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a b s t r a c t

Supercomputers are equipped with an increasingly large number of cores to use computational power as
a way of solving problems that are otherwise intractable. Unfortunately, getting serial algorithms to run
in parallel to take advantage of these computational resources remains a challenge for several applica-
tion domains. Many parallel algorithms can scale to only hundreds of cores. The limiting factors of such
algorithms are usually communication overhead and poor load balancing. Solving NP-hard graph prob-
lems to optimality using exact algorithms is an example of an area in which there has so far been limited
success in obtaining large scale parallelism. Many of these algorithms use recursive backtracking as their
core solution paradigm. In this paper, we propose a lightweight, easy-to-use, scalable approach for trans-
forming almost any recursive backtracking algorithm into a parallel one. Our approach incurs minimal
communication overhead and guarantees a load-balancing strategy that is implicit, i.e., does not require
any problem-specific knowledge. The key idea behind our approach is the use of efficient traversal oper-
ations on an indexed search tree that is oblivious to the problem being solved. We test our approach with
parallel implementations of algorithms for the well-known Vertex Cover and Dominating Set problems.
On sufficiently hard instances, experimental results show nearly linear speedups for thousands of cores,
reducing running times from days to just a few minutes.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Parallel computation is becoming increasingly important as
performance levels out in terms of delivering parallelism within
a single processor due to Moore’s law. This paradigm shift means
that to attain speedup, software that implements algorithms that
can run in parallel on multiple processors/cores is required. Today
we have a growing list of supercomputers with tremendous pro-
cessing power. Some of these systems include more than a million
computing cores and can achieve up to 30 Petaflop/s. The constant
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increase in thenumber of processors/cores per supercomputermo-
tivates the development of parallel algorithms that can efficiently
utilize such processing infrastructures. Unfortunately, migrating
known serial algorithms to exploit parallelism while maintain-
ing scalability is not straightforward. The overheads introduced by
parallelism are very often hard to evaluate, and fair load balanc-
ing is possible only when accurate estimates of task ‘‘hardness’’
or ‘‘weight’’ can be calculated on-the-fly. Providing such estimates
usually requires problem-specific knowledge, rendering the tech-
niques developed for a certain problem uselesswhen trying to par-
allelize an algorithm for another.

As it is not likely that polynomial-time algorithms can be found
for NP-hard problems, the search for fast deterministic algorithms
could benefit greatly from the processing capabilities of super-
computers. Researchers working in the area of exact algorithms
havedeveloped algorithmsyielding lower and lower running times
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Fig. 1. The Serial-RB algorithm (here p′ denotes the position of a search node in the left-to-right ordering of the node and its siblings).
[5,15,6,14,21]. However the major focus has been on improving
the asymptoticworst-case behavior of algorithms. The practical as-
pects of the possibility of exploiting parallel infrastructures have
received much less attention.

Most existing exact algorithms for NP-hard graph problems fol-
low the well-known branch-and-reduce paradigm. A branch-and-
reduce algorithm searches the complete solution space of a given
problem for an optimal solution. Simple enumeration is usually
prohibitively expensive due to the exponentially increasing num-
ber of potential solutions. To prune parts of the solution space,
an algorithm uses reduction rules derived from bounds on the
function to be optimized and the value of the current best solu-
tion. The reader is referred to Woeginger’s excellent survey paper
on exact algorithms for further details [25]. At the implemen-
tation level, branch-and-reduce algorithms translate to search-
tree-based recursive backtracking algorithms. The search tree size
usually grows exponentially with either the size of the input in-
stance n or some integer parameter k when the problem is fixed-
parameter tractable [11].

Nevertheless, search trees are good candidates for parallel de-
composition.While most divide-and-conquermethods for parallel
algorithms aimat partitioning a problem instance among the cores,
we partition the search space of the problem instead. Given c cores
or processing elements, a brute-force parallel solution would di-
vide a search tree into c subtrees and assign each subtree to a sep-
arate core for sequential processing. Onemight hope to thus reduce
the overall running time by a factor of c. However, this intuitive ap-
proach suffers from several drawbacks, including the obvious lack
of load balancing.

Even though our focus is on NP-hard graph problems, we note
that recursive backtracking is a widely-used technique for solv-
ing a very long list of practical problems. This justifies the need
for a general strategy to simplify the migration from serial to par-
allel algorithms. One example of a successful parallel framework
for solving different types of problems is MapReduce [8]. The suc-
cess of the MapReduce model can be attributed to its simplicity,
transparency, and scalability, all of which are properties essential
for any efficient parallel algorithm. In this paper, we propose a sim-
ple, lightweight, scalable approach for transforming almost any re-
cursive backtracking algorithm into a parallel one with minimal
communication overhead and a load balancing strategy that is im-
plicit, i.e., does not require any problem-specific knowledge. The
key idea behind our approach is the use of efficient traversal oper-
ations on an indexed search tree that is oblivious to the problem
being solved. To test our approach, we implement parallel exact
algorithms for the well-known Vertex Cover and Dominating Set
problems. Experimental results show that for sufficiently hard in-
stances, we obtain nearly linear speedups on at least 32,768 cores.

2. Preliminaries

Typically, a recursive backtracking algorithm exhaustively
explores a search tree T using depth-first search traversal. Each
node of T (a search node) maintains some data structures required
for completing the search. We denote a search node by Nd,p, where
d is the depth of Nd,p in T and p is the position of Nd,p in the left-
to-right ordering of all search nodes at depth d. The root of T is
thusN0,0. We use T (Nd,p) to denote the subtree rooted at nodeNd,p.
We say T has branching factor b if every search node has at most b
children. A generic serial recursive backtracking algorithm, Serial-
RB, is given in Fig. 1.

As an example, consider the problem of finding a minimum
set of vertices S ⊂ V of a graph G = (V , E) such that the
graph induced by V \ S is a forest, i.e. a graph with no cycles. A
possible implementation of Serial-RB which solves this problem,
also known as the Minimum Feedback Vertex Set problem, is as
follows. Every search node maintains a graph G′

= (V ′, E ′) and a
solution set S ′. We use Nd,p(G′) and Nd,p(S ′) to denote the graph
and the solution set at node Nd,p, respectively. At N0,0, we have
N0,0(G′) = G and N0,0(S ′) = ∅. The IsSolution (Nd,p) function
returns true whenever the graph induced by Nd,p(V ′) \ Nd,p(S ′)
is a forest and |Nd,p(S ′)| < |best_so_far(S ′)|, i.e the size of the
smallest solution found so far. The IsLeaf (Nd,p) function returns
true when the current branch cannot lead to any better solutions
(e.g., whenever |Nd,p(S ′)| ≥ |best_so_far(S ′)|). Finally, to generate
the children of a search node, we simply find a cycle inNd,p(G′) and
for each vertex v in that cycle we get a new search node Nd+1,p′ ,
where Nd+1,p′(S ′) = Nd,p(S ′) ∪ {v} and Nd+1,p′(G′) is obtained
by deleting v and all the edges incident on v from Nd,p(G′). In
terms of exact algorithms [25], GetNextChild corresponds to the
implementation of branching rules and IsLeaf implements pruning
rules. If we let G be a graph consisting of two triangles sharing
an edge, then Fig. 2 shows one possible search tree generated by
the described algorithm. Even though N1,1(G′) is not acyclic, the
children of N1,1 will be pruned. This follows from the fact that, in a
serial execution, N1,0(S ′) is a solution of size one and hence IsLeaf
(N1,1) would return true.

The goal of this paper is to transform Serial-RB into a scalable
parallel algorithm with as little effort as possible. For ease of
presentation, we make the following assumptions:

– Serial-RB solves an NP-hard optimization problem (i.e. mini-
mization or maximization) where each solution appears in a
leaf of the search tree.

– The global variable best_so_far stores the best solution found so
far.

– The IsSolution (Nd,p) function returns true only if Nd,p contains
a solution which is ‘‘better’’ than best_so_far .

– The search tree exploredby Serial-RB is binary (i.e. every search
node has at most two children).

In Section 4.4, we discuss how the same techniques can be easily
adapted to any search tree with arbitrary branching factor. The
only (minor) requirementwe impose is that the number of children
of a search node can be calculated on-the-fly and that generating
those children (usingGetNextChild (Nd,p)) follows a deterministic
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Fig. 2. A possible search tree generated by the Serial-RB algorithm while solving
the Minimum Feedback Vertex Set problem on G. Deleted vertices correspond to
vertices that have been added to the solution and dotted lines indicate search nodes
that will be pruned by the algorithm.

procedure with a well-defined order. In other words, if we run
Serial-RB an arbitrary number of times on the same input instance,
the search-trees of all executions will be identical. The reason for
this restriction will become obvious later. We note that for most
graph problems, we can use integer vertex labels to guarantee
identical search trees.

In a parallel environment, we denote byC = {C0, C1, . . . , Cc−1}

the set of available computing cores. The rank of Ci is equal to i
and |C| = c . We use the terms worker and core interchangeably
to refer to some Ci participating in a parallel computation. Each
search node in T corresponds to a task, where tasks are exchanged
between cores using some specified encoding. We use E(Nd,p) to
denote the encoding of Nd,p. When search node Nd,p is assigned
to Ci, we say Nd,p is the main task of Ci. Going back to our
example on Minimum Feedback Vertex Set, if C = {C0, C1, C2}

then one possible initial assignment of tasks to cores is shown
in Fig. 2. Given that search trees can easily be decomposed to
subtrees, the following classical approach first comes to mind.
For C = {C0, C1, . . . , Cc−1}, start by running a serial breadth-
first search starting at N0,0 until T is decomposed into c mutually
exclusive subtrees T0, T1, . . . , Tc−1. Then, each core Ci is assigned
subtree Ti. This seemingly straightforward parallel nature of search
tree decomposition is deceiving: previous work has shown that
attaining scalability is far from easy [16,23,20,22].

Any task in T (Nd,p) sent from Ci to some Cj, i ≠ j, is a subtask for
Ci and becomes the main task of Cj. The weight of a task, w(Nd,p),
is a numerical value indicating the estimated completion time for
Nd,p relative to other tasks. That is, when w(Nd,p) > w(Nd′,p′), we
expect the exploration of T (Nd,p) to require more computational
time than T (Nd′,p′). Task weight plays a crucial role in the design of
efficient dynamic load-balancing strategies [7,17,12,24,3].Without
any problem-specific knowledge, the ‘‘best’’ indicator of theweight
ofNd,p is nothing but d since estimating the size of T (Nd,p) is almost
impossible. We capture this notion by setting w(Nd,p) =

1
d+1 . We

say task t1 is heavier (lighter) than task t2 ifw(t1) ≥ w(t2) (w(t1) <
w(t2)). It is important to note that we use depth as an indicator of
weight mainly since we want to achieve problem independence.
Theoretically, this assumption is not true (in general). A simple
example for Minimum Feedback Vertex Set is a p-flower graph G
with p petals, i.e. a central vertex v with p disjoint cycles starting
and ending at v. Deleting v from this graph destroys all cycles and
hence there exists a leaf node in T at depth onewhilemany internal
nodes of T have depth d > 1. Nevertheless, our experimental
results show that using depth to estimate task weights performs
very well in practice. We shall discuss this behavior further in
Section 7.

From the standpoint of high-performance computing, practical
parallel exact algorithms for hard problems mean one thing: un-
bounded scalability. To the best of our knowledge, the most ef-
ficient existing parallel algorithms that solve problems similar to
those we consider were only able to scale to less than a few thou-
sand (or only a few hundred) cores [22,24,3,4]. One of our main
motivations was to solve extremely hard instances of the Vertex
Cover problem such as the 60-cell graph [9]. In earlier work, we
first attempted to tackle the problem by improving the efficiency
of our serial algorithm [1]. Alas, some instances remained unsolved
and some required several days of execution before we could ob-
tain a solution. The next natural step was to attempt a parallel
implementation. As we encountered scalability issues, it became
clear that solving such instances in an ‘‘acceptable’’ amount of time
would require a scalable algorithm that can effectively utilizemuch
more than the 1024-core limit we attained in previous work [3].

We discuss the lessons we have learned and what we believe
to be the main reasons for such poor scalability in Section 3. In
Section 4, we present the main concepts and strategies we use
to address these challenges. Finally, implementation details, ex-
perimental results, and discussions are covered in Sections 5–7,
respectively.

3. Challenges and related work

3.1. Communication overhead

Themost evident overhead in parallel algorithms is that of com-
munication. Several models have already been presented in the
literature including centralized (i.e. the master–worker(s) model
where most of the communication and task distribution duties are
assigned to a single core) [4], decentralized [12,3], or a hybrid of
both [23]. Although each model has its pros and cons, centraliza-
tion rapidly becomes a bottleneck when the number of computing
cores exceeds a certain threshold [4]. Even though our approach
can be implemented under any communication model, we chose
to follow a fully decentralized model [3].

An efficient communication model has to (i) reduce the to-
tal number of message transmissions and (ii) minimize the travel
distance (number of hops) for each transmission. Unfortunately,
(ii) requires detailed knowledge of the underlying network archi-
tecture and comes at the cost of portability. For (i), the message
complexity is tightly coupledwith the number of times eachCi runs
out of work and requestsmore. Therefore, tominimize the number
of generated messages, we need to maximize ‘‘work time’’, which
is achieved by better dynamic load balancing.

3.2. Tasks, buffers, and memory overhead

Nomatter what communicationmodel is used, a certain encod-
ing has to be selected for representing tasks in memory. A draw-
back of the encoding used by Finkel and Manber [13] is that every
task is an exact copy of a search node,whose size can be quite large.
In a graph algorithm, every search node might contain a modified
version of the input graph (and some additional information). In
this case, a more compact task-encoding scheme is needed to re-
duce both memory and communication overheads.

Almost all parallel algorithms in the literature require a task-
buffer or task-queue to store multiple tasks for eventual delega-
tion [23,3,4,13]. As buffers have limited size, their usage requires
the selection of a ‘‘good’’ parameter value for task-buffer size.
Choosing the size can be a daunting task, as this parameter intro-
duces a tradeoff between the amount of time spent on creating or
sending tasks and that spent on solving tasks. It is very common for
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such parallel algorithms to enter a loop of multiple lightweight task
exchanges, i.e. tasks generated near the bottom of the search tree.
Such loops unnecessarily consume considerable amounts of time
and memory [3] as lightweight tasks would be more efficiently
solved in-place by a single core.

3.3. Initial distribution

Efficient dynamic load balancing is key to scalable parallel al-
gorithms. To avoid loops of multiple lightweight task exchanges,
initial task distribution also plays a major role. Even with clever
load-balancing techniques, such loops can consume a lot of re-
sources and delay (or even deny) the system from reaching a bal-
anced state.

3.4. Serial overhead

All the itemsdiscussed above induce some serial overhead.Here
we focus on encoding and decoding of tasks, which greatly affect
the performance of any parallel algorithm. Upon receiving a new
task, each computing core has to perform a number of operations
to correctly restart the search phase, i.e. resume the exploration of
its assigned subtree. When the search reaches the bottom levels of
the tree, the amount of time required to start a task might exceed
the time required to solve it, a situation that should be avoided.
Encoding tasks and storing them in buffers also consumes time. In
fact, the more we attempt to compress task encodings the more
serial work is required for decoding.

For NP-hard problems, it is important to account for what we
call the butterfly effect of polynomial overhead. Since the size of
the search tree is usually exponential in the size of the input, any
polynomial-time (or even constant-time) operations can have sig-
nificant effects on the overall running times [1], by virtue of being
executed exponentiallymany times. In general, the disruption time
(time spent doing non-search-related work) has to be minimized.

3.5. Load balancing

Task creation, i.e. determining when, how, and how often to
create and/or distribute tasks, is one of the most critical factors
affecting load balancing [4]. Careful tracing of recursive backtrack-
ing algorithms shows that most computational time is spent near
the bottom of the search tree, where d is very large. Moreover,
since task-buffers have fixed size, any parallel execution of a recur-
sive backtracking algorithm relying on task-buffers is very likely to
reach a state where all buffers contain lightweight tasks. Loops of
multiple lightweight task exchanges most often occur in such sce-
narios. To avoid them, we need a mechanism that enables the ex-
traction of a task of maximumweight from the subtree assigned to
a Ci, that is, the highest unvisited node in the subtree assigned to Ci.

Several load-balancing strategies have been proposed in the lit-
erature to tackle the aforementioned problems [7,17,16,22,18]. In
recent work [24], a load-balancing strategy designed specifically
for the Vertex Cover problem was presented. The algorithm is
based on a dynamicmaster–workermodel where prior knowledge
about generated instances is manipulated so that the core having
the estimated heaviest task is selected as master. However, scala-
bility of this approach was limited to only 2048 cores.

3.6. Termination detection

In a centralized model, the master detects termination using
straightforward protocols. The termination protocol can be initi-
ated several times by different cores in a decentralized environ-
ment, rendering detection more challenging. In this work, we use
a protocol similar to the one proposed by Abu-Khzam et al. [3],
where each core, which can be in one of three states, broadcasts
any state change to all other cores.
Fig. 3. Example of an indexed binary search tree.

3.7. Identifying parallelism and problem independence

Another important aspect to consider in the design of parallel
algorithms is the identification of parallelism in the sequential
version of the algorithms. As previously noted, our focus is on
NP-hard problemswhere, in most cases, the exploration of a single
root-to-leaf path in the search tree requires time polynomial in
the input size, whereas the search tree size grows exponentially.
Therefore, we chose to partition the search tree of the problem and
only parallelize the exploration of its different subtrees, i.e. keeping
all computations executed inside a single search node serial.
Another reason for this choice is that we need to address all the
challenges listed above independently of the problembeing solved.

4. Addressing the challenges

In this section,we showhow to incrementally transform Serial-
RB into a parallel algorithm. First, we discuss indexed search trees
and their use in a generic and compact task-encoding scheme. As
a byproduct of this encoding, we show how we can efficiently
extract heavy (if not heaviest) unprocessed tasks for dynamic load
balancing. We provide pseudocode to illustrate the simplicity of
transforming serial algorithms to parallel ones. The end result
is a parallel algorithm, Parallel-RB, which consists of two main
procedures: Parallel-RB-Iterator and Parallel-RB-Solver.

4.1. Indexed search trees

For a binary search tree T , we let left(Nd,p) and right(Nd,p)
denote the left child and the right child of node Nd,p, respectively.
We use the following procedure to assign an index, idx, to every
search node in T (where + denotes concatenation):

(1) The root of T has index 1 (idx(N0,0) = ‘‘1’’)
(2) For any node Nd,p in T :

(2.1) idx(left(Nd,p)) = idx(Nd,p) + ‘‘0’’ and
(2.2) idx(right(Nd,p)) = idx(Nd,p) + ‘‘1’’.

An example of an indexed binary search tree is given in Fig. 3.
Note that this indexingmethod can easily be extended for arbitrary
branching factor by simply setting the index of the kth child of Nd,p
to idx(Nd,p) + ‘‘(k − 1)’’. The general idea of indexing is not new
and has been previously used for prioritizing tasks in buffers or
queues [23,7]. However, as we shall see next, we can completely
eliminate the need for buffering multiple tasks by combining a
fully decentralized communication model with some operations
formanipulating indices. Hence,we effectively reduce thememory
footprint of our algorithms and eliminate the burden of selecting
appropriate size parameters for each buffer or task granularity as
described by Sun et al. [23].

To incorporate indices into our algorithm, we introduce mi-
nor modifications to Serial-RB. We call this new version Almost-
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Fig. 4. The Almost-Parallel-RB algorithm.
Fig. 5. The GetHeaviestTaskIndex and FixIndex functions.
Parallel-RB (Fig. 4). Almost-Parallel-RB includes a global inte-
ger array current_idx that is maintained by a single statement:
current_idx[d] = p. Sincewe assumebinary search trees, p ∈ {0, 1}
and whenever Almost-Parallel-RB is exploring search node Nd,p
we have the invariant that current_idx is an array representation
of idx(Nd,p). We let E(Nd,p) = idx(Nd,p), i.e. the encoding of a task
corresponds to its index and is of O(d) size. Combined with an ef-
fective load-balancing strategy which generates tasks having only
small d, this approach aims at reducing memory and communica-
tion overheads. Upon receiving an encoded task, every core now re-
quires an additional function ConvertIndex, the implementation
details ofwhich are problem-specific (Section 5 discusses some ex-
amples). The purpose of this function is to convert an index into
an actual task from which the search can proceed. Since every
index encodes the unique path from the root of the tree to the cor-
responding search node and by assumption search nodes are gen-
erated in a well-defined order, to retrace the operations it suffices
to iterate over the index. Even though one is trading communica-
tion volume and memory for serial computational work, the over-
head introduced by this approach remains closely related to the
number of tasks solved by each core, i.e. the smaller this number
the less additional serial work is required. Moreover, minimizing
this number alsominimizes disruption time since the search-phase
of the algorithm is not affected. To do so, we introduce a mecha-
nismallowing each core to extract its heaviest unprocessed task (or
highest unvisited node in its corresponding search tree) using only
the information provided by the index. We use the function GetH-
eaviestTaskIndex to repeatedly extract the heaviest task from the
current_idx array and FixIndex to ensure that no search node is
ever explored twice (Fig. 5).

4.2. Generating the local heaviest task

The GetHeaviestTaskIndex function (Fig. 5) relies on the
following observation:

Observation 1. Let T be some search tree and assume C0 is the only
core exploring T using the Almost-Parallel-RB algorithm (Fig. 4). If
current_idx = [x0, x1, . . . , xn], xi ∈ {0, 1}, then the highest unvisited
node in T has index [x0, x1, . . . , xi +1], where i ≤ n and xi is the first
zero entry in current_idx.

Observation 1 follows from the fact that Almost-Parallel-RB
explores T using depth-first search, i.e. the left child of a search
node is always explored first. Hence, given our procedure for as-
signing indices to nodes, a zero entry in current_idx[d] indicates the
existence of an unvisited ‘‘right child’’ at depth d (Fig. 3). Searching
for the first zero entry in current_idx guarantees that this child is
the highest unvisited node in T . Of course, Observation 1 only holds
for a single core.Morework is needed tomaintain a slightlyweaker
invariant in a parallel environment where cores are exploring dif-
ferent sections of the search tree and tasks are being exchanged. In-
tuitively, in a parallel environment, every core extracts the locally
highest unvisited node in the subtree of T it is currently exploring.
To remember which tasks have been delegated, negative numbers
are used as ‘‘markers’’. We discuss the details next.
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Fig. 6. Example of an initial task-to-core assignment for c = 7.

Assume a parallel computation involving cores Ci and Cj and
the search tree shown in Fig. 3. Ci has main task N0,0 and is cur-
rently exploring node N3,2 (hence current_idx = [1, 0, 1, 0]).
After receiving an initial task request from Cj, Ci calls GetHeav-
iestTaskIndex. By Observation 1, for h the smallest integer such
that current_idx[h] = 0, current_idx[0 → h], the subarray of
current_idx starting at position 0 and ending at position h corre-
sponds to the index of the highest unvisited node in the search tree
assigned to Ci. Therefore, in our example h = 1 and GetHeaviest-
TaskIndex returns temp_idx = current_idx[0 → h] = [1, −1] and
sets current_idx = [1, −1, 1, 0]. Position h in current_idx is set to
− 1 to guarantee that no search node is ever explored twice. Be-
fore exploring a search node, every core must first use current_idx
to validate that the current branchwas not previously delegated to
a different core (Fig. 4, lines 2–3). Whenever Ci discovers a −1 in
current_idx[d], the search can terminate, since the remaining sub-
tree has been reassigned to a different core.

At the receiving end, Cj calls FixIndex, after which temp_idx =

[1, 1]. As seen in Fig. 3 and by Observation 1, N1,1 was in fact the
heaviest task in T (N0,0). Cj proceeds by converting the received in-
dex to a task and then starts exploring the corresponding subtree. If
Cj subsequently requests a second task fromCi whileCi is stillwork-
ing onnodeN3,2, the resulting task is [1, 0, 1, 1] and the current_idx
of Ci is updated to [1, −1, 1, −1]. When the current_idx of Ci con-
tains no zero entries, Ci sends a no-task response to Cj. Both the
GetHeaviestTaskIndex and FixIndex functions run in O(d) time.

4.3. From serial to parallel

The Almost-Parallel-RB algorithm is lacking a formal defini-
tion of the communication model as well as the implementation
details of the initialization and termination protocols. For the for-
mer, we use a fully decentralized model in which any two cores
can communicate. We assume that each core is assigned a unique
rank r , for 0 ≤ r < c. We consider three different types ofmessage
exchanges: status updates, task requests or responses, and notifi-
cation messages. Each core can be in one of three states: active,
inactive, or dead. Before changing states, each core must broad-
cast a status update message to all participants. This information
is maintained by each core in a global integer array statuses. Noti-
fication messages are optional broadcast messages whose purpose
is to inform the remaining participants of current progress. In our
implementation, notification messages are sent whenever a new
solution is found. The message includes the size of the new solu-
tionwhich, formany algorithms, can be used as a basis for effective
pruning rules.

In the initialization phase, for a binary search tree and the
number of cores a power of two (c = 2x), one strategy would
be to generate all search-nodes at depth x and assign one to each
core. However, these requirements are too restrictive and greatly
complicate the implementation, as search trees need not be binary
Fig. 7. The GetParent and GetNextParent functions.

and utilizing only c = 2x of out 2x+1
− 1 cores would leave

a lot of resources idle. Instead, we exploit the ranks of cores to
arrange them in a virtual tree-like topology. Every core, except C0,
is forced to request the first task from its parent (stored as a global
variable) in this virtual topology. C0 is always assigned task N0,0.
The GetParent function, which runs in O(log2 c) time, is given
in Fig. 7. The intuition is that if we assume that cores join the
computation in increasing order of rank, Ci must always request
an initial task from Cj where j < i and there exists no Ck such that
k < i and Ck has a heavier task than Cj. Fig. 6 shows an example
of an initial task-to-core assignment for c = 7. The parent of Ci
corresponds to the first Cj encountered on the path from the task
assigned to Ci to the root. When C4 joins the topology, although
all remaining cores (C0, . . . , C3) have tasks of equal weight, C4
selects C0 as a parent. This is due to the alternating behavior of the
GetParent function, i.e.when i is even, the parent ofCi corresponds
to Cj, where j is the smallest even integer such that Cj has a task of
maximum weight. The same holds for odd i, except that C1 must
pick C0 as a parent. This approach aims at balancing the number of
cores exploring different sections of the search tree.

Once every core receives a response from its initial parent, the
initialization phase is complete. After that, each core updates its
parent to (r + 1)mod c. During the search-phase, task requests
follow the receiver-initiated or work-stealing paradigm [22,17]
modified to fit our fully decentralized communication model. In
other words, whenever a core requires a new task it will first
attempt to request one from its current parent. If the parent has
no available tasks or is inactive, the virtual topology is modified (in
O(1) time) by the GetNextParent function (Fig. 7).

In the global variable passes, we keep track of the number of
times each core has unsuccessfully requested a task from all partic-
ipants. The termination protocol is invoked by some core Ci when-
ever passes is incremented. Ci goes from being active to inactive
and sends a status updatemessage to inform the remaining partic-
ipants. Once all cores are inactive, the computation can safely end.
The complete pseudocode for Parallel-RB is given in Fig. 8. The
algorithm consists of twomain procedures: Parallel-RB-Iterator
and Parallel-RB-Solver. To minimize disruption time, all com-
munication must be non-blocking in the latter and blocking in the
former.

4.4. Arbitrary branching factor

For search trees of arbitrary branching factor, the index of Nd,p
needs to keep track of both the unique root-to-node path aswell as
the number of unexplored siblings ofNd,p (i.e. all the nodes at depth
d and position greater than p). Therefore, we divide an index into
two parts, idx1 and idx2. We let kth(Nd,p) denote the kth child ofNd,p
and C(Nd,p) the set of all children of Nd,p. The following procedure
assigns indices to every search-node in T :
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Fig. 8. The Parallel-RB algorithm.
(1) The root of T has idx1(N0,0) = ‘‘1’’ and idx2(N0,0) = ‘‘0’’
(2) For any node Nd,p in T :

(2.1) idx1(kth(Nd,p)) = idx1(Nd,p) + ‘‘(k − 1)’’ and
(2.2) idx2(kth(Nd,p)) = idx2(Nd,p) + ‘‘(|C(Nd,p)| − k)’’.

An example of an indexed search tree is given in Fig. 9. Each node
is assigned two identifiers: idx1 (top) and idx2 (bottom). At the
implementation level, the current_idx array is replaced by a 2 × d
array that can be maintained after every recursive call in a fashion
similar to Parallel-RB-Solver as long as each search-node Nd,p is
aware of |C(Nd,p)|.

The first non-zero entry in current_idx[1] (the second row of
the array), say current_idx[1][x], indicates the depth of all tasks of
heaviest weight. Since there can be more than one unvisited node
at this depth, we could choose to send either all of them or just a
subset S. In the first case, we can remember delegated branches
by simply setting current_idx[1][x] to −1. For the second case,
current_idx[1][x] is decremented by |S|. Note that the choice of S
cannot be arbitrary. If C(Nd,p) = {Nd+1,0,Nd+1,1, . . . ,Nd+1,pmax},
S must include Nd+1,pmax , and for any Nd+1,i ∈ S, it must be
the case that Nd+1,j is also in S for all j between i and pmax.
 Fig. 9. Example of an indexed search tree with arbitrary branching factor.
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The only modification required in Parallel-RB-Solver is to make
sure that at search-node Nx,p, GetNextChild is executed only
current_idx[1][x] times.

5. Implementation

We tested our approach with parallel implementations of al-
gorithms for the well-known Vertex Cover and Dominating Set
problems.

Vertex Cover
Input: A graph G = (V , E)
Question: Find a set C ⊆ V such that |C | is

minimized and the graph induced by V \ C
is edgeless

Dominating Set
Input: A graph G = (V , E)
Question: Find a set D ⊆ V such that |D| is

minimized and every vertex in G is either
in D or is adjacent to a vertex in D

Both problems have received considerable attention in the ar-
eas of exact and fixed parameter algorithms because of their close
relations to many other problems in different application domains
[2]. The sequential algorithm for the parameterized version ofVer-
tex Cover having the fastest known worst-case behavior runs in
O(kn+1.2738k) time [6], where k is an upper bound on the size of
the target solution. We converted this to an optimization version
by introducing simple modifications and excluding complex pro-
cessing rules that require heavymaintenance operations. ForDom-
inating Set, we implemented the algorithm of Fomin et al. [14]
where the problem is solved by a reduction toMinimum Set Cover.
We used the hybrid graph data structure [1], specifically designed
for recursive backtracking algorithms, that combines the advan-
tages of the two classical adjacency-list and adjacency-matrix rep-
resentations of graphs with very efficient implicit backtracking
operations.

Our input consists of a graph G = (V , E) where |V | = n,
|E| = m, and each vertex is given an identifier between 0 and
n − 1. The search tree for each algorithm is binary and the ac-
tual implementations closely follow the Parallel-RB algorithm. At
every search-node, a vertex v of highest degree is selected deter-
ministically. Vertex selection has to be deterministic to meet the
requirements of our approach. To break tieswhenmultiple vertices
have the same degree, we always pick the vertex with the smallest
identifier. For Vertex Cover, the left branch adds v to the solution
and the right branch adds all the neighbors of v to the solution. For
Dominating Set, the left branch is identical but the right branch
forces v to be out of any solution. The ConvertIndex function is
straightforward as the added, deleted, or discarded vertices can be
retraced by iterating through the index and applying any appropri-
ate reduction rules along the way. Every time a smaller solution is
found, the size is broadcasted to all participants to avoid exploring
branches that cannot lead to any improvements.

6. Experimental results

Our code, written in the standard C language, utilizes the Mes-
sage Passing Interface (MPI) [10] and has no other dependencies.
Computations were performed on the BGQ supercomputer at the
SciNet HPC Consortium.1 The BGQ production system is a 3rd gen-
eration Blue Gene IBM supercomputer built around a system-on-a-

1 SciNet is funded by the Canada Foundation for Innovation under the auspices
of Compute Canada; the Government of Ontario; Ontario Research Fund – Research
Excellence; and the University of Toronto [19].
Table 1
Parallel-Vertex-Cover statistics on graphs p_hat700-1.clq and p_hat1000-2.clq.

Graph |C | Time TS TR Speedup

p_hat700-1.clq 16 19.5 h 2,876 2,910
p_hat700-1.clq 32 9.8 h 2,502 2,567 1.99
p_hat700-1.clq 64 4.9 h 3,398 3,518 2.00
p_hat700-1.clq 128 2.5 h 4,928 5,196 1.96
p_hat700-1.clq 256 1.3 h 4,578 5,153 1.92
p_hat700-1.clq 512 38 min 4,354 5,451 2.05
p_hat700-1.clq 1,024 18.9 min 4,052 6,391 2.01
p_hat700-1.clq 2,048 9.89 min 3,781 8,117 1.91
p_hat700-1.clq 4,096 5.39 min 3,665 11,978 1.83
p_hat700-1.clq 8,192 2.9 min 2,714 19,183 1.86
p_hat700-1.clq 16,384 1.7 min 1,342 32,883 1.71
p_hat1000-2.clq 64 23.6 min 3,664 3,799
p_hat1000-2.clq 128 12.5 min 2,651 2,912 1.89
p_hat1000-2.clq 256 6.5 min 1,623 1,956 1.92
p_hat1000-2.clq 512 3.7 min 1,235 1,872 1.75
p_hat1000-2.clq 1,024 2.1 min 866 2,142 1.76
p_hat1000-2.clq 2,048 1.2 min 610 3,120 1.75

chip compute node. There are 2048 compute nodes each having a
16 core 1.6 GHz PowerPC based CPUwith 16GB of RAM.When run-
ning jobs on 32,768 cores, each core is allocated 1 GB of RAM. Each
core also has four ‘‘hardware threads’’ that can keep the different
parts of each core busy at the same time. It is therefore possible to
run jobs on 65,536 and 131,072 cores at the cost of reducing avail-
able RAM per core to 500 MB and 250 MB, respectively. We could
run experiments using this many cores only when the input graph
was relatively small and, due to the fact that multiple cores were
forced to share (memory and CPU) resources, we noticed a slight
decrease in performance.

The Parallel-Vertex-Cover algorithmwas tested on four input
graphs.

– p_hat700-1.clq: 700 vertices and 234,234 edges with a mini-
mum vertex cover of size 635

– p_hat1000-2.clq: 1000 vertices and 244,799 edges with a min-
imum vertex cover of size 946

– frb30-15-1.mis: 450 vertices and 17,827 edgeswith aminimum
vertex cover of size 420

– 60-cell: 300 vertices and 600 edges with a minimum vertex
cover of size 190

The first two instances were obtained from the classical Center
for Discrete Mathematics and Theoretical Computer Science (DI-
MACS) benchmark suite (http://dimacs.rutgers.edu/Challenges/).
The frb30-15-1.mis graph is a notoriously hard instance for which
the exact size of a solutionwas known so far only froma theoretical
perspective. To the best of our knowledge, this paper is the first to
experimentally solve it; more information on this instance can be
found in the work of Xu et al. [26]. Lastly, the 60-cell graph is a
4-regular graph (every vertex has exactly 4 neighbors) with ap-
plications in chemistry [9]. Prior to this work, we solved the 60-
cell using a serial algorithm which ran for almost a full week [1].
The high regularity of the graph makes it very hard to apply any
pruning rules, resulting in an almost exhaustive enumeration of all
feasible solutions. For the Parallel-Dominating-Set algorithmwe
generated two random instances 201x1500.ds and 251x6000.ds
where nxm.ds denotes a graph on n vertices and m edges. Neither
instance could be solved by our serial algorithm when limited to
24 h.

All of our experiments were limited by the system to a max-
imum of 24 h per job. To evaluate the performance of our
communication model and dynamic load balancing strategy, we
collected two statistics from each run: TS and TR. TS denotes the
average number of tasks received (and hence solved) by each core
while TR denotes the average number of tasks requested by each

http://dimacs.rutgers.edu/Challenges/
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Table 2
Parallel-Vertex-Cover statistics on graphs frb30-15-1.mis and 60-cell.

Graph |C | Time TS TR Speedup

frb30-15-1.mis 1,024 14.2 h 13,580 15,968
frb30-15-1.mis 2,048 7.2 h 21,899 26,597 1.97
frb30-15-1.mis 4,096 3.6 h 28,740 37,733 2.01
frb30-15-1.mis 8,192 1.9 h 29,110 45,685 1.89
frb30-15-1.mis 16,384 55.1 min 28,707 59,978 2.07
frb30-15-1.mis 32,768 28.8 min 30,008 96,438 1.91
frb30-15-1.mis 65,536 16.8 min 25,359 158,371 1.71
frb30-15-1.mis 131,072 11.1 min 19,419 312,430 1.51
60-cell 128 14.3 h 19 26
60-cell 256 7.3 h 23 23 1.96
60-cell 512 3.7 h 1,091 1,388 1.97
60-cell 1,024 45.1 min 1,397 1,940 4.92
60-cell 2,048 11.3 min 1,331 2,430 3.99
60-cell 4,096 2.8 min 949 3,094 4.04

Table 3
Parallel-Dominating-Set statistics on random graphs.

Graph |C | Time TS TR Speedup

201x1500.ds 512 18.1 h 8,231 9,642
201x1500.ds 1,024 9.2 h 10,315 12,611 1.97
201x1500.ds 2,048 4.5 h 11,566 16,118 2.04
201x1500.ds 4,096 2.3 h 14,070 23,413 1.96
201x1500.ds 8,192 1.2 h 13,243 33,680 1.92
201x1500.ds 16,384 36.2 min 10,295 41,795 1.99
201x1500.ds 32,768 19.2 min 6,925 72,719 1.89
201x1500.ds 65,536 11.8 min 4,221 109,346 1.63
251x6000.ds 256 8.9 h 3,313 4,573
251x6000.ds 512 4.7 h 3,865 4,985 1.89
251x6000.ds 1,024 2.4 h 2,842 5,306 1.96
251x6000.ds 2,048 1.2 h 1,528 5,396 2.00
251x6000.ds 4,096 36.4 min 2,037 9,714 1.98
251x6000.ds 8,192 18.7 min 1,445 10,497 1.95
251x6000.ds 16,384 10.1 min 1,132 12,310 1.85
251x6000.ds 32,768 5.5 min 934 13,982 1.84

core. In Tables 1 and 2, we give the running times of the Parallel-
Vertex-Cover algorithm for every instance while varying the total
number of cores, |C |, from 2 to 131,072 (we only ran experiments
on 65,536 or 131,072 coreswhen the graphwas small enough to fit
in memory or when the running time exceeded 10 min on 32,768
cores).

The values of TS and TR are also provided. Since we double the
number of cores after every run, speedup values for each row are
based on the running time recorded for the previous row. Similar
results for the Parallel-Dominating-Set algorithm are given in
Table 3. We show the overall behaviors in the chart of Fig. 10.

In Fig. 11, we plot the different values of TS and TR for a rep-
resentative subset of our experiments. This chart reveals the in-
herent difficulty of dynamic load balancing. As |C | increases, the
gap between TS and TR widens. We believe that any efficient dy-
namic load-balancing strategy has to control the growth of this
gap (e.g. keep it linear) for a chance to achieve unbounded scalabil-
ity. The largest gapwe obtainedwas approximately 300,000 on the
frb30-15-1.mis instance using 131,072 cores. Given the number of
cores and the amount of time (>10 min) spent on the computa-
tion, the number suggests that each core requested an average of
2.5 tasks from every other core. One possible improvement which
we are currently investigating is to modify our virtual topology to
a graph-like structure of bounded degree. Our approach currently
assumes a fully connected topology after initialization (i.e. any two
cores can communicate) which explains the correlation between
|C | and |TS − TR|. By bounding the degrees in the virtual topology,
we hope to make this gap weakly dependent on |C |.

7. Interpreting the results

In almost all cases, the algorithms achieve near linear speedup
on at least 32,768 cores. Not surprisingly, whenever the time re-
Fig. 10. The logarithm (base 2) of running times in seconds (y-axis) vs. number of
cores (x-axis).

Fig. 11. The logarithm (base 2) of the average number of message transmissions
(y-axis) vs. number of cores (x-axis) (TS shown in black and TR shown in gray).

quired to solve an instance drops to just a few minutes, the over-
all performance of the algorithms decreases as we add more cores
to the computation. More surprising might be the super-linear
speedups attained for the 60-graph. This ismainly due to some sort
of cooperation among the various cores: when one core finds a so-
lution of a certain ‘‘improved’’ size, the value of best_so_far gets
updated. Consequently, some cores might discover that a better
solution cannot be obtained in their respective subtrees, hence al-
lowing for pruning of potentially large sections of the search tree.
This behavior is highly effective when the number of optimum so-
lutions is relatively small (very few leaf-nodes in the search-tree
correspond to optimum solutions).

From the results of 201x1500.ds and frb30-15-1.mis on 65,536
cores,we expected a performance slowdownof about 10 percent in
general, as running onmore coreswould force sharing of resources
whenever |C | is greater than 32,768 (on the BGQ system). Since all
of the problem instances we tested on were solved in just a few
minutes using at most 32,768 cores, we hope that ‘‘appropriately’’
harder instances will be available in the future to fairly test
scalability on a larger number of cores.

Although we use depth as an indicator of task weight and re-
strict our attention to locally highest unvisited nodes, experimen-
tal results show promising scalability for a very large number of
cores. We believe that this is due to the simplicity of our approach
and the dynamic nature of the virtual topology; as the computation
progresses, clusters of cores exploring some section of the search
space are formed. Even though some cores in other clusters could
have locally heavier tasks, every cluster is ‘‘efficiently’’ exhausting
its search space and then ‘‘breaking up’’ to join the remaining ‘‘bus-
ier’’ clusters. Here, efficiency is very likely tied to the fact that the
indexing approach greatly reduces the amount of time spent on
parallelization and focuses on keeping every core busy exploring
the search space.
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8. Conclusions and future work

Combining indexed search trees and (local) heaviest task ex-
traction with a decentralized communication model, we have
showed how any serial recursive backtracking algorithm, with
some ordered branching, can be modified to run in parallel. Some
of the key advantages of our approach are:

– Themigration fromserial to parallel entails very little additional
coding. Implementing each of our parallel algorithms took less
than two days.

– It completely eliminates the need for buffering multiple tasks
and the overhead they introduce (Section 3.2).

– The inputs of the serial and parallel implementations are iden-
tical. Running the parallel algorithms requires no additional in-
put from the user (assuming every core has access to r and c).
Most parallel algorithms in the literature require some parame-
ters such as task-buffer size. Selecting the best parameters could
vary depending on the instance being solved.

– Experimental results have showed that our implicit load-
balancing strategy, joined with the concise task-encoding
scheme, can achieve nearly linear (sometimes super-linear)
speedup with scalability on at least 32,768 cores. We hope to
test our implementations on a larger system in the near future
to determine the maximum number of cores it can support.

– Although not typical of parallel algorithms, when using the
indexing method and the ConvertIndex function, it becomes
reasonably straightforward to support join-leave (i.e. cores
leaving the computation after solving a fixed number of tasks)
or checkpointing capabilities (i.e. by forcing every core to write
its current_idx to disk).

We believe there is still plenty of room for improvements
at the risk of losing some of the simplicity. One area we have
started examining is the virtual topology. A ‘‘smarter’’ topology
could further reduce the communication overhead (e.g. the gap
between TS and TR) and increase the overall performance. One
possibility is to adapt the randomized work-stealing approach
to a fully decentralized communication model [17,22]. Another
candidate is the GetNextParent function which can be modified
to probe a fixed number of cores before selecting which to ‘‘help’’
next. Finally, we intend to investigate the possibility of developing
our approach into a framework or library, similar to previous
work [23,20], which will provide users with built-in functions for
parallelizing recursive backtracking algorithms.
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