
Robust Multi-Tenant Server Consolidation
in the Cloud for Data Analytics Workloads

Joseph Mate
University of Waterloo

jmate@uwaterloo.ca

Khuzaima Daudjee
University of Waterloo

kdaudjee@uwaterloo.ca

Shahin Kamali
MIT CSAIL

skamali@mit.edu

Abstract—Server consolidation is the hosting of multiple ten-
ants on a server machine. Given a sequence of data analytics
tenant loads defined by the amount of resources that the
tenants require and a service-level agreement (SLA) between the
customer and the cloud service provider, significant cost savings
can be achieved by consolidating multiple tenants. Since server
machines can fail causing their tenants to become unavailable,
service providers can place replicas of each tenant on multiple
servers and reserve capacity to ensure that tenant failover will
not result in overload on any remaining server. We present the
CUBEFIT algorithm for server consolidation that reduces costs
by utilizing fewer servers than existing approaches for data
analytics workloads. Unlike existing consolidation algorithms,
CUBEFIT can tolerate multiple server failures while ensuring that
no server becomes overloaded. Through theoretical analysis and
experimental evaluation, we show that CUBEFIT is superior to
existing algorithms and produces near-optimal tenant allocation
when the number of tenants is large. Through evaluation and
deployment on a cluster of 73 machines as well as through
simulation studies, we experimentally demonstrate the efficacy
of CUBEFIT.

I. INTRODUCTION

Cloud computing has transformed the information tech-

nology sector by providing software-as-a-service (SaaS) and

infrastructure-as-a-service (IaaS) on demand. Cloud hosting of

analytic workloads is experiencing explosive growth. Cloud

service providers, such as Amazon Web Services, host client

applications and their data on their cloud servers. This relieves

customers from technical tasks such as system operation,

maintenance and provisioning of hardware resources. Service

Level Agreements (SLAs) between clients and the service

provider define the minimum performance requirement for

cloud-hosted client applications. The objective of a service

provider is to meet the SLA requirement and, at the same

time, minimize the operational cost of providing service. There

is generally a trade-off between performance as desired by

customers, and the operational costs associated with using

resources.

Cloud providers commonly consolidate client applications,

called tenants, on shared computing resources to improve

utilization and, as a result, reduce operating and maintenance

costs. A service provider should have effective strategies for

assigning or allocating tenants to reduce the number of servers

(machines) that host tenants. This is critical for avoiding

“server sprawl” in which there are numerous under-utilized

active servers which consume more resources than required

by tenants. Preventing server sprawl is important for green

computing and saving on energy-related costs, which account

for a significant portion of a data center’s ongoing operational

costs [3], [9].

In this paper, we present an efficient solution to the problem

of server consolidation in the cloud for in-memory multi-

tenant data analytics workloads described by the following

requirements.

First, to meet the SLA, server consolidation should be

performed in such a way that servers are not overloaded.

Data centers usually have a large number of server machines

providing significant resource capacity [12]. In this context,

each tenant has a load defined as the minimum amount of

in-memory server compute resources required by the tenant

to meet its SLA [8], [10], [12], e.g., a tenant with higher

query load places higher in-memory server load. If a server is

overloaded, i.e., the total tenant load that it hosts exceeds its

capacity, then the SLA will not be satisfied.

In an ideal scenario, a cloud service provider has access

to all tenants before assigning any of them to servers. This

can provide efficient tenant placement while meeting the SLA.

However, in practice, tenants appear dynamically, i.e., in an

online manner. Thus, the second requirement is that each

tenant needs to be assigned to a server without knowledge

about forthcoming tenants.

The third requirement is dealing with failure of one or more

server machines resulting in hosted tenants suffering from

performance degradation or loss of availability. To address

this issue, tenants are replicated1 on more than one server

so that when a server fails, the load of a replica hosted on

the failed server can be distributed among other servers that

host replica(s) of the tenant. The SLA should be met in case

of a server’s failure, i.e, the extra load redirected to other

servers (as a result of the server’s failure) should not result in

overloaded servers. To meet this requirement, service providers

need to reserve extra capacity on each machine in anticipation

of server failure.

A. Contributions

In this paper, we consider a general model of server con-

solidation for data analytics workloads. We present CUBEFIT,

an online algorithm for server consolidation in the cloud

1E.g., AWS provides the RDS service at multiple replication levels [1].

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.144

960

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.144

2111



for multi-tenant workloads. Unlike prior work [12] that can

maintain an SLA in the presence of only one server failure,

CUBEFIT minimizes the number of servers used to host tenants

while providing robustness by tolerating failure of any given

number of servers for a particular SLA. In this context,

robustness refers to the number of simultaneous server failures

that do not result in violation of SLA.

Our CUBEFIT algorithm is based on the idea of placing

tenants of the same class into multi-dimensional “cubes” and

consolidating smaller tenants into cubes formed by larger

tenants which still ‘fit’ them. We demonstrate using theoretical

analysis, real system experiments, and simulations that the

CUBEFIT algorithm utilizes the least number of servers for

hosting tenants while satisfying a given SLA.

Our system model and experiments address multi-tenant

consolidation for the data analytics domain but we expect

CUBEFIT and its analysis to apply to other types of server

consolidation requiring robust solutions.

II. PROBLEM

In this section, we formally define the robust tenant place-

ment problem, extending and building on prior work such as

[12]. We consider an online (dynamic) setting in which tenants

appear one by one. Tenants have many characteristics, but the

one that is important for server consolidation is the load of

a tenant. Thus, we distinguish each tenant by its load, which

we normalize to be in the range (0,1] and each server has a

capacity of 1. Upon arrival of a tenant of load x, γ replicas of

the tenant are created, where γ is a parameter of the problem

and typically γ ∈ {2, 3}. To achieve load balancing, the load

of a tenant is distributed among the replicas, i.e., a replica

of size x has a load x/γ. A consolidation algorithm needs to

place these replicas on γ different servers. Each replica might

be placed on an existing server or the algorithm might open
(allocate) a new server for it. To meet SLA requirements, the

total load of replicas on each server should not be more than

the unit capacity of the server.

When a server fails, the load associated with each replica

hosted by the server is distributed among servers that host its

remaining replicas. The resulting extra load should not exceed

the unit capacity of these servers. For example, consider γ = 3,

and assume a tenant X has three replicas x1, x2, and x3 which

are respectively hosted by servers S1, S2, and S3. In case of

S1’s failure, the load of x1 is distributed between S2 and S3.

In case of the simultaneous failure of S1 and S2, the load

of x1 and x2 is redirected to S3. The system needs to be

robust against failure of at most γ − 1 servers. This implies

that S3 should have a reserved capacity at least equal to the

total load of x1 and x2. To be more precise, without loss of

generality, assume |Si| indicates the total load of replicas on

server Si. Moreover, assume |Si ∩ Sj | denotes the total load

of replicas hosted on server Si which have a replica on Sj .

To have a robust solution, for any server Si, and for any set

S∗ formed by at most γ − 1 servers other than Si, we should

have |Si|+
∑

Sj∈S∗ |Si ∩Sj | ≤ 1, i.e., the load directed to Si

as a result of simultaneous failure of servers in S∗ should not

��������

�������

������	� �
������

����	
�

�
�����

�
������

�
�����



������

�
������ ������	�



������

�� �
 �� �� ��

(a) A packing with replication factor γ = 2

�� �
 �� �� �� �	

�����
� �����
� ����	��

�������

�
������
�����

��������

��������

��������

�
���
�

�
���
�


���
	�



���
	�



���
	�

�
���
�

� �

�
����
�

���� ������

�
����
�
�� ��

�
����
�

��

(b) A packing with replication factor γ = 3

Fig. 1: Two solutions associated with a sequence of tenants

σ = 〈a = 0.6, b = 0.3, c = 0.6, d = 0.78, e = 0.12, f =
0.36〉. In the solution of (a), each tenant is replicated on

two machines; hence, the load of each replica is half of

the tenant’s. In case of a single server’s failure, the service

continues without interruption. For example, if S1 fails, the

load of replica a redirects to S2 ; this gives a total load of

0.6 + 0.3 ≤ 1 for S2. Similarly, loads of b and e redirect to

S3 and load of f redirects to S5. In the solution of (b), each

tenant is replicated on three machines. In case of simultaneous

failure of two servers, the system continues uninterrupted. For

example, if S1 and S2 fail, the total load of replicas of a
redirects to S3, resulting in a total load of 0.46+2× 0.2 ≤ 1.

be more than the reserved capacity of Si. Figure 1 provides

an illustration.

The server consolidation problem is closely related to the

online bin packing problem in which the goal is to place a set

of items with different sizes into a minimum number of bins of

unit capacity. In the online setting, items appear one by one,

and an algorithm has to place each item without knowledge

of forthcoming items. In the context of server consolidation,

each bin represents a server and each item represents a tenant.

III. CUBEFIT ALGORITHM

In this section, we introduce the CUBEFIT algorithm.

CUBEFIT places replicas of almost equal sizes in the same

bins. It defines K classes for replicas based on their sizes,

where K is a small integer. For large data centers with

9612112



thousands of servers, we suggest K = 10, while for smaller

settings, it would be smaller, e.g., K = 5. Recall that γ denotes

the number of replicas per tenant. The replicas with sizes in

the range ( 1
τ+γ ,

1
τ+γ−1 ] belong to class τ (have type τ ), where

1 ≤ τ < K. Note that the size of each replica is at most 1/γ.

The replicas with sizes in the range (0, 1
K+γ−1 ] belong to

class K. Each bin also has a class (type) which is defined

as the class of the first replica placed in the bin. A bin of

class τ (1 ≤ τ < K) is expected to receive τ replicas of the

same class. More precisely, it has τ + γ − 1 slots, each of

size 1/(τ + γ − 1), out of which τ slots are expected to be

occupied by replicas of type τ and γ − 1 slots are reserved

to be empty in anticipation of servers’ failure. If τ slots of a

bin of type τ become occupied, we say the bin is a mature
bin. There might be empty, non-reserved space in a mature

bin which the algorithm uses to place smaller replicas, i.e.,

replicas belonging to classes larger than τ .

Let (x1, x2, . . . , xγ) denote the γ replicas of a tenant x.

We say a mature bin B mature-fits (m-fits) a replica xj if

B has enough space for xj and, after placing xj in B, the

empty space of B is no less than the total size of replicas

shared between B and any set of γ − 1 bins. To place x,

CUBEFIT first checks if, for all replicas of x, there are mature

bins that m-fit them. If there are, the algorithm places replicas

in them using the Best Fit strategy, in which the replicas are

placed one by one, each in the bin with the largest level (used

space) that m-fits them. We call this the first stage of the

algorithm for placing replicas of each tenant. Figure 2 provides

an illustration of placing replicas in mature bins.

Assume that not all replicas of a tenant m-fit in the mature

bins. In this case, the second stage of the algorithm is executed.

The main idea is to place replicas in the same class into the

same bins and leave enough space in the bins in case of other

bins’ failure. Recall that each bin of type τ (1 ≤ τ ≤ K) is

partitioned into τ + γ − 1 slots of size 1/(τ + γ − 1). Out

of these slots, γ − 1 slots are left empty. The other τ slots

�
�����

�������

�������� ��������



������

�
�����

�� �
 �� ��


�������

�������

Fig. 2: An illustration of the first stage of the algorithm.

There are two replicas per tenant (γ = 2). Consider sequence

〈a, b, c, d〉 of tenants. There will be four bins of class 1, opened

by replicas of a and b. After placing these replicas, the four

bins become mature. When tenant c arrives, all these bins m-fit

the two replicas of c. Bins B3 and B4 are selected since they

have higher level (used space) when c arrives. Later, when d
arrives, only mature bins B1 and B2 m-fit the replicas of d.

are each filled with one replica of type τ . CUBEFIT performs

the placement in a way that any two bins share replicas of at

most one tenant. This ensures that the space available in the

γ−1 empty slots is sufficient to avoid overflow in case of the

simultaneous failure of any γ−1 servers. In what follows, we

describe how the algorithm achieves such packing.

At any given time, the algorithm has γ groups of bins, as

in Fig. 3, for each type τ ≤ K − 1. Each group is formed

by τγ−1 bins of type τ . The τ slots in these τγ−1 bins can

be arranged to form a cube of size τ in the γ-dimensional

space. Replicas are assigned to the slots in the cubes in the

following manner. For each type τ ≤ K − 1, the algorithm

has a counter cntτ which is initially 0. After placing replicas

associated with a tenant of type τ in the second stage of the

algorithm, the counter cntτ is updated to (cntτ +1) mod τγ .

Note that the value of cntτ is always in the range [0, τγ − 1],
i.e., it can be encoded as a number of γ digits in base τ . Let Iτ
indicate this number before placing replicas of tenant x of type

τ . The algorithm places replicas of x in the slots indicated by

the γ cyclic shift value of Iτ . In other words, the γ digits of

Iτ are used to address the slot at which the replica is placed

at. For example, if τ = 3, γ = 2, and I3 = (21)3, the first

replica of x is placed at slot (2, 1) of the first 2-dimensional

cube, and the second replica at slot (1, 2) of the second cube.

After placing these replicas, I3 is updated to (22)3. As another

example, if τ = 3, γ = 3, and I3 = (001)3, the first replica of

x is placed at slot (0, 0, 1) of the first 3-dimensional cube, the

second replica at slot (1, 0, 0) of the second cube, and the third

replica at (0, 1, 0) of the third cube. After this, I3 is updated to

(002)3. Figure 3 provides an illustration and pseudocode for

CUBEFIT is shown in Algorithm 1, which considers tenant

loads larger than 1
K+γ−1 .

Since each replica of a given tenant is placed in a different

dimension in each of γ cubes (groups), we get the following

lemma.

Lemma 1. Consider tenants placed in the second stage of the
CUBEFIT algorithm. No two bins of type τ ≤ K − 1 share
replicas of more than one tenant.

Proof of Lemma 1. By definition, two bins in the same

group (cube) include the jth replica of each tenant (1 ≤ j ≤
γ). Hence, they cannot share replicas of any tenant. Consider

two bins B1 and B2 in two different groups. For the sake of

contradiction, assume replicas of two tenants x and y of type

τ are placed in both B1 and B2. Since replicas of x and y are

placed in B1, the value of Iτ for x, Ix,B1
and y, Iy,B1

differ

in only the least significant digit because they are on the same

server. Similarly, x and y are both placed on B2, so Iτ,x,B2

and Iτ,y,B2 also differ in only the least significant digit. Also,

Iτ,x,B1 and Iτ,x,B2 are cycle shifts of one another as well as

Iτ,y,B1
and Iτ,y,B2

. This implies that Iτ,x,B2
and Iτ,y,B2

differ

in some digit other than the least significant. This contradicts

the previous fact that Iτ,x,B2
and Iτ,y,B2

differ only in the

least significant digit. �
We have described how to place tenants up to class K − 1.

To place the tenants in class K in the second stage of the algo-

9622113



� � �

� �

	 �

�� �� �	

�� �� ��

�
 �� ��

�� 

 
�


� 
� 
	


� 
� 
�

�

� � �

� �

	 �

���� ����

�� ��

�� 




� 
�

�

��������


�����

�

�




�

� �� ��

� �� 



�	 
�

�� 
�

� �� 
�

� �� 
	

� �
 
�

	 �� 
�

� �� 
�

�

�

�

	

�

�

�

�

�

�
� � �

�� �� �



� 
�

� � 	

�� �� ��



 
� 
�

� � �

�	 �� ��


� 
	 
�

��

� � �

� � 	

���� � �

Fig. 3: The idea behind CUBEFIT for placing replicas of

the same type. In this example, there are three replicas per

tenant (γ = 3), each placed in one of the three cubes. Also,

replicas have type τ = 3, i.e., the load of each is in the

range (1/6, 1/5]. Tenants are labelled from 1 to 27. Each cube

includes one replica from each tenant (replicas with the same

label). Replicas in the same group, where only the last digit

differs, are placed on the same server. Note that no two servers

share replicas of more than one tenant, e.g., tenant x = 2 is

placed at slot (0, 0, 1) of the first cube, slot (1, 0, 0) of the

second cube, and (0, 1, 0) of the third cube. Any pair of the

servers associated with these slots share only tenant x = 2.

rithm, consider the largest integer αK so that α2
K +αK < K.

This ensures that 1
αK
− 1

αK+1 > 1
K ; consequently, the algo-

rithm can group sets of replicas of class K into multi-replicas
with total size in the range ( 1

αK+1 ,
1

αK
]. The algorithm treats

these multi-replicas similar to the way that it treats replicas

of class αK − γ + 1. There would be γ active multi-replicas

at each stage of the algorithm, each associated with one of

the γ cubes (initially, they are empty sets of replicas). For

placing the ith replica of a tenant of class K (1 ≤ i ≤ γ), the

algorithm checks whether adding the replica to the ith active

multi-replica makes the multi-replica larger than 1/αK . If it

does not, the replica is added to the multi-replica. Otherwise, a

new multi-replica which includes only the discussed replica is

created and declared as the active multi-replica. Multi-replicas

are placed in the same manner as replicas of type αK − 1,

i.e., each occupy a slot in bins of type αK − 1. This way, the

active multi-replicas in different groups include exactly the

same replicas. So, we can treat multi-replicas as replicas of

class αK −γ+1. Throughout the paper, when there is no risk

of confusion, we ignore replicas of class τ = K and assume

all replicas belong to classes τ < K.

In summary, CUBEFIT has two stages for placing each

tenant x. First, it checks if all replicas of x m-fit in the mature

slots of bins of smaller type. If they do, then replicas of x are

placed in these mature bins according to the Best Fit strategy.

Otherwise, γ replicas of x are placed in γ different cubes as

described above.

Using Lemma 1, we prove the validity of CUBEFIT.

Theorem 1. In the schemes resulting from CUBEFIT no bin
is overloaded in case of failure of at most γ − 1 servers.

Proof of Theorem 1. Consider an arbitrary bin B∗ of type

τ in the packing of CUBEFIT. Also, consider an arbitrary set

S = {B1, . . . , Bγ−1} of bins so that B∗ /∈ S. We show that in

case of simultaneous failure of all servers in S, the extra load

redirected to B∗ does not cause overload. By Lemma 1, B∗

and Bi ∈ S share at most one replica of type τ . So, the extra

load redirected to B∗ from tenants placed in the second stage

of the algorithm is at most γ−1
τ+γ−1 . Summing to this the total

load of original replicas in the bin, which is at most τ
τ+γ−1 ,

we get a total load of at most 1, i.e., no overflow for B∗

from these replicas. Replicas that are placed in B∗ in the first

stage of the algorithm (i.e., placed after B∗ became mature)

are ensured to m-fit in B∗. This implies that the extra load

resulting from these replicas do not cause an overflow. �

A. Worst-case Analysis

In this section, we provide upper bounds for the competitive

ratio of CUBEFIT, which reflect the worst-case behavior.

Recall that there are γ replicas for each tenant x that we denote

with x1, . . . , xγ , and each replica xj (1 ≤ j ≤ γ) has a load

x/γ. To prove an upper bound of r for the competitive ratio,

we define a weight for each replica xj , denoted by w(xj),
and prove the following statements: (I) The total weight of

replicas in each server, except a constant number of them, in

the packing is at least 1. (II) The total weight of replicas in

each server in an optimal packing scheme is at most equal to

a constant r. The above statements imply a competitive ratio

of at most r for CUBEFIT. This is because (I) implies that

CUBEFIT(σ) ≤ W (σ) and (II) implies OPT(σ) ≥ W (σ)/r
where W (σ) denotes the total weight of all replicas of all

tenants in σ. This gives us Theorem 2. Note that no online

algorithm can have a competitive ratio better than 1.42 [4].

Theorem 2. The competitive ratio of CUBEFIT with repli-
cation factor γ = 2 and γ = 3 approach 1.59 and 1.625
respectively for large values of K.

Proof of Theorem 2. We define the weight of each replica

x in the following manner. If x ∈ (1/(i + 1), 1/i] for some

positive integer i (γ ≤ i ≤ K + γ), then the weight of x will

be 1/(i−γ+1). Recall that xj belongs to class τ = i−γ+1

9632114



Algorithm 1: CubeFit Algorithm

input : An online sequence σ = 〈a1, a2, . . . , an〉 of

tenant loads, positive integers K (no. of classes),

and γ (no. of replicas per tenant)

output: A packing of tenants in σ which is tolerant

against failure of any γ − 1 servers.

mature-bins ← empty set of bins

for τ ← 1 to K do
Cntτ ← 0 / / a counter used in the second stage

Groupγ
τ ← array of τγ−1 empty bins

/ / A γ-dimensional cube of τγ slots of type τ .
end

/ / Placing tenants one by one

for i← 1 to n do
x ← ai / / x is the current tenant

x1, x2, . . . , xγ ← x/γ / / γ replicas of x
first-stage ← True / / whether x is placed in the

first stage

/ / First stage:

for j ← 1 to γ do
if there is at least one mature bin that m-fits xj

then
Place xj in the mature bin with highest level.

else
Remove x1, x2, . . . , xj−1 from their bins.

first-stage ← False

break
end

end
/ / Second stage:

if first-stage == False then
Iτ = (I1, I2, . . . , Iγ)τ ← Interpretation of Cntτ

as a number on γ digits in base τ .

τ ← 	1/x
 − γ / / type of the replicas

for j ← 1 to γ do
P ← The Iγ th slot of the bin B, where B is

the bin at index (I1, I2, . . . , Iγ−1)τ of Groupj
τ

Place xj in slot P
mature-spot[τ ] ← mature-spot[τ ] ∪ {P}.
if B includes τ replicas of type τ then

mature-bins ← mature-bins ∪ {B}
Iτ ← cyclic shift-right of Iτ

end
Cntτ ← Cntτ + 1
if Cntτ == τγ then

Groupγτ ← arrays of τγ−1 empty bins

Cntτ = 0
end

end
end

in this case and i − γ + 1 replicas of this type are placed in

each bin of type τ (except potentially the last group of bins).

The remaining replica are those of type K, i.e., those smaller

than 1/(K + γ − 1). These replicas form multi-replicas with

total size in the range ( 1
αK+1 ,

1
αK

]. We define the weight of

a replica of size x in class K to be
x(αK+1)
αK−γ+1 . This ensures

that the resulting multi-replica has a total weight of at least
1

αK−γ+1 , which is the same as a replica of type αK − γ + 1
We show that total weight of replicas in any bin, except a

constant number of them, is at least 1. Let i denote the type

of a given bin in the packing of CUBEFIT (1 ≤ i ≤ K − 1).
If i �= αK − γ + 1, then the bin includes i replicas of type

i. The only exception is the last γ groups of bins opened for

replicas of type i which might include less than i replica.

Assuming K, γ ∈ O(1), there would be a constant number of

such bins, which can be ignored in the asymptotic analysis.

So, the total weight of replicas in bins of type i, except a

constant number of them, is (i− γ+1)× 1
i−γ+1 = 1. Bins of

type i = αK − γ + 1 might include multi-replicas. There will

be i slots in these bins, each occupied with either a replica of

type i or a multi-replica (except a constant number of bins in

the last group). In both cases, the total weight of replicas in

such slot is 1
i , which gives a total weight of 1 for all replicas

in the bin.

Consider a bin B in the optimal packing. Assume B
includes mi replicas of type i (1 ≤ i ≤ K − 1). Since we

look for an upper bound for total weight of replicas in B and

all replicas of type i have equal weight, we might assume

these replica have the smallest weight in their class, i.e., all

replica of type i in B have size 1
γ+1+ε for some small positive

ε. Consider the largest γ − 1 replicas in B. To have a valid

packing, there should be an empty space of size at least equal

to sum of the sizes of these γ − 1 replicas. This condition is

required to ensure that failure of γ− 1 servers does not cause

an overload in B. Let T denote the type of the smallest replica

among these γ−1 replicas (excluding replicas of type K, i.e.,

T ≤ K − 1), and M denote the number of replicas of type T

among these γ−1 replicas, i.e., M = γ−1−
T−1∑

i=1

mi. Note that

0 < M ≤ m
T

. We maximize the total weight of replicas while

satisfying the empty space condition, by solving the following

integer program:

Maximize regularWeight+ tinyWeight where

regularWeight =

K−1∑
i=1

(
mi × 1

i

)

tinyWeight =
tinySize(αK + 1)

αK − γ + 1

Subject to:

regularSize+ tinySize+ reservedSpace ≤ 1

regularSize =

K−1∑
i=1

mi(
1

γ + i
+ ε)

reservedSpace =

T−1∑
i=1

mi
1

γ + i
+M(

1

γ + T
+ ε)

In the above program regularWeight and regularSize re-

spectively denote the total weight and size of replicas in B
which belong to classes other than K. Similarly, tinyWeight
and tinySize denote the total weight and size of tiny replicas

in B, i.e., those in class K. Also, reservedSpace denote the

9642115



reserved space in B. The variables of the above programs

are mi’s (1 ≤ i ≤ K − 1) which are non-negative integers,

tinySize which is in a real value in the range (0, 1], and

T which is a positive integer smaller than K. Solving the

program for γ = 2, 3 and large values of K completes the

proof. �

IV. SYSTEM MODEL

In our system model, each server hosts multiple tenants and

has a data store which is shared between tenants that it hosts,

as shown in Figure 4. A tenant’s load is generated by a number

of concurrent clients, each having a workload consisting of a

set of queries that are executed against the tenant’s data store.

A server services all clients of its hosted tenants. We use a

shared data system multi-tenant model in which each tenant

resides as a data instance on the single data system running

on a server. Studies have shown that a shared data system

environment has better performance than virtualization [2] and

several multi-tenant environments have used it [2], [10]. As in

[12], the analytic workload of a tenant is shared between its

γ replicas.

To demonstrate the placement algorithm’s viability, we use

a practical load model that has also been used in [11], [12] in

which the in-memory load that the tenant places on a server is

input to the algorithm. As shown in [11], load from multiple

tenants on the same server is additive and a linear model

accurately predicts latency.

We model tenant utilization using a linear relationship

between a tenant’s properties [11]. In our experiments the load

of a tenant is defined as δc + β where c is the number of

clients, δ is the amount of capacity each client takes up on the

server, and β is the overhead each tenant places on the server.

This function produces a load value larger than 1.0 when the

server’s capacity is over-utilized. The value of δ and β are

specific to a hardware configuration but can be generalized or

made specific for other types of configurations. We determined

the values for δ and β by running varying numbers of clients

distributed over various numbers of tenants on an Intel Xeon

2.1 GHz machine with 12 cores and 32GB of memory. We

used the TPC-H benchmark as our analytics workload of

read-mostly queries while supporting writes which are simply

executed against all replicas to provide consistency.

We created a PostgreSQL database instance to hold the data

of each tenant executing the TPC-H benchmark queries. Each

tenant runs multiple concurrent client threads that indepen-

dently iterate through the TPC-H queries submitting them to

the PostgreSQL system on the tenant’s host machine.

Some client-tenant configurations resulted in the SLA being

violated while others met the SLA. This allowed us to derive

the equation of the line that separates the configurations that

meet SLA from those that do not, providing us with the values

for δ and β. To focus on tail latencies, we set the SLA to be 5

seconds (at the 99th percentile), which corresponds to a load

of 1.0 per the load function described above.

When a server fails, clients of tenants hosted on it execute

their queries on the remaining tenant replicas on other servers.

����


���������

������� ������� ������


����������

������

Fig. 4: Shared data system model: Tenants 1, 2 and 3 share

the data store on the server.

This increases the number of concurrent clients the remaining

servers need to serve. To meet SLA requirements, a server

should not receive more clients from failed tenant replicas than

its available capacity so as to ensure that its capacity does not

exceed the 99th percentile latency as described above.

V. PERFORMANCE EVALUATION

In this section, we present our experimental evaluation of

the CUBEFIT algorithm for server consolidation. Our com-

parison is twofold: first, we implement CUBEFIT on a real

system comprising of 73 machines and compare with the RFI

algorithm using the TPC-H benchmark.

Our experiments in the upcoming sections will serve to

demonstrate that in the presence of one and two server

machine failures that result in the shifting of load to replicated

servers, CubeFit meets the 99th percentile SLA. We demon-

strate that at cloud scale, CUBEFIT uses significantly fewer

servers, generating dollar savings for cloud service providers.

RFI [12] is a modified version of the Best Fit bin packing

algorithm. RFI first searches for the server that would have

the least load left over after a tenant is placed on it, including

having enough reserved capacity for additional load from any

single failed server (overload capacity) and a μ value that

governs how much of the first server’s total capacity to use

for interleaving. If no such server is found, a new server is

provisioned and the replica is placed there. For the second

replica, the algorithm repeats the process but selects a different

server machine.

A. System Setup

We implemented the system model from Section IV to

evaluate the performance of CUBEFIT and RFI on a cluster

of 73 Intel Xeon server machines connected over 10 gigabit

Ethernet. We use 69 servers to host the tenants and their data.

The remaining 4 are used to generate the client query load

for tenants. We scaled the TPC-H workload to have 95%

read queries and 5% update queries from the benchmark as

our focus is on analytic workloads though we also support

database writes. Each tenant starts out with 100 MB of data,

which amounts to having up to 10 GB of tenant data in the

memory of a machine.

As in [12], we focus on tail (99th percentile) latency for our

SLA. For the TPC-H workload, we chose an SLA of 5 seconds

that was derived empirically and corresponds to unit server

9652116



load. Per Section IV, we determined that a maximum of 52

concurrent clients can be supported per host machine. For the

first experiment, the number of clients per tenant was selected

with equiprobability from a discrete uniform distribution of 1

to 15 clients. For the second experiment, the number of clients

followed a zipfian distribution of exponent 3 and the number

of clients was sampled from 1 to 52.

To achieve steady state, we let the system warm-up by

running the workload on all tenants for five minutes. This

allows the database system to cache all tenants’ data in mem-

ory. Over the next five minutes after warm-up, we measure

system load and latencies.2 Our measurements were obtained

using CUBEFIT configured with 5 classes for both the uniform

experiment and the zipfian experiment. The number of classes

is a configurable parameter that can be used to tune the

algorithm. For example, as the number of servers is increased,

increasing the number of classes will yield better performance.

Empirically, tenants in the largest class (with replica load

between 0 and 1
K+γ−1 ) are best placed in class K-1 (instead of

αK). Then, as an optimization, the first stage of the algorithm

re-uses the left over space of server slots in the K-1 class

instead of maturing the server. Unless otherwise mentioned, all

of our experiments were run with both of the distributions and

5 classes. For RFI, we used μ equal to 0.85 as recommended

in [12].

B. Server Failures

We conducted experiments on our cluster of machines to

study how CUBEFIT and RFI respond to server failures. We

studied CUBEFIT’s behavior when there are two replicas per

tenant that can protect against one server failure and three

replicas per tenant that can protect against two server failures.

Recall that the RFI algorithm from [12] cannot protect against

multiple server failures.

We keep adding tenants until CUBEFIT fills up all 69 data

store servers. To cause f server failures, we select f servers

that result in the distribution of the highest number of clients

to a single server (resulting in the highest possible load on a

server). We call this the worst overload case. When a server

fails, the load is distributed as described in Section IV.

Figure 5 shows the relationship between the number of

server failures and latency. With one server failure, the

99th percentile latency results demonstrate that none of the

CUBEFIT configurations violate SLA (shown by the horizontal

red line).

For the two-failure scenario, only CUBEFIT with 3 replicas

stays (well) within the SLA (delineated by the red line)

while the other algorithms violate the SLA. The CUBEFIT

configuration of 3 replicas that protects against an overload

from two server failures resulted in a 99th percentile latency

of 4.27 seconds for the uniform distribution and 4.19 seconds

for the zipfian distribution. CUBEFIT is effective in protecting

against the failure of 2 servers while the algorithm flexibly

2We experimentally determined that there was no deviation in results by
increasing this measurement interval.

������� 	�
���� ������� 	�
����

�
��

�
��

�
��



��

�
��

����������������������������������������  �!����"#

��$�����%�����"���������& ��$�����%�����"��'�����&

(�)�%�����"��'�����&

*������!����+�����$����������,���������������

 
 
�-
��
�
�"
�
�
��
��
�!
�
��
�
"#
�%
�
�&

�������	
 �������	
�

Fig. 5: 99th percentile latency of CUBEFIT and RFI with

the worst case overload of 1 failure for uniform and zipfian

distribution of tenants

allows it to be configured to protect generally against k server

failures.

CUBEFIT’s superior performance is due to having an upper

bound on the load that can be shared between servers. As a

result, each additional server failure brings a bounded increase

of load. In contrast, RFI is unable to enforce an upper bound

on the amount of load shared between servers. CUBEFIT with

3 replicas is able to provide more protection against overload

by trading off consolidation for the additional protection.

C. Server Consolidation

Asymptotic performance of the CUBEFIT algorithm is sig-

nificantly better when there is a large number of tenants to

consolidate on a large number of servers, as would be the

case in a data center with thousands of servers. To realize

this level of performance experimentally, we study the large-

scale behavior of CUBEFIT through simulation experiments.

We use the model described in Section IV on which to run

these algorithms.

We implemented a simulator which has a suite of distri-

butions generate tenant load sequences and these loads are

given to the placement algorithms. Based on the resulting

placement, the simulator captures statistics including how

many servers were used, amount of time each placement

algorithm needs to consolidate tenants onto servers, and the

average server utilization. We ran 10 independent simulations

each with 50,000 tenants and computed the relative differences

of CUBEFIT compared to RFI using the average number of

servers used over these 10 runs. Results of these simulation

experiments for different uniform and zipfian distributions are

shown in Figure 6, with 95% confidence intervals as whiskers

on the bars in this figure.

The relative difference (in the average number of servers

utilized) is defined as RFI−CUBEFIT

CUBEFIT
× 100% where RFI in

this case is the average number of servers used by the RFI

algorithm and CUBEFIT in this case is the average number

of servers used by the CUBEFIT algorithm. Thus, this relative

9662117



difference metric allows us to compute the percentage savings

in number of servers used by CUBEFIT over RFI. CUBEFIT

allows a variable number of classes to be used for any

particular configuration. We used 10 classes for both the

uniform and zipfian distributions. We used more classes than in

the system experiments presented earlier because more classes

provide better performance with larger numbers of tenants.

We graph the results of using various uniform and zipfian

distributions. The zipfian distribution does not produce values

between 0 and 1 on its own so we sample a zipfian distribution

with values 1 to C and divide by C to get normalized values

between 0 and 1, where C is the maximum number of clients

that a server can support without violating SLA. We set C to

52, the number of clients our cluster can support.

��� ��� ��� ��� ��� � ��� �

	

�

�	

��

�	

��

�	


��
�����.����
���������������

�����������.�����������

�
��

�
��

��
��

��
��

��
��
.
"�

��
.

��
�

��
�

��

��������	
����
� ����
	
�

�
���
� ������


Fig. 6: Percentage savings of servers (relative difference) used

by CubeFit over RFI for various distributions

In Figure 6, CUBEFIT performs better than RFI across-the-

board. The gains amount to about 30% fewer machines utilized

by CUBEFIT. When smaller tenants increase, there are more

servers belonging to larger classes that reserve less space to

prevent overload due to server failure. This results in better

server utilization, allowing CUBEFIT to perform increasingly

better over RFI.

Finally, we computed the yearly cost savings for the uniform

and zipfian distributions using 50,000 tenants. To compute

these costs, we use a cost of $0.822 per hour per Amazon

EC2’s c4.4xlarge machine instances, which are similar in

system resources to the machines we used to derive the system

model (from Section IV) on which our simulations are based.

As Table I shows, for continuous server operation, performing

server consolidation in the cloud using CUBEFIT can generate

substantial yearly cost savings for cloud service providers.

Distribution RFI Servers CubeFit Saved Dollar Savings
Uniform 10,951 2,506 18,045,004
Zipfian 2,218 496 3,571,557

TABLE I: Yearly cost savings of CUBEFIT over RFI

VI. RELATED WORK

The RTP algorithm [12] does not protect from multiple

server failures while CUBEFIT is superior performance wise

and protects tenants against the failure of multiple servers.

The remaining related work do not protect servers from

becoming overloaded due to failure of other servers. For exam-

ple, [6] focuses on handling situations where it is not possible

to accurately estimate server utilization of tenants while we

focus on preventing servers from becoming overloaded due to

taking on the load of failed servers.

Kairos analyzes tenants’ resource usage [2] and minimizes

the number of servers on which to place them by using an

optimization algorithm similar to CPLEX but does not provide

fault tolerant server consolidation. PMAX [8] considers the

cost of SLO violations besides the cost of servers using a

modified version of the best fit bin packing algorithm to

approximate a solution. In contrast, CUBEFIT ensures there are

no load violations, thereby avoiding performance degradation.

Lang et al. propose to use an algorithm [7] to search for a

mixture of tenant classes on the machine type that gives the

lowest cost but they do not provide for fault tolerance. SWAT

performs load balancing and load leveling by swapping the

servers that maintain primary and secondary replicas [10] but

does not consider the efficient online packing of tenants onto

servers. Delphi-Pythia uses a machine learning algorithm to

determine placement of tenants on a server [5] but unlike

CUBEFIT, their approach does not consider fault tolerant

server consolidation.

VII. CONCLUSION

We showed that CUBEFIT can effectively protect against

multiple server failures, which none of the previous propos-

als can deliver. Our evaluation through theoretical analysis,

system experiments and simulations show that CUBEFIT is

the best available choice for robust online multi-tenant server

consolidation for data analytics workloads and can generate

significant cost savings over existing approaches.

REFERENCES

[1] DB instance replication. http://docs.aws.amazon.com/AmazonRDS/
latest/UserGuide/Overview.Replication.html.

[2] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan. Workload-
aware database monitoring and consolidation. In SIGMOD, 2011.

[3] CyrusOne executive report. Build vs. Buy: Addressing capital constraints
in the data center. 2013.

[4] K. Daudjee, S. Kamali, and A. López-Ortiz. On the online fault-tolerant
server consolidation problem. In SPAA, 2014.

[5] A. J. Elmore, S. Das, A. Pucher, D. Agrawal, A. El Abbadi, and X. Yan.
Characterizing tenant behavior for placement and crisis mitigation in
multitenant DBMSs. In SIGMOD, 2013.

[6] A. Floratou and J. M. Patel. Replica placement in multi-tenant database
environments. In International Congress on Big Data, 2015.

[7] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan. Towards multi-tenant
performance SLOs. In ICDE, 2012.

[8] Z. Liu, H. Hacıgümüş, H. J. Moon, Y. Chi, and W.-P. Hsiung. PMAX:
Tenant placement in multitenant databases for profit maximization. In
EDBT, 2013.

[9] P. Mckenna. Can we stop the internet destroying our planet? New
Scientist, Jan. 2008.

[10] H. Moon, H. Hacıgümüş, Y. Chi, and W.-P. Hsiung. SWAT: A light-
weight load balancing method for multitenant databases. In EDBT, 2013.

[11] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner, and A. Zeier.
Predicting in-memory database performance for automating cluster
management tasks. In ICDE, 2011.

[12] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska, H. Plattner, M. J.
Franklin, and D. Jacobs. RTP: Robust tenant placement for elastic in-
memory database clusters. In SIGMOD, 2013.

9672118


