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ABSTRACT

Client application workloads for data systems are known to vary in
load and access patterns over time. This variability can place undue
stress on data systems, tying up resources and degrading perfor-
mance. To meet this challenge, systems must adapt by adjusting
resource allocation and processing techniques to ameliorate con-
tention and to deliver stable performance. We demonstrate Dendrite,
a system designed to bootstrap adaptivity for data systems through
its widely-applicable approach for extracting metrics, developing
adaption rules, and applying them through user-defined functions
to effect system behaviour changes. We highlight Dendrite’s fea-
tures and capabilities through a proof-of-concept implementation
with the popular PostgreSQL database system.

CCS CONCEPTS

« Information systems — Autonomous database administra-
tion; Database utilities and tools.
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1 INTRODUCTION

Data systems are expected to handle fluctuations in client work-
loads, resource availability, and deployment environments. Typi-
cally, this burden falls to database administrators, who must ap-
propriately configure the system, monitor it, and resolve perfor-
mance problems. In a bid to reduce this burden, self-driving systems
[1, 6, 7, 9-11] have recently been proposed that extract metrics
while deployed to determine how the system is performing, adap-
tively adjusting the system’s storage and processing techniques to
optimize for the workload at hand. Unfortunately, many popular
data systems such as PostgreSQL do not support robust adaption
capabilities. Moreover, enhancing existing systems to support such
adaption capabilities requires significant design and development
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Figure 1: Dendrite’s system architecture. The in-memory
tracing library extracts system behaviour metrics and up-
loads them to Dendrite’s control server. The server compares
system behaviour, and evaluates adaption rules to deter-
mine which action to use to remedy behaviour differences.

effort, as each self-driving data system uses a custom monitoring
and response approach [8].

Our system, Dendrite, eliminates this large design and develop-
ment effort and democratizes self-driving database systems by pro-
viding a widely-applicable framework to extract metrics, intuitively
declare adaption rules to determine if a reaction is warranted, and
specify appropriate responses. Dendrite automatically extracts met-
rics from application debug logs, 1ibc, and the operating system,
enabling system developers/administrators to specify conjunctive
adaption rules over these metrics. If a rule’s conditions are satisfied,
Dendrite executes a user-defined function (UDF) configured by the
administrator as a response. As Dendrite is directly linked into
debug logging libraries (e.g., log4j [3], glog [5]) and does not rely
on any system-specific functionality, any data system using such a
library can automatically obtain Dendrite’s functionality to deploy
their own self-driving components.

The next section describes how Dendrite extracts fine-grained
metrics without requiring significant code modification, as well as
its rule-action framework. In Section 3, we show how Dendrite can
be used to empower the popular open source PostgreSQL database
system, allowing it to automatically respond to system behaviour
and workload differences on-the-fly.

2 THE DENDRITE SYSTEM

To detect changes in system and workload behaviour, Dendrite
extracts metrics from debug logging calls, 1ibc functions, and the
operating system using its in-memory tracing library (Figure 1).
These metrics are compiled into a model of system behaviour and
uploaded to Dendrite’s control server after a configurable time
interval that we call an epoch, after which Dendrite will begin
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Figure 2: Dendrite stratifies metrics according to their tran-
sition path. Here, dirty buffer flushes during cache reads
results in 700 MB of writes, while the background writer
flushes only 20 MB.

building new models for the next epoch. When the control server
receives a new behavioural model, it compares this model against
the model obtained from the previous epoch to determine how
system behaviour has changed over time. Dendrite also compares
this epoch’s model against a model of ideal behaviour (the baseline
behaviour model) that is representative of expected system per-
formance! as determined and uploaded by an administrator. If the
current epoch’s behaviour deviates significantly from the baseline,
Dendrite checks whether any adaption rule’s conditions are satis-
fied. If so, Dendrite executes the corresponding response UDF to
remedy the underlying cause of the differences.

2.1 Extracting Metrics

Dendrite integrates directly with debug logging libraries and libc
to extract metrics about system behaviour using its in-memory
tracing library. As data systems commonly use debug logging li-
braries (e.g., glog, spdlog, log4j) and libc, this integration provides
comprehensive insight into behaviour without requiring Dendrite
to specialize for a particular system.

Debug logging libraries all use a similar interface, which Den-
drite exploits to extract its behavioural models. When a system
calls the library’s log(level, msg), the library checks to see if
level exceeds a preconfigured logging threshold. If so, it writes
the message (msg) to disk for later analysis. We modify this log()
function to first call Dendrite’s record_event(file, line) func-
tion before handling the call as usual, where file and line are the
position in source code of the caller. Dendrite uses these file names
and line numbers to uniquely identify log events. As this integration
process requires only a simple change to the logging library, it is
easy to configure data systems to use Dendrite.

Dendrite uses logging calls to capture the frequency of events
and determine how the system moves (or transitions) between them.
It encodes these events and event transitions into Markov models of
system behaviour, as in the Sentinel system it builds upon [4]. Den-
drite’s event tracing is far more robust and extensive; while Sentinel

!Such a model can be trivially obtained by having Dendrite export a model of system
behaviour when the system is performing well.
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Figure 3: Dendrite overrides targeted libc functions to cap-
ture resource usage for each transition path. When a log call
is issued, Dendrite associates the captured statistics with the
current transition path.

captures only transitions between pairs of events, Dendrite deter-
mines which previous event transitions led to the current transition
(transition path) and stratifies metrics accordingly. As an example
using PostgreSQL, Figure 2 shows how Dendrite traces back from
a RelationBlockWriteStart log event to the events that caused it by
tracking the k previous event transitions. In doing so, it determines
that PostgreSQL is writing back 700 MB of dirty buffers (pages)
when trying to read from its page cache, while its background page
writer is writing back only 20 MB of pages in a loop. Dendrite can
use this information as a signal to increase the cache size, or in-
crease background flushing of pages to avoid flushing pages on the
critical path. By contrast, Sentinel can speculatively present only
events that might have led to the RelationBlockWriteStart event
and is unable to capture resource usage metrics.

To obtain these fine-grained resource usage metrics, Dendrite
intercepts libc calls by configuring the dynamic linker (1d. so) to
load custom versions of targeted libc functions, such as malloc,
and write. It uses the LD_PRELOAD environment variable to load a
shared object file with custom implementations of these functions
before the main libc library and override their defaults. These
custom implementations record statistics about call parameters
and then execute the corresponding libc function as usual. Thus,
the overheads of calling the custom functions is low, and system
behaviour is unchanged. Dendrite adds these metrics into its be-
havioural models during record_event(); it looks up the last k
log events that have occurred and stores each function’s recorded
statistics in a fixed-size reservoir associated with the transition
path between them (Figure 3).

Dendrite also captures aggregate system resource usage metrics
using dstat for each epoch. These metrics are useful for determining
when a system is reaching the capacity of a resource (such as CPU
or disk). By combining these details with fine-grained, transition
resource usage metrics and information about system event popu-
larity and event transitions, Dendrite provides powerful tools with
which to define adaption rules.

At the end of each epoch, Dendrite outputs all of the data it
has collected for each thread and encodes them into behavioural
models. These models are used to identify which threads are active
during the epoch, and are then combined together into a single
model representing the system’s overall behaviour during the epoch.
Dendrite’s control server contrasts this combined model with the
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baseline model and that of the previous epoch to detect behaviour
differences, evaluate adaption rules, and respond accordingly.

2.2 Process and Thread Fingerprinting

In addition to events, event transitions and metrics, it is often useful
to know which processes and threads are active in the data system.
For example, PostgreSQL maintains one process for each client
connection; identifying and tracking processes therefore reveals
how many clients are connected to PostgreSQL. It also enables
Dendrite to stratify resource consumption by process. For example,
Dendrite may determine that captured page flushes are due to
the checkpointer process instead of dirty writes, and thus modify
checkpointer parameters accordingly.

It is futile to merely consult the operating system’s process/thread
list to determine active threads, as not every thread is named and re-
lying on specific names would stymie Dendrite’s universality goals.
Instead, administrators can register representative models for the
data system’s threads. When Dendrite obtains the per-thread mod-
els for an epoch, it compares their behaviour to that of the registered
models. If the behaviour is similar, Dendrite records a mapping from
its process/thread ID to the registered model’s name. We denote
threads that have outputted a model in a given epoch as active and
threads we have not yet observed as new. Administrators can define
adaption rules that operate on these active and new thread lists.

2.3 Model Differences and Rule-based
Reactions

After identifying the system’s active processes and threads, Den-
drite compares the combined model for the current epoch against
that of the previous epoch and the registered baseline/ideal model.
Dendrite calculates a score of model similarity based on differences
in the models’ event frequency distributions. If the current epoch’s
behaviour differs from the ideal baseline model by more than a
preconfigured score threshold, then Dendrite checks to see if these
behaviour differences match the conditions of any registered re-
action rules. If a rule’s conditions are satisfied, then that rule’s
response UDF is invoked.

System administrators register adaption rules in Dendrite to
adjust system behaviour according to workload and system be-
haviour changes. These rules are conjunctive expressions over met-
rics, events, and events transitions, and can be registered before
the system starts or added during execution. To simplify rule com-
position, Dendrite provides a library of data extraction functions
that administrators can use with rules to retrieve metric, event,
and process information. Each rule is associated with a response
action UDF, which is encoded as an arbitrary Python script. This
rule-action formulation enables administrators to specify system
adaptations intuitively and expressively. For example, we defined
the following rule to ameliorate load spikes in one of our demon-
stration scenarios:

new_models( ‘pg_worker’)/active_models( ‘pg_worker’)
>= 0.3 — function ‘shed_load’ ()

ey
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Concretely, if Dendrite has observed an increase in active Post-
greSQL worker threads of more than 30% then Dendrite will call
the shed_load UDF. This UDF aborts client transactions and closes
connections to reduce client load.

Consider another example of a rule in Dendrite that we used to
reduce disk write load when disk throughput is saturated:

cur_aggregate_metric(‘write’) > 20 MB/s A
transition_cur_metric_sum([ ‘FlushBuffer’;
‘RelationBlockWriteStart’], ‘RelationBlockWriteDone’,
‘write’) > 2 MB A active_models(‘checkpointer’) =1

— function ‘dial_back_chkpt_and_autovac’ ()

@)

Per this rule, if Dendrite has observed more than 20 MB/s of disk
writes in the current epoch, at least two megabytes of which is due
to flushing buffers (corresponding to the event transition Flush-
Buffer — RelationBlockWriteStart — RelationBlockWriteDonez),
and the checkpointer process is active (as identified by fingerprint-
ing from Section 2.2), then execute the dial_back_chkpt_and_
autovac UDF. This UDF connects to PostgreSQL and adjusts the
checkpointing and autovacuum intervals to reduce write pressure.

2.4 Dendrite User Interface

Details of Dendrite’s model comparison and executed adaption
rules are presented visually to administrators as a web application
(Figure 4). The top panel shows the data system’s behaviour over
time, with a circle for each epoch. If the system behaves similarly to
the configured ideal/baseline model in the previous epoch, then the
circle is ; otherwise, it is with a A\ warning symbol. As
the system executes, the interface updates to reflect newly finished
epochs and their associated behaviour comparisons and responses.
If a recently completed epoch diverges from expected behaviour, a
warning panel pops up to notify the administrator of the change,
as well as any actions taken in response to these behavioural dif-
ferences. This panel also presents the option to register new rules,
with a suggestion based on the rule-actions that were executed to
remedy the behaviour divergence.

On the main page, the “Newly Triggered Adaptions” panel shows
any adaptions triggered as a result of behaviour differences for
the current epoch. Previously triggered adaptions that have not
yet restored behaviour to the baseline are presented in the “In-
Flight Adaptions” panel. The bottom panels show the behaviour
differences between the current epoch and baseline models (left)
and between the current and previous epochs (right). Dendrite
presents their differences in terms of aggregate metrics and event
frequencies, the latter of which are ranked in decreasing order of
their differences. Clicking on a metric bar brings up a panel that
shows the event transitions that most heavily contributed to this
metric. For example, clicking on the disk_writes metric bar shows
which event transitions wrote the most data to disk. For details on
which processes are new in this epoch or currently active, the user
can click the “processes” button.

2These are human-readable tags defined over event locations in source code; e.g.,
FlushBuffer corresponds to bufmgr.c:2698.
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Figure 4: The main page of Dendrite’s user interface, showing detailed system behaviour differences and responses for the

load spike scenario.

3 DEMONSTRATION SCENARIOS

To demonstrate Dendrite’s utility in detecting system behaviour
differences and adapting to changing workloads, we present two
scenarios using PostgreSQL 9.6. In both scenarios, we take on the
role of an administrator using Dendrite’s user interface to moni-
tor PostgreSQL, detect behaviour changes, and respond to them
appropriately. Both scenarios use a 12 core machine with 32 GB
of RAM, so we configure PostgreSQL to use a 12 GB buffer pool.
We register representative models for PostgreSQL workers and the
checkpointer process, which Dendrite uses during fingerprinting
(Section 2.2) to identify running PostgreSQL processes. We also reg-
ister a model of ideal overall system behaviour (baseline) in which
the buffer pool is warmed and there are no ongoing checkpoints or
autovacuum tasks. These scenarios use 30-second epoch.

3.1 Load Spike Scenario

In the first scenario, we use a 10 client TPC-C workload [2] and
configure Dendrite to use Rule 1 from Section 2.3. Once the system
has warmed up and converged to the expected behaviour, we induce
a load spike by doubling the number of TPC-C worker clients.
Dendrite rapidly identifies the load spike and alerts the admin-
istrator using the pop-up interface panel. The panel shows the
behavioural effects of the load spike — more contention and seri-
alization (concurrency) failures — and that Dendrite responded to
this change using the shed_load UDF to restore normal system
behaviour. Consulting the processes panel, we note that the num-
ber of PostgreSQL worker processes had doubled, which matches
the induced behaviour change. The administrator will register a
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new rule in response to this change, which will send them an e-
mail notification on future occurrences. We then induce another
load spike by again doubling the number of clients. We show that
the shed_load UDF is again deployed and that the administrator
now receives an e-mail message warning them of the behaviour
change. As a result of this response, Dendrite again returns system
processing behaviour to normal.

3.2 Write Pressure Scenario

In the second scenario, we use a 20 client TPC-C workload. We
start the system using the default parameters, but adjust the check-
point completion target to 0.0 to increase checkpointing speed. We
configure Dendrite to use Rule 2 from Section 2.3.

Dendrite rapidly alerts the administrator to a significant be-
haviour difference from the registered ideal behaviour. It deter-
mines that the system is behaving unsatisfactorily — PostgreSQL
is writing a large amount of data due to the TPC-C workload and
the checkpointer process. The pop-up panel shows these behaviour
differences and that they satisfy Rule 2. Thus, Dendrite deploys the
dial_back_chkpt_and_autovac UDF to reduce disk write pres-
sure. Once the ongoing and revised schedule of checkpoints com-
plete, the system returns to the ideal behaviour. As a result of this
adaption, Dendrite significantly increases system throughput.
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