated data items. Prefetching in the context of
other application domains (e.g., compiler technology)
has been well-studied. Our approach, in the context
of prefetching range data in P2P systems, is novel in
that it is data-popularity aware: (1) peers indepen-
dently collect global information about the relationship
between poorly-replicated data items and “popular”,
well-replicated, ones involved in previously executed
queries, enabling an adaptive approach for range query
processing (see Section 3 for details); (2) since popular
data are easily obtained from peers through flooding
or random walk mechanism, simply prefetching poorly-
replicated data items can be more cost-effective with
respect to bandwidth consumption; and (3) sufficient
query issuers will exist over “popular” data items, pro-
viding opportunities to piggyback “correlated” poorly-
replicated data items onto popular data and thereby
facilitating the prefetching process. Briefly, the contri-
butions of this work include the following.

e This is the first work that addresses distrib-
uted range caching problems in unstructured P2P
overlay networks. In particular, purely decentral-
ized mechanisms are developed to locate poorly-
replicated, “correlated”,® data items that are
potentially queried in the future, and an adaptive
prefetch-based approach is proposed to improve
performance of the range query processing that
involves those poorly-replicated data items.

e The effectiveness of the approach is demonstrated
theoretically by proving that, under a specific query
distribution model with an increasing query load,
the approach can improve overall performance
of the queries that retrieve poorly-replicated data
items by at least a factor of O(Inm), where m is the
number of queries, even when network churn and
cache expiration exist.

e Through extensive simulations, the effectiveness of
the approach is demonstrated under various query
load settings.

The organization of the remainder of the paper is as
follows. In Section 2 we analyze performance of cache-
based range query processing in unstructured P2P
overlay networks. Section 3 covers the prefetch-based

OWe define “correlation” in Section 3.1.

approach that results in substantial communication cost
savings for range query processing. Performance evalu-
ation results are presented in Section 4. We review the
related work in Section 5 and conclude this paper in
Section 6.

2 Cache-based range query processing

Range queries typically involve the range constraints
that are defined over numeric-valued data [15]. The
processing of a specific range query completes when
all distinct result data items (either from original data
sources or from caches) that satisfy the range con-
straints have been retrieved. Range queries can be
issued by any peer in the system, and be shipped to
other peers through flooding, gossip, or random walk
routing mechanisms. Since flooding is no more effective
than random walk with respect to routing cost [4], while
gossip mechanism is based on random walk in that
queries are shipped to randomly chosen peers in the
network, we focus on the random walk mechanism in
the remainder of this paper without loss of generality.

Based on the random walk mechanism, both the
number of messages and the latency to retrieve a spe-
cific data item are inversely proportional to the number
of the data item replicas in the network. Suppose that
the cost function (denoted by Cost) of range query
processing is defined over Q x R, where Q denotes the
set of range queries and R is the real value domain of
query processing cost.” Given a query g € Q, Cost(q) o
é (i.e., Cost(q) is proportional to %), where r, is the
lower-bound of the number of data item replicas that
can satisfy g. When there exist multiple distinct data
items {s1, 52, ...} in the network that satisfy range query
q,1rq = min(|si|, |s2], ..., Isil, ...), where we denote by |s;|
the corresponding numbers of data item s; replicas.

We are especially concerned about the range queries
that include poorly-replicated data items because the
overall range query performance is affected by them.
We refer to the period that specific data items have not
been sufficiently replicated as the cold period. Suppose
that the results of a range query ¢ include data item
s, which initially has a single replica (i.e., the original
data item itself) in the network; when there are m
subsequent g queries issued, the overall query execu-
tion cost during s’ cold period is computed as below,
based on the well-established proportional and square-
root replication schemes respectively. For simplicity,

7In this work, we focus on the query shipping cost to locate query
results, ignoring local processing cost.

@ Springer

Peer-to-Peer Netw Appl

we suppose that each execution of the query is initiated
by a distinct peer.

e Proportional replication scheme Each query execu-
tion is expected to increase the number of replicas
by one, such that the overall query processing cost
with respect to m g queries, denoted by Cost(q), is
derived as below. Because sequence (3) does not
converge, we present an approximate result with
respect to a considerably large m.

m (N
Cost(q) = Zi:l (T) (1)
=N+E+E+...+E 2)
2 3 m
~ N xInm 3)

e Square-root replication scheme Although the
square-root replication scheme performs better
than the proportional replication scheme with re-
spect to range query processing performance
under constrained overall cache sizes [4], the range
query processing involving poorly-replicated data
items may incur higher communication cost. The
following derivation presents the overall query pro-
cessing cost, where sequence (5) increases mono-
tonically and never converges. For simplicity, we
assume that the number of replicas exactly equals
the square root of the corresponding number of
queries,® which does not affect the validity of the
obtained result.

Cost@) =) (%) @)

N N

N

NG + NG + ... NG

The above analysis shows that range query process-
ing performance is affected when queries retrieve
poorly-replicated data items during their cold period.
In the next section, we propose the prefetch-based
approach, where poorly-replicated data items are pre-
fetched by query issuers that request the well-replicated
data items “correlated” to the poorly-replicated ones.
This potentially decreases the retrieval cost of the
poorly-replicated data items within cold periods and
improves the range query execution performance.

8The actual number of replicas equals the square root of the
corresponding query load size multiplied by a constant factor [4].

@ Springer

3 Prefetch-based caching

In this section, we first define data correlation, which
materializes the locality concept that is essential to
prefetch-based mechanisms [19]. Then we detail the
design of the prefetch-based approach.

3.1 Data correlation

To quantify the correlation between poorly-replicated
data items and well-replicated ones, we introduce a
distance function D. For Euclidean range space, when
data items represent point data (e.g., the longitude and
latitude information of locations), D can simply be the
one-dimensional Euclidean distance function between
the point values.” Instead, when data items correspond
to range segments (e.g., the range span of longitude
and latitude information of a region around a specific
location), D may be defined over the Euclidean dis-
tance between the centroid points (e.g., median points
in one-dimensional space) of the corresponding range
segments. Other applications may employ their cus-
tomized distance functions, which does not affect the
applicability of the prefetch-based approach.

Based on the distance function D, data correlation is
defined as follows: two data items s and s" are correlated
if D(s,s’) < . The correlation threshold z can be pre-
defined and configured by peers when they join the
overlay network, which may not be sufficiently flexible
since the threshold may be over or under-valued. For
example, with respect to a specific range query load,
when t is set too low, data items that are covered by
the same range queries may potentially be regarded un-
correlated; in contrast, when t is set too high, more ir-
relevant data items may be regarded correlated even if
they are never queried together. Since we are especially
interested in the piggybacking of poorly-replicated data
items with the well-replicated query results, t is mea-
sured based on the distances between poorly-replicated
data items and well-replicated ones from the history of
executed range queries.

On one hand, this approach takes the information of
range queries into account such that: (1) the inherent
correlation of data items within the same range query
is captured; and (2) since intuitively the well-replicated
data items are “popular” among peers, their correlated
(poorly-replicated) data items may also become “pop-
ular” with a higher probability, which is recognized
by our approach. On the other hand, the approach

9This does not conflict with the focus on range query processing
since range queries may include multiple point values.

Peer-to-Peer Netw Appl

is popularity-aware, enabling adaptive data prefetch-
ing: the greater the portion of range query workload
that retrieves poorly-replicated data items, the more
precisely t captures the expected distances between
poorly-replicated data items and well-replicated ones.
Conversely, when range queries seldom retrieve
poorly-replicated data items, t tends to be close to zero
such that prefetching may not even be triggered.

While there do exist correlations between poorly-
replicated data items, or between well-replicated data
items, these are not considered in this work because:
(1) the proposed approach relies on query issuers
requesting well-replicated data items to prefetch
poorly-replicated ones; the correlation between poorly-
replicated data items is less important because it does
not indicate the involved data items will be requested
in subsequent queries; and (2) the retrieval of well-
replicated data items incurs low processing cost, such
that the prefetching of these data items may not be cost-
effective with respect to bandwidth consumption. Per-
formance evaluation (Section 4) supports the belief that
simply prefetching all correlated data items regardless
of data popularity may not be efficient.

Specifically, each peer records the history of the
range queries that it issued previously. Each history
record contains the maximum distance between any
poorly-replicated data items and well-replicated ones
that are involved in the range query at query execu-
tion time. Each peer then randomly samples a config-
urable number of other peers in the overlay network
and obtains their query processing history records.
This captures approximate global information about
how poorly-replicated data items affect range query
execution. The random sampling in unstructured P2P
overlay networks can be realized through existing tech-
niques [7, 12]. Query processing history records are
collected by peers periodically such that they learn
up-to-date knowledge on executed range queries.

For example, as shown in Fig. 1, peer p; randomly
samples a number of peers (i.e., p», p3, ps and ps) from
the network and obtain their history records.

In addition to collecting history records by sampling
the network, peers can alternatively estimate such in-
formation locally without consuming extra communica-
tion costs. Given a peer p, it observes the query results
that are being routed via it. Since the query results
that are piggybacked with query are be a subset of the
complete results, the history records extracted out of
the results may not be accurate. Intuitively, when we
can estimate how complete the partial query results are,
we can estimate the confidence of the extracted history
records. This is feasible for range queries such as in
requesting all video fragment within a specific period

Query id | Distance (km)
9., 100
hE 10 Query id | Distance (km)
0, 50
° P, 0 G 60
° o o Y =
o o0 \\ (e} /
S oaf
. PR)
’ ™
¥ e e T
)y g = -
r N - Py [Query id | Distance (km)
Qu;ryld Dlsmnsr.::(km) (on] @, 150
4.1 o] 5
ez 36 (o] 9z 140

Fig.1 Sampling-based estimation of ©

of time. Since usually the time period for each video
fragment is identical and predefined in advance, it is
easy to compute how many video fragments to be con-
tained in final query results. Thus we can easily estimate
how complete the partial results are. In more general
range query processing cases, without mechanisms to
estimate the completeness of partial query results, it is
harder to achieve accurate history records. The idea of
using data being routed through is similar to that em-
ployed in [24], which focused on measuring data pop-
ularity instead of collecting history information about
query processing.

Once a set of distance values from the history
records, denoted by {d;}, are obtained, each peer p es-
timates the distribution of the distance values through
kernel estimation technique [18], which is a non-
parametric data distribution modeling scheme. Non-
parametric modeling schemes are advantageous in P2P
environments since no a-priori knowledge about data
distribution is required. Then we set t to be the ex-
pected distance value under the distribution model. In

this work, the commonly-used Gaussian kernel func-

tion K(x) = ﬁe‘%xz is employed, and the estimated

probability density function (PDF) is PDFy(x) =
= K (*7%), where S denotes the number of his-

tory records, x; denotes the distance value correspond-
ing to the iy sample, and /& is a smoothing factor that
is configurable with respect to specific applications. The
derivation of z is shown below, where y; = ** for each
specific i.

00 &9} 1 S —X;
T =/0 x X PDFi(x)dx =/(; X XE Z,-le(x hx) dx
! ([)
= —— X xxe 2\ ") dx
Sh /27 Zi:l (/0

1 N o 1.2
= ——— X x x e idx
Sh/2n Zi:l (/0)

@ Springer

Peer-to-Peer Netw Appl

Define y; = x — x;,

</ x x e 2 x hdyi)
(f (hy: +xi) x &2 dyl)
(/ hy; x e —2¥ dy;
+/ X; X eéylzdy,)
0
; Zs (h /OO ~idy; +
= X X i X e 2iay; + X
SV2n =1 0 Y Y
x/ e_éyfzdy;)
0

1 S 21
= —— X h+ x; x
SV2mw Zi'(2)

h 1 s
Tn_'_ﬁxzi:lxi

Observe that the computed expected value of 7 is

Z
=S1 Z
<y

Sy/2m

only slightly different from the average (i.e.,m) of
the sampled distant values. An engineering approach
is to replace the expected t computed through kernel
estimation with the average to ease local computation
costs. However, this may decrease the accuracy of the
data correlation computation, potentially increasing
the volume of prefetched data items that are irrelevant
to subsequent queries.

With respect to range query processing, since query
issuers and peers holding query results may obtain
different values of 7, we always choose the query is-
suer’s t as the correlation threshold, because they can
flexibly adjust the value of t to include other constraints
(e.g., local storage constraint). For example, when the
query issuer has a storage constraint, denoted by sc, it
always sets © = min(correlation threshold, sc) such that
the local storage constraint is never violated.

3.2 Data popularity

The computation of t requires the knowledge of
data popularity, which is used to distinguish poorly-
replicated data items from well-replicated ones. Al-
though the obtained query history records can be
employed to estimate data popularity [24], they may
not be sufficiently accurate to reflect the overall data
distribution in the overlay network. Thus, we con-
sider a purely decentralized approach to estimate data
popularity directly. Each peer evaluates the popular-
ity of the local data through an exploration process.

@ Springer

Consider a peer p with a set of data items, denoted
by S = {s1, 52, ...}. p issues an “exploration query” over
each s; € S, where a configurable Time-to-Live (TTL)
counter is attached to each exploration query. During
each hop, the TTL counter decreases by one and all
appearances of s; are recorded by p. The shipping
of an exploration query terminates when TTL equals
zero. Once the exploration process completes for all
data items, p figures out the number of cached replicas
for each s; during the exploration process. Those s;
with more replicas (i.e, above threshold T) are re-
garded as “well-replicated” and the others are consid-
ered “poorly-replicated”. A similar approach has been
employed in PIER to decide data popularity [9]. Both
the TTL and T are configurable, where the TTL value
is usually set to be small to avoid large explorations.

3.3 Prefetch-based approach

Suppose that peer p receives a range query issued by
p’ that covers a data item s; p will reply to p’ with
all its cached data items {si, sy, ..., i, ...} that satisfy
the following conditions: (1) each s; is correlated to s
based on the distance function D and the correlation
threshold t that is attached to the query (i.e., D(s, s;) <
7); and (2) based on the data popularity measurement
of p’ (i.e., the query issuer), s is well-replicated and s; is
poorly-replicated.

For instance, consider multiple query issuers re-
questing data items s and s’ through queries g, and g,
respectively, as illustrated by white and grey nodes in
Fig. 2a. For simplicity, suppose that s and s’ are cached
at peer p that receives the queries. Then Fig. 2b demon-
strates the proportional replication scheme and Fig. 2¢c
shows the proportional replication scheme enhanced
with prefetching, where peers denoted by dark nodes
eventually cache the poorly-replicated data item s’. Due
to the prefetching of s by query issuers over g, s’ is
cached more quickly in Fig. 2c.

We describe the prefetch-based approach in Algo-
rithm 1 regarding peer p when it receives a query ¢
covering data item s that is issued at p’. The approach

(@) RO (©)
Fig. 2 Caching approaches (a—c)

Peer-to-Peer Netw Appl

has several advantages: (1) it makes slight changes to
existing replication schemes without adjusting the over-
lay network architecture or routing algorithms; all deci-
sions, including the computation of the data correlation
threshold and data popularity, are made independently
without costly coordination among peers; (2) poorly-
replicated data items are piggybacked during the query
processing over well-replicated data items, saving com-
munication cost; moreover, peers are not required to
be altruistic since only query issuers who utilize the
query processing services take on the prefetching over-
head cost; and (3) the approach is purely decentralized
without relying on any centralized mechanisms, thus
providing scalability.

Algorithm 1 prefetch_based_caching(q, v)

small

1: if p learns that s is well cached then

2: forall data items s’ that are poorly-replicated and
D(s,s") <t do

3 if D(s,s") < t then

4: p replies to p’ the data item s;

5: end if

6: end for

7. end if

discuss the case when n may change. We now prove
Theorem 1, where § > 1 is a system parameter that af-
fects the constant factor of the average query operation
cost (i.e, O(1)), and N denotes the network size. A
proof is presented subsequently.

Theorem 1 When % > 2% the overall cost for
processing my q, queries equals O(1) x N.

Proof Suppose that initially, there is one replica of s’
and it is cached together with s on a peer. This does not
affect the generality of the analysis since subsequently
prefetched s will be cached together with s. During
each period, one ¢, is processed and ﬁ—; q1 queries are
issued such that the expected number of g, queries that
visit a peer holding s’ equals ;™. When ;= > 2%,
the number of cached s’ data item copies increases
by 2% fold. Recursively, suppose i > 1, when there are
(i — 1) & replicas in the network after the execution
of the (i — 1)5; g2 query, the expected number of peers
that cache s’ through the execution of query g, equals
e % (i = 1)? and is no less than i, as shown in the
following derivation.

my

x(i—1°>@2x(@-1)° (6)

3.4 Guarantees on performance improvement

With the prefetch-based approach, the population of
poorly-replicated data items is affected by the query
volume over the correlated well-replicated data items.
We now show that, under the following query distrib-
ution, our approach guarantees that the overall range
query cost over poorly-replicated data items is N x
O(1), which is at least O(Inm) factor less than the
counterpart when no prefetching is enforced.

Consider a range query ¢; involving data item s
and query ¢, involving data item s', where s is well-
replicated while s" is poorly-replicated. Suppose that,
initially only one replica of s’ exists in the network,
while there exist n replicas of s including original and
cached ones. Consider a query load consisting of m; g,
queries and m, ¢, queries. For simplicity, all g; (and
q») queries are uniform-randomly distributed across a
certain period of time; thus it is expected that 71 g,
queries are processed when each ¢, is processed. Note
that this assumption is not necessary for the following
analysis; it will be clear shortly that only if the number
of q; queries is sufficiently large compared with that
of g, queries, the analysis will hold. We also assume
that the number (n) of s replicas is stable, and will

My X n

> ((1 +1_L1> x (i~ 1)>(S =7 (7

Consequently, when the execution of the iy, g» query
completes, no less than i® peers will cache s’. The overall
shipping cost to resolve all g, queries is then computed
as follows. While ¢, queries are executed sequentially,
the above analysis is easily extended to handle concur-
rent query execution.

my N
Costlqn) <) = ®)
N N N
=N-i-§+3—5-i-...—i-’n—g 9)

Since sequence (9) is a Riemann-Zeta sequence [6], it
converges for all real values § > 1. Thus the overall
query operation performance with respect to the query
load of g, is Cost(q,) = O(1) x N when m, is consider-
ably large. m]

For example, when § = 1.5, Cost(q,) ~ 2.612 x N.
This overall cost is at least O(Inm) times less than those
achieved by existing replication schemes (addressed in
Section 2) that do not employ prefetching.

@ Springer

Peer-to-Peer Netw Appl

A sufficient condition of Theorem 1 is that the ratio
of the number of g, queries over the number of s caches
(denoted by n) is no less than 2°. However, multiple
factors may affect this number in practice: (1) after the
execution of g; queries, peers are capable of caching s,
increasing #; (2) under network churn, peers may fail
(or leave) suddenly, decreasing n; and (3) when cache
expiry schemes are deployed in P2P systems for data
freshness [1, 10], » may also change.

Cache replacement may affect the value of n as
well. Specifically, if the cache size is sufficiently large,
peers can hold all recently cached data items and cache
replacement would happen infrequently. If the cache
size is limited, cache replacement behavior can be easily
integrated with cache expiry. For example, a widely
employed recency-based cache replacement strategy
such as Least-Recently-Used can be enforced through
the cache expiry process by choosing an appropriate
expiry period. This would evict least-recently-used data
items from caches after each expiry period.

Next, given a specific query load of ¢g,, Theorem 1
can be satisfied even when network churn and/or cache
expiry occur. We prove this in Theorem 2. Recall that,
during each period, one g, query is issued. Any peer
(and cache) fails (or leaves) with a probability of 0 <
r < 1 per period, and all cached data items expire after
k > 0 periods of time. /(i) represents the expected num-
ber of q; queries during the iy, period, n(i) denotes the
number of s data item replicas after the iy, period, and
n(0) = n denotes the initial number of s replicas.

Theorem 2 When the query load of q satisfies the
following distribution,

(L + 224011 —)i, wheni <k
28+1(1 4 25+1)i71(1 _ r)ifln

— O((1 4+ 22Hi7k 1 —)Yy,
wheni >k

the number of s' replicas will be no less than i® after the
iy, period, where § > 1; consequently, the overall cost of
processing my q, queries is bounded by O(1) x N, even
under network churn and cache expiry.

Proof For brevity, we only prove the case when i > k.
It is easy to apply the same derivation for the case when
i < k, where no cached data expires.

When i > k, the number of s replicas (denoted by
n(i)) after the iy, period is computed below, where the
first component consists of the accumulated number of
s until the (i — 1)y period, added by the increase of
the s (denoted by [/(i)) during this period; the second
component covers the loss of s replicas due to cache

@ Springer

expiry. Both components are multiplied by correspond-
ing damping factors to reflect network churn.

ni@)=m@i—1)+10)) x (1—r), wheni <k
nD=mnE—-D+ID))xA—-r)—=II-k)
x (1 =)k, wheni=>k

Consider a more relaxed function n’'(i) = (n'(i — 1) +
(i) x (1 —r) — (1 —r)*, where n'(0) = n(0) = n. Since
(1 —r)k <1 —k) x (1 —r), it is obvious that n'(i) >
n(i). Then similarly consider,

") =wW3@—1D+I10) x A —-r), wheni <k
n@i) = W (i—-1)+13G) x 1=r)—(1=rk, wheni>k

Suppose A =2°*! and make I(i)) = A xn'(i — 1).
The following derivation computes 7n'(i — 1).
Wi—1D)=wG-2)+1i—D)x 1 —=r)—1—=r*

=14+ A" xn0) x (1 —r)!
i—k—1
— ZXZ] ((1+ A (1 —r)*H)
=1+A)"xnx-ri!
i—k—1
— szl ((1 4 A)x(l _ r)x+k)

(1+ A) k(1 = ry

J— — i—1 i
=[14+A){A—-r]"xn ArAd—n_1

(1-n*

taraa—n=1

With reasonable network churn rate, (1 + A)(1 —r)

will be larger than 1. By ignoring the last component
(1=n*
(l+A)(lr—r)—1’

n'(i — 1) is bounded by [(1 + A)(1 — 1))~ x n — O((1+
A" (1 —r))). Consequently, [(i)=Axn'(i—1)=
2 x ([(1+ A A=n]"" x n=O((1+ A (1—r)) is
a sufficient condition for /(i) > A x n(i — 1) because
n'(i — 1) > n(i — 1). Then the following analysis about
the query processing cost holds based on mathematic
recursion, where i > 1.

which is a small constant when k is fixed,

IG) x (i—1)° = 22" 5 (i —1)° x n@i — 1) (10)

. §
> 2x (%) X (i — 1) x n(i — 1) (11)

> @+ G-k xni-1 (12)
1G) x (i—1)% x (1 —7r)
ni—1)x({1-r)
—(i—k’ =7 (13)

Peer-to-Peer Netw Appl

Equation 13 shows that under the setting that the
network churn rate equals r and the cached data items
are evicted after k periods, the number of s’ replicas
(including the original and cached ones) is no less than
i after the i, period. It is direct that, the overall
cost for processing m, g, queries is no more than
Z?jlﬁ—yzN+%}+é—\;+...+% = O(1) x N, even un-
der network churn and cache expiry. m]

3.5 Proactive preprocessing

The prefetch-based approach discussed above assumes
that a cache contains both rare and popular data, which
makes it direct for the rare data to be prefetched during
the execution of queries that request the popular data
on the same peer. However, the rare data that are cor-
related with popular data may initially be cached alone
at some peers, such that peers making earlier queries
involving rare data may experience a much longer delay
than other peers that issue the queries later.

To alleviate this problem, we employ a light-weight
proactive preprocessing. Suppose that, initially peer p
caches only rare data item s;; it computes all corre-
lated data items S = {s, ', ..., s, ...} based on the dis-
tance function D and the data correlation threshold
7; then p issues an independent query over each s,
and caches those popular data items s; together with
s;. Consequently, both rare and the correlated popular
data items are cached at the same peer p, such that
Algorithm 1 can be applied.

The proactive preprocessing is easy to realize since it
relies on existing query shipping protocols; moreover,
the operation to retrieve popular data items is inher-
ently inexpensive since these items have already been
well replicated in the network. For clarity, the proactive
preprocessing is sketched in Algorithm 2.

Algorithm 2 proactive_preprocessing(q)

1: for each peer p that caches only rare range data s; do

2: p computes the set of correlated data items S =
{s,s’, ..., s}, ...} based on D and t;

3: pissuesaquery over eachs; € S and caches those well-
replicated ones;

4: end for

3.6 Utilization of prefetched data

The volume of prefetched data is decided by threshold
7 and the preference of peers (e.g., regarding local
storage constraints). This is based on the assumption
that queries are coherent regarding the ranges (e.g.,
over temporal and spatial ranges). For example, in

the P2P location-based service system introduced in
Section 1, when certain hotel rooms are booked in
full, peers tend to consider other vacancies that are
located closer to the rooms in previous queries. This
assumption usually holds and is widely exploited in
multiple scenarios such as operation system [19] and
media streaming systems [3].

However, this assumption may also not hold, such
that the utilization of the prefetched data items in
future query processing is not guaranteed. Specifically,
in our approach, prefetching decision is decided by the
value of correlation threshold z, which is computed
based on the distance between well-replicated and
poorly-replicated data items, orthogonal to the utiliza-
tion of prefetched data items in future query process-
ing. For instance, when queries migrate back and forth
frequently, prefetched data items might be cached out
before being utilized to answer queries. This leads to
lower utilization rate of prefetched data items, compro-
mising the cost-effectiveness of our approach.

To ease this problem, we introduce a mechanism
that adaptively adjusts the volume of prefetched data
based on the utilization rate of the data. During each
specific period of time, each peer p approximates the
utilization rate 0 < ur < 1 of prefetched data items over
the queries issued by p in previous periods. Specif-
ically, consider a set § of all k queries where § =
{q1, q2, .-, qx} that are issued by p during previous
periods. Denote by function utilized : S x { false, true}
such that, given a query g; € S, utilized(q;) equals to
true if the query results of g; contain prefetched data
items, while utilized(q;) equals to false if query results

do not exploit prefetched data items. Then ur is simply

ko)
w. Note that each peer de-

defined as ur =
cides the value of ur independently since utilization rate
is largely affected by the characteristics of the query
load issued by each individual peer.

The adjustment of volume of prefetched data might
affect query processing performance. To balance be-
tween the utilization of prefetched data and query
processing performance, we consider query process-
ing performance loss due to the shrink of prefetched
data. Denote by ¢ the period of time of adjust-
ment of prefetched data volume. During each ¢ > 1,
peer p collects the query processing performance
hop Num; by averaging the number of hops per query.

Query processing performance loss pl; is then de-
hop Num,
hopNum,_,

ment ratio with respect to the t;, period, where f; =
min(l, ur x pl;).

During the t; period, f; will be piggybacked with
all the queries issued by p. All data items that are

fined as . Then we denote by f; the adjust-

@ Springer

Peer-to-Peer Netw Appl

original query original query

original query

}—| . migrated queries

|

f
: N . P .
- -~ migrated queries | { <-migrated queri A « ,”
— | 7]

(a) transitional query

Fig. 3 Synthesized migrated queries (a—c)

correlated to query results are prefetched with a prob-
ability linearly proportional to f;. Since the compu-
tation of f; already takes the performance loss into
account, when f; is still low, it indicates that data
items may be over-prefetched. Thus by reducing the
prefetched data volume proportionally, the utilization
rate of prefetched data is guaranteed to increase.

4 Performance evaluation
4.1 Experimental methodology

To study range query processing performance under
the prefetch-based approach, we use the discrete event
simulator p2psim.!® We generate a network topology
by randomly mapping peers to coordinates in a square
area using a uniform distribution (which also generates
local skew effects in the mapping). We consider a net-
work of up to N = 3000 peers. Both a static network
setting and a dynamic setting with network churn are
simulated. For clarify, the configurable system parame-
ters and their values are shown in Table 1.

We consider one-dimensional range queries within
the domain of R = [0, 10000]. Initially each peer holds
i = 10 items that are randomly chosen within the range.
The range query load is synthesized as follows. The
number of range queries within each epoch!! follows
Poisson distribution with mean m = 100; the query
execution process runs for 20 epochs. To simulate the
Power-law characteristics of query load that is common
in real world [16], the range domain is evenly parti-
tioned into a configurable number (i.e., 10) of range
segments; the start point (i.e., lower bound) of each
range query is generated over a randomly chosen seg-
ment based on the principles of growth and preferential
attachment, which produce Power-law query distribu-
tion [2]. When a query is issued more than a number
of times and becomes “popular”, peers issuing it start
to migrate the query.

1052 psim:http://pdos.csail.mit.edu/p2psim/
n this experiment, each epoch lasts 5 x 10° ms.

@ Springer

(b) relaxed query

(c) consecutive query

To cover various peer behaviors, three migration
patterns are considered (in Fig. 3), producing Transi-
tional Queries, relaxed queries and consecutive queries.
For each original query Q,, a configurable number
of migrated queries Q, are generated and executed
subsequently. The number (m) of the original queries
and the number (m') of migrated queries per original
query will be configured shortly.

e Transitional queries. All points in the data domain
are potentially chosen as the start point of Q,
with a probability proportional to the Euclidean
distance away from the start point of Q. The range
span of Q, follows Poisson distribution with mean
span = 100. This migration pattern may simulate
the scenario that, after finding that the hotel rooms
around a specific city are all booked, peers may turn
to check other proximate cities.

e Relaxed queries. The start point of each O, equals
to that of O, denoted by start. Then the range span
of Q, is relaxed to follow Power-law distribution
between (span, | D| — start). This migration pattern
covers those relaxed queries over different radius
of the region around a specific location (e.g., a
conference site).

e (Consecutive queries. The start point of each Q,
adopts the end point of Q,. The range span of O,
follows Poisson distribution with mean span = 100.
This migration pattern captures the setting when
peers adjust the search scope by retrieving the data
that are disjoint but contiguous to initial geograph-
ical range constraints.

Since the random walk mechanism requires a ran-
domization mechanism, all experimental results are av-
eraged over three runs, each with a different random
seed. Recall that both the number of messages and the
query routing latency are inversely proportional to the
number of query result replicas in either flooding or
random walks; we only report the number of messages
consumed. Since only the reply message sent back to
query issuers carry query results and prefetched data
while all other messages only carry the query itself (e.g.,
range constraints), the amortized message size is small.

http://pdos.csail.mit.edu/p2psim/

Peer-to-Peer Netw Appl

Table 1 Configurable system

Parameter Meaning Value assignment
parameters N Network size 3000

i The number of data items per peer 10

DR Data range domain [0, 10000]

period Each simulation period 5% 1005

e The number of periods for cost measurement 20

my The number of popular queries per period Poisson distribution
(mean = 100)

my The number of migrated queries per popular query 1,5,10

pr Popularity ratio of data 50% — 80%

1—r Failure rate of peers per period 10% — 40%

d Data update rate per period 1, 10, 100, 1000

s Cache size (i.e., the number of cached data items per peer) 500, 1000, 1500, 2000

k Cache expiry periods (simulation seconds) 5% 100, 1 x 107,
5x107,1 % 108

h Smoothing factor for kernel estimation 1

ps Proactive preprocessing sampling number 0.001 x N

pp Proactive preprocessing period 2,4,8, 16 periods

Thus, message size is not studied in the performance
evaluation. In this simulation, the proportional and
square-root replication schemes are considered as the
baseline approaches. No overall storage constraints are
assumed in this evaluation. Thus, the query processing
costs incurred by the square-root replication scheme
are even higher than those incurred by the propor-
tional replication scheme, which supports the theoretic
performance analysis presented in Section 2.

4.2 Evaluation of query shipping

For simplicity, this experiment assumes a static en-
vironment, where no network churn or data inser-
tion occur. We will consider network churn shortly in
Section 4.4. Initially, m = 100 queries are generated
during each epoch by following Power-law distribution.
When a query becomes “popular”, m’ =5 migrated
queries (respectively transitional, relaxed and consec-

utive queries) are generated based on each original
query.

The average number of messages per query is shown
in Fig. 4. In addition to the nonprefetch option that acts
the same as the proportional replication scheme and
the prefetch option that corresponds to our prefetch-
based approach, we also consider allprefetch approach,
which prefetches not only correlated poorly-replicated
data items but well-replicated ones during the execu-
tion of range queries. For presentation, the results are
illustrated with a logarithmic scale with base of 2.

The experimental results show that the prefetch-
based approach effectively decreases the overall num-
ber of messages per query with respect to all migration
patterns. In this experiment, the ratio (denoted by pr)
corresponding to the x-axis of Fig. 4 may trigger the
query migration: when an original query is issued by
peers for a sufficiently large number of times (i.e.,
¢ x pr x N), migrated queries are generated for this
query, where N denotes the network size and ¢ = 0.6

hL
=

num of messages
num of messages

05 06 o7 ik} 03 a6
popularity ratio
B nonprefetch Bsqrt Mprefetch O diprefetch

popularity ratio
mnonprefetch Dsqt mprefetch O alprefatch

(a) overall with transitional queries

Fig. 4 Average shipping cost per query (a—c)

(b) overallwith relaxed queries

num of messages
MM N N

o
N

07 08 as a6 o7 08
popularity ratio
B nonprefetch Osqrt Mprefetch O diprefetch

(c) overall with consecutive queries

@ Springer

Peer-to-Peer Netw Appl

Ny

LN
N

—

N

— %

"

N

N

P

num of messages
N

num of messages

y&

num of messages
o

—x

=

o
o

—_—

N

05 06 07 08 05 06
popularity ratio
—%- nonprefetch —x—sqit —— prefetch —a— allprefeich

popularity ratio
—x—nonprefetch —x—sart —o- prefetch —&— allprefetch

(a) transitional query only

Fig. 5 Average shipping cost per query (a—c)

for this simulation. When pr is higher, the number of
original queries is expected to increase, such that more
migrated queries are generated, potentially including
more poorly-replicated data items; consequently the
average query execution performance of the non-
prefetch option goes up. In contrast, the average query
execution cost under the prefetch option is lower under
all settings, showing the effectiveness of our approach.
In Fig. 5Sa—c we also present the shipping cost consumed
by only migrated queries, indicating that the perfor-
mance improvement of our approach is primarily due
to the cost savings over migrated queries. These figures
also illustrate that the benefit of simply prefetching
all correlated data items including well-replicated ones
(under the allprefetch option) is not significant. We
measure the bandwidth consumption of the prefetch op-
tion versus that of the allprefetch option, which can be
60% more. This confirms our belief that data popularity
should be considered in prefetching.

Since “relaxed queries” are generated by follow-
ing Power-law distribution and a small set of mi-
grated queries are issued with an exponentially higher
probability, the (initially) poorly-replicated data items
covered by corresponding query results become well
replicated very quickly. Thus the number of messages
per query is significantly lower than that of the queries
generated under the other two migrated patterns. This
holds for other experimental results over “relaxed
queries” in the remainder of the paper.

With respect to the load of migrated queries, we
evaluate different numbers of migrated queries (ie.,
m’ =1, 5 and 10), with pr = 0.7. As shown in Table 2,
the average number of messages decreases because

Table 2 Query execution cost with different query load

(b) relaxed query only

o

o7 08 05 06 07 08
popularity ratio
—x— nonprefetch —x—sqrt —o— prefetch —— allprefetch

(c) consecutive query only

a relatively larger number of queries (over poorly-
replicated data items) may benefit from the prefetching
of poorly-replicated data.

4.3 Evaluation with cache constraints

In practical systems, peers usually have caches with
limited storage sizes. Moreover, cached data items may
expire after a period of time, as discussed in Section 3.
In this simulation, we measure the query shipping cost
with respect to these cache constraints.

We consider 500, 1000, 1500 and 2000 cache entries
(i.e., the cached data items per peer). The experimen-
tal results are shown in Table 3, which indicate that
when the cache size is larger, the average query ship-
ping cost tends to be lower. This is primarily due to
the fact that larger caches can hold more prefetched
data, facilitating query execution. We also evaluate
the query processing performance under various cache
expiry periods (i.e, 5x 10% 1 x 107, 5 x 107 and 1 x
108 simulation milliseconds). The results (shown in
Fig. 6) demonstrate that when the lifespan of cached
data items increases, the average number of messages
per query decreases. This is because longer cache life
means that data expire less frequently, leading to better
use of cached data items.

4.4 Evaluation under dynamic settings
In P2P networks, peers may leave and fail arbitrarily,

affecting the number of cached data items in the net-
work. Moreover, peers may join the network with new

Table 3 Query execution cost under various cache sizes

m' Cache size

1 5 10 500 1000 1500 2000
Transitional 10.47 5.39 4.61 Transitional 357 321 255 241
Relaxed 2.66 2.31 2.30 Relaxed 2.73 2.11 2.07 2.07
Consecutive 9.93 7.59 7.59 Consecutive 72 24 16.8 12.19

@ Springer

Peer-to-Peer Netw Appl

512 e G
10 | 5 [
% 28) $ 2"
§ 28 1 —’ @ Al < E
£ 21 g] E 2 : £
LT J| I - IS
E 2“ E 2 E 221 . 15 B -
2 5% | — I_ — : 21 - a— -
0 : ; . 0 : ; ; . , :
5.E+06 1.E+07 5.E+07 1.E+08 5.E+06 1E+07 5.E+07 1.E+08 5.E+06 1.E+07 5.E+07 1.E+08
cache life (ms) cache life (ms) cache life (ms)
O nonprefetch M prefetch O nonprefetch M prefetch O nonprefetch M prefetch
(a) transitional query (b) relaxed query (c) consecutive query
Fig. 6 Query execution cost per query under cache expiry (a—c)

data items and data insertion manipulation may also be
issued by existing peers.

We simulate the network churn by allowing each
peer to leave with a probability of r during each epoch,
where r varies from 0.1 to 0.4. To make the network
stable, peers join the network at the same rate. The
number of messages per query is shown in Fig. 7. The
experimental results indicate that when failure rate
increases, the number of messages per query goes up,
which is due to more random walks being required
for completing the query processing during network
churn.

To measure range query processing performance
when data insertion occurs, peers generate a config-
urable number (i.e., 1, 10, 100 and 1000 per epoch) of
new data items that are randomly chosen within the
data domain. In this experiment, no migrated queries
are generated. As shown in Fig. 8, the average shipping
cost per query increases steadily during the insertion of
new data items. This is not surprising, because when
peers keep issuing the same range queries, they still
need to locate the new data items that initially are
poorly-replicated . Similar to data insertion, the dele-
tion of data items may also incur poorly-replicated data
items, affecting range query execution performance in
a similar way. Thus, data deletion will not be studied

separately. Moreover, since data items are assumed
to be read-only (e.g., song files or hotel address in-
formation), data insertion or deletion does not incur
inconsistency among cached data replicas. Thus data
consistency is not an issue in this context.

4.5 Evaluation of bandwidth and adaptivity

The correlation threshold t is computed adaptively
based on the knowledge of executed range queries.
In our performance studies, we compare the average
bandwidth costs of data prefetching per query with re-
spect to a query load consisting of the same number of
queries but with different migration query loads: either
m’ =1 migrated query is generated for a “popular”
original query or m’ = 10 migrated queries are gener-
ated. The results shown in Table 4 indicate that the
bandwidth consumed by the prefetch-based approach
with a relatively larger number of migrated queries is
higher. This is because the execution of more queries
is affected by poorly-replicated data items and t tends
to be larger, increasing the volume of prefetched data.
In contrast, when migrated queries are fewer, the value
of t is smaller. Thus the volume of prefetched data is
lower, demonstrating the adaptivity of our approach.

2™ __ 28
“w
82° 2 .5] _l
E 22
w 6 w
82" 4 o
E £ 2*-
Bl =
5 £ 22
2% | c
0 0 A
0.1 0.2 03 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 04
failure rate failure rate failure rate
O nonprefetch M prefetch Enonprefetch M prefetch Ononprefetch M prefetch
(a) transitional query (b) relaxed query (c) consecutive query

Fig. 7 Query execution cost per query under network churn (a—c)

@ Springer

Peer-to-Peer Netw Appl

25 Table 5 Average number of messages per query
20 Period (107 ms) Average number of messages per query
g /<> 1 36.19
2 15 2 36.35
7]
2 / 3 36.07
£ 4 36.23
[P
£ 5 36.25
2 s
0 T T

1 10 100
insertion rate per period
——with data insertion

1000

Fig. 8 Query execution cost per query with data insertion

4.6 Adjustment of prefetched data volume based
on utilization rate

We evaluate the approach to adjust prefetched data
utilization rate addressed in Section 3.6. Without loss of
generality, we consider consecutive query type. During
the running of queries for five periods, where each pe-
riod lasts 107 simulation milliseconds. Since the query
processing cost does not change significantly during
these periods, as shown in Table 5, the prefetched data
volume is adjusted exclusively based on the current
utilization rate.

It is not surprising that, the volume of overall
prefetched data items decreases, as shown in Fig. 9a.
Correspondingly, the utilization rate of prefetched data
items increases, as presented in Fig. 9b.

5 Related work

Various architectures have been proposed to support
large-scale P2P applications, including unstructured,
super-peer-based, and structured architectures [21]. In
this work, we focus on unstructured P2P architecture,
which imposes little constraints on the overlay network
structure and has been widely employed in practical
systems such as Gnutella, KaZaa, and BitTorrent.
Multiple approaches have been proposed to sup-
port range query processing in P2P networks. Struc-

Table 4 Bandwidth consumption per query with different migra-
tion queries

m
1 10
Transitional (byte) 87500 72981

Relaxed (byte) 18 2
Consecutive (byte) 40652 38274

@ Springer

tured overlay network protocols, such as BATON [11],
PHT [14], P-Tree [5] and others, employ tree structures
to interconnect peers and manage distributed data.
Based on efficient distributed range indexes, range
queries can be solved within a scalable number of
hops. However, these protocols require non-trivial con-
struction and maintenance cost; moreover, they do not
exploit the cached data that are enabled during the
query execution, which may affect query processing
performance.

Caching techniques have been employed in P2P
systems [22], focusing on the routing efficiency rather
than the range query processing that is addressed
in this work. Distributed range caching mechanisms
have also been developed for P2P networks [13, 17].
Kothari et al. propose a distributed tree-based index
to manage all range caches to facilitate the search of
range data in P2P networks [13]. Sahin et al. employ a
hyper-rectangle-based overlay network to index multi-
dimensional range data to support efficient range query
processing [17]. These works use structured overlay
networks in indexing range caches, which may poten-
tially be affected by their non-trivial construction and
maintenance cost. In contrast, our approach is focused
on range caching in unstructured P2P overlay networks.

In unstructured P2P networks, effective search
strategies are developed based on constrained flood-
ing [23] and random walks [7]. A data replication
scheme is employed in Bubblestorm [20], which does
not take query distribution into consideration, poten-
tially leading to load-balancing problems. In contrast,
proportional and square-root replication schemes [4]
are devised that consider query distribution. In this
work, we consider a prefetch-based approach to facil-
itate the caching of poorly-replicated data items to im-
prove range query processing performance, which can
be directly deployed with these replication schemes.
Moreover, our approach may prefetch different vol-
umes of data items according to the knowledge of
executed range queries, enhancing the adaptivity of the
approach. An adaptive replication scheme has been
studied in P2P networks [8], which however is focused
on employing server load measurements to reduce
replication cost.

Peer-to-Peer Netw Appl

Fig. 9 Adjustment of

volume of prefetched data items

utilization rate

prefetched data volume 50000 0.7
based on utilization 40000 g-g
rate (a, b) 2 30000 204
2 So3
© 20000 E
> 0.2
10000 01
0 . L V] 1 | L L
1 2 3 4 5 1 2 3 4 5

—- volume of prefetched data items
measure periods (1 0’ ms)

(a) prefetched data volume

Prefetching has been used in operating systems to
facilitate instruction feed to CPU by fetching all pos-
sible instructions related to a branch conditional test in
advance [19]. Our approach handles P2P range query
processing and exploits data popularity to improve
effectiveness of the prefetching. P2P media streaming
systems also employ prefetching techniques to buffer
upcoming stream data for smooth playback of the
stream [3], which focus on adjustment of the volume of
prefetched data and are specific to streaming systems.

6 Conclusion

Under unstructured P2P overlay network architecture,
query processing performance is usually decided by
the number of query result replicas in the network.
When range queries involve poorly-replicated data
items, query execution performance degrades. In this
work, we propose a popularity-aware prefetch-based
caching approach that effectively facilitates the caching
of poorly-replicated data items that are correlated with
well-replicated ones, resulting in cost savings for future
queries that access the poorly-replicated data. Our ap-
proach does not require strong altruistic cooperation
from peers since only query issuers that use the query
processing services incur prefetching overhead. Under
various query load settings, we prove that the per-
formance of range queries involving poorly-replicated
data is guaranteed to improve. Experimentally, we
also show that our proposed prefetch-based approach
delivers substantial query processing cost savings.

References

1. Balke W, Nejdl W, Siberski W, Thaden U (2005) Progressive
distributed top-k retrieval in peer-to-peer networks. In: Proc
int conf on data engineering, pp 174-185

2. Barabdsi A-L, Albert R (1999) Emergence of scaling in
random networks. Science 286:509-512

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

measure periods (107 ms)
—— utilization rate

(b) utilization rate

. Cheng B, Liu X, Zhang Z, Jin H (2007) A measurement study

of a peer-to-peer video-on-demand system. In: Peer-to-peer
systems, first international workshop

. Cohen E, Shenker S (2002) Replication strategies in unstruc-

tured peer-to-peer networks. In: Proc ACM SIGCOMM,
pp 177-190

. Crainiceanu A, Linga P, Gehrke J, Shanmugasundaram J

(2004) Querying peer-to-peer networks using P-Trees. In:
Proc 7th int workshop on the world wide web and databases
(WebDB), pp 25-30

. Edwards HM (1974) Riemann’s zeta function. Academic,

London

. Gkantsidis C, Mihail M, Saberi A (2004) Random walks in

peer-to-peer networks. In: Proc 23rd annual joint conference
of the IEEE computer and communications societies

. Gopalakrishnan V, Silaghi B, Bhattacharjee B, Keleher P

(2004) Adaptive replication in peer-to-peer systems. In: Proc
24th int conf on distributed computing systems, pp 360-369

. Huebsch R, Hellerstein JM, Lanham N, Loo BT, Shenker S,

Stoica I (2003) Querying the internet with PIER. In: Proc
29th int conf on very large data bases, pp 321-332

Iyer S, Rowstron AIT, Druschel P (2002) Squirrel: a decen-
tralized peer-to-peer web cache. In: Proc ACM SIGACT-
SIGOPS symp on principles of dist comp, pp 213-222
Jagadish HV, Ooi BC, Vu QH (2005) BATON: a balanced
tree structure for peer-to-peer networks. In: Proc 31th int
conf on very large data bases

Jelasity M, Voulgaris S, Guerraoui R, Kermarrec A-M,
van Steen M (2007) Gossip-based peer sampling. ACM Trans
Comput Syst 25(3)

Kothari A, Agrawal D, Gupta A, Suri S (2003) Range ad-
dressable network: a P2P cache architecture for data ranges.
In: Peer-to-peer computing, pp 14-22

Ramabhadran S, Ratnasamy S, Hellerstein JM, Shenker S
(2004) Brief announcement: prefix hash tree. In: Proc ACM
SIGACT-SIGOPS symp on principles of dist comp
Ramakrishnan R, Gehrke J (2002) Database management
systems. McGraw-Hill, New York

Ramasubramanian V, Sirer EG (2004) The design and imple-
mentation of a next generation name service for the internet.
In: Proc ACM SIGCOMM, pp 331-342

Sahin OD, Gupta A, Agrawal D, Abbadi AE (2004) A peer-
to-peer framework for caching range queries. In: Proc 20th
int conf on data engineering, pp 165-176

Scott D (1992) Multivariate density estimation: theory, prac-
tice and visualization. Wiley, New York

Stallings W (2004) Operating systems: internals and design
principles. Prentice Hall, Englewood Cliffs

Terpstra WW, Kangasharju J, Leng C, Buchmann AP (2007)
Bubblestorm: resilient, probabilistic, and exhaustive peer-to-
peer search. In: Proc ACM SIGCOMM, pp 49-60

@ Springer

Peer-to-Peer Netw Appl

21. Valduriez P, Pacitti E (2004) Data management in large-scale
P2P systems. In: High performance computing for computa-
tional science—VECPAR 2004, 6th international conference,
pp 104-118

22. Wang C, Xiao L, Liu Y, Zheng P (2006) DiCAS: an efficient
distributed caching mechanism for P2P systems. IEEE Trans
Parallel Distrib Syst 17(10):1097-1109

23. Yang B, Garcia-Molina H (2002) Improving search in peer-
to-peer networks. In: Proc 22nd int conf on distributed com-
puting systems, pp 5-12

24. Zhang R, Hu YC (2005) Assisted peer-to-peer search with
partial indexing. In: The 24st annual joint conference of the
IEEE computer and communications societies, pp 1514-1525

Qiang Wang obtained Ph.D. from Computer Science department
of University of Waterloo, Canada in July 2008. My supervisor is
Dr. M. Tamer Ozsu. I graduated from Computer Science depart-
ment at Nanjing University of China with Master’s (2001) and
Bachelor’s degree (1998); I was working as a full-time software
engineer at Motorola Software Center, China from June, 2001 to
July 2002.

@ Springer

M. Tamer Ozsu is Professor of Computer Science and University
Research Chair at the University of Waterloo and Director of
the David R. Cheriton School of Computer Science. Dr. Ozsu’s
current research focuses on Internet-scale data distribution, mul-
timedia data management, and XML query processing and opti-
mization. He is a Fellow of ACM, a Senior Member of IEEE, and
a member of Sigma Xi.

Khuzaima Daudjee is a faculty member in the David R. Cheriton
School of Computer Science at the University of Waterloo. His
research interests are in distributed and peer-to-peer systems,
database systems and software engineering. He holds a Ph.D. in
computer science from the University of Waterloo.

	Popularity-aware prefetch in P2P range caching
	Abstract
	Introduction
	Cache-based range query processing
	Prefetch-based caching
	Data correlation
	Data popularity
	Prefetch-based approach
	Guarantees on performance improvement
	Proactive preprocessing
	Utilization of prefetched data

	Performance evaluation
	Experimental methodology
	Evaluation of query shipping
	Evaluation with cache constraints
	Evaluation under dynamic settings
	Evaluation of bandwidth and adaptivity
	Adjustment of prefetched data volume based on utilization rate

	Related work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

