
Leaving Stragglers at the Window:
Low-Latency Stream Sampling with Accuracy Guarantees

Omar Farhat, Harsh Bindra, Khuzaima Daudjee

Cheriton School of Computer Science

University of Waterloo

{obfarhat,hbindra,kdaudjee}@uwaterloo.ca

ABSTRACT
Stream Processing Engines (SPEs) are used to process large vol-

umes of application data to emit high velocity output. Under high

load, SPEs aim to minimize output latency by leveraging sample

processing for many applications that can tolerate approximate

results. Sample processing limits input to only a subset of events

such that the sample is statistically representative of the input

while ensuring output accuracy guarantees. For queries containing

window operators, sample processing continuously samples events

until all events relevant to the window operator have been ingested.

However, events can suffer from large ingestion delays due to long

or bursty network latencies. This leads to stragglers that are events

generated within the window’s timeline but are delayed beyond the

window’s deadline. Window computations that account for strag-

glers can add significant latency while providing inconsequential

accuracy improvement. We propose Aion, an algorithm that uti-

lizes sampling to provide approximate answers with low latency by

minimizing the effect of stragglers. Aion quickly processes the win-

dow to minimize output latency while still achieving high accuracy

guarantees. We implement Aion in Apache Flink and show using

benchmark workloads that Aion reduces stream output latency by

up to 85% while providing 95% accuracy guarantees.

CCS CONCEPTS
• Information systems→ Stream management.

KEYWORDS
Stream processing, Sampling, Windows, Watermark

ACM Reference Format:
Omar Farhat, Harsh Bindra, Khuzaima Daudjee. 2020. Leaving Stragglers

at the Window: Low-Latency Stream Sampling with Accuracy Guarantees.

In The 14th ACM International Conference on Distributed and Event-based
Systems (DEBS ’20), July 13–17, 2020, Virtual Event, QC, Canada. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3401025.3401732

1 INTRODUCTION
Streaming systems are the primary solution for applications charac-

terized by the need to process large volumes of data in high-velocity.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00

https://doi.org/10.1145/3401025.3401732

Examples of such modern applications include high-frequency trad-

ing [15, 39], network traffic [43], environment monitoring [7, 32],

and others [1]. Stream processing engines (SPEs) typically pro-

cess the deployed streaming queries by leveraging parallelization

of operator instances across the available computational resources.

Existing SPEs such as Apache’s Flink [8], Spark [45], and Storm

[42] fulfill real-time requirements [39] by striving to deliver rapid

responses. However, as the load of events increases beyond the

capacity of the resources, SPEs struggle to maintain the desired

performance goals.

In SPEs, the problem of query processing is of significant impor-

tance as the substantial cost of processing high volume of events

violates the real-time requirement [39]. Sample processing is a com-

puting paradigm proposed to enforce this requirement by efficiently

processing queries via limiting the input size to a subset of events

[27, 34]. Fundamentally, it achieves efficiency by trading-off out-

put accuracy for lower latency. This trade-off is viable for many

streaming applications as timely generated output with accuracy

guarantees is often much more useful than latent or delayed output

with exact accuracy [4, 7, 19, 24, 25].

Streaming queries popularly utilize sample processing to reduce

the processing cost of events. For queries exhibiting window op-

erators, sample processing initially selects a subset of incoming

events such that processing them would satisfy the output accuracy

requirements. At the time of window completion, that is, after all

the events relevant to the window operator have been observed by

the SPE, the sample is then processed downstream to the output op-

erator. In SPEs, input completion is signaled by watermarks [28, 38],
which are widely used marker events that signal to window opera-

tors that they can process the input. Watermarks are injected into

the stream to signify that no further events are expected beyond a

designated timestamp.

Generated
Time

Ingestion
Time

Window
deadline

e1 e2 e3 e4 e5

e1 e2 e3e4 e5

Figure 1: Example illustrating the difference between gener-
ation and ingestion time for each event. On-time events are
highlighted in blue, stragglers are highlighted in orange.

In sample processing, the output is typically propagated down-

stream only after input completion. SPEs can experience long wait

times for input completion for a window due to network delays

15

https://doi.org/10.1145/3401025.3401732
https://doi.org/10.1145/3401025.3401732

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Omar Farhat, Harsh Bindra, Khuzaima Daudjee

[33, 36]. For instance, in the example illustrated in Fig.1, the SPE

waits for the arrival of events 𝑒3 and 𝑒5 even after the window’s

deadline. Consequently, stragglers delay input completion thereby

increasing output latency. Consider Fig. 2 that illustrates the im-

pact of stragglers on output latency for a time-window of size 1.5s

where the network delay of events varies based on distributions

that are modeled from real-world traces [36]. For a network delay

that is Gamma distributed (light-tail), stragglers impose a signifi-

cant 25% additional wait-time to guarantee input completion. As

for Exponentially distributed delays (heavy tail), the imposed la-

tency is exacerbated by more than 99%, effectively delaying the

input completion way beyond the window’s deadline. The impact

of stragglers on output latency is significantly high so as to over-

shadow the acquired benefits from sample processing. To the best of

our knowledge, none of the existing sample processing techniques

mitigate the impact of stragglers on the output latency [14, 17, 25].

Figure 2: Input completion rate for window operators with
network delay for events modeled by empirically verified
distributions.

Mitigating the problem of stragglers on sample processing while

striking a balance between accuracy and latency is a challenging

problem to solve. This is because:

(i) Straggler count and delay patterns vary based on an appli-

cation’s environment. To choose a sample that satisfies the

specified accuracy guarantees requires constructing reliable

estimations of the straggler events. However, network delays,

and in particular the case of exponential delay distributions,

adds high variability to any estimation technique.

(ii) Choosing a sample that satisfies the accuracy guarantees is

not a trivial task. The sampled events need to be statistically

representative of the original input that includes the stragglers.

Furthermore, the size of the sample needs to be intelligently

chosen based on the functionality of the window operator.

(iii) Determining the minimum number of stragglers to include

in the sample can have a large impact on the output latency.

As illustrated in Fig. 2, stragglers impose a significant delay

penalty on the output latency. Hence, the number of included

stragglers needs to be minimized.

In this paper, we demonstrate that sample processing does not

need to wait for input completion to process its sampled input. More

specifically, existing sample processing approaches do not need to

add a slack delay to account for stragglers [24]. Instead, windows

can propagate their output downstream as soon as output accuracy

requirements are satisfied thereby circumventing the costly slack

delay, and, consequently, reducing the output latency significantly.

Figure 3: Relative accuracy of sample processingwindow op-
erators with and without stragglers.

To illustrate the impact of stragglers on output results, con-

sider Fig. 3 that shows output accuracy results obtained run-

ning a sample processing algorithm in two settings: with and

without stragglers. The first setting takes stragglers into ac-

count thereby waiting for input completion while the second

circumvents stragglers by processing the window’s input as

soon the deadline is due and the accuracy requirements are

satisfied. In both settings, the algorithm ran with a target out-

put accuracy of 95% over two popular streaming benchmarks

that include windowed operators of different functionalities.

The first popular benchmark is the Yahoo! Streaming Bench-

mark (YSB) [20] and the second is the New York Taxi (NYT)

benchmark [32]. The figure shows that sampling with strag-

glers provides an insignificant improvement of less than 1%

compared to sampling without stragglers for both YSB and

NYT benchmarks. We also ran the kMeans benchmark as an

example of a query with a windowed operator of higher com-

plexity. The accuracy difference between the two samples was

only about 1% indicating that the two samples shared iden-

tical statistical significance. These results demonstrate that

not only do stragglers impose large output latency on input

completion, they contribute insignificantly towards achieving

higher output accuracy.

This observation motivates the work in this paper in which we

present the design and implementation of our sample processing

algorithm called Aion. Aion continuously monitors and samples

important patterns in the workload such as network and inter-event

generation delays to estimate the pattern of events and stragglers.

Aion then utilizes these estimations, in addition to the type of

the window operator, to compute the minimum sample size that

achieves the accuracy guarantees. Aion also exploits straggler pat-

terns by intelligently processing the sample before input completion

such that the impact of stragglers is mitigated. As we demonstrate

in our experiments, Aion delivers significant performance gains to

reduce latency by as much as 80%.

This paper is organized as follows: We describe background

material in Sec. 2 and Aion’s design and its algorithmic details in

16

Leaving Stragglers at the Window:
Low-Latency Stream Sampling with Accuracy Guarantees DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Sec. 3. We present our experiments in Sec. 4, discuss relevant work

in Sec. 5, and conclude in Sec. 6.

2 BACKGROUND
This section discusseswindows, watermarks, and sample processing

to provide relevant background on the problem, after which we

present our design of Aion.

2.1 Windows and Watermarks
Windows are a construct used for grouping events together which

exhibit similar properties. SPEs typically use windows to group

events on which to execute join, aggregation and selections. Win-

dows enable flexibility and allow complex grouping selections [21].

Common constructs are time based and sequence based windows.

For example, a time-based window can group all events generated

in the last ten seconds while a sequence based window will group

the next fifty events received.

A component of a window is its deadline. An event is associated

with two timestamps; the timestamp at which it is generated at the

source and the timestamp at which it is received by the SPE. The

deadline represents the cut-off time for an event to be a member of a

window according to its generated time. For example, the deadline

of a five-second tumbling time-window starting from timestamp

zero has a deadline at five seconds, at ten seconds and at subsequent

multiples of the five second deadline. As for a sliding five-second

time window with a slide of one, the sequence of deadlines start-

ing from the first deadline is (at) five seconds, six seconds, seven

seconds, and at subsequent increments of one second.

Stragglers, illustrated in orange in Fig. 1, are of primary interest

in this paper. A straggler is an event which belongs in a window

operator’s computation according to its generated time but arrives

after a window’s deadline. In theory, a straggler could be delayed

for an unbounded amount of time and so a decision must be made

of when to stop waiting for events and process the window; this

decision is triggered by an event called a watermark. Deciding

on when to emit a watermark can be a non-trivial problem since

cutting the window too short can induce the window operator

to process an insufficient number of events and lead to incorrect

output.

Watermarks serve as a contract between the user and the SPE

that strives for input completeness as well as output correctness.

Watermarks can be injected into the stream by the source or an

operator which periodically emits watermarks [8]. Methods of gen-

erating watermarks can be application specific but typically wa-

termarks are propagated periodically. The value of the watermark,

say 𝑡 , informs the application that it has seen all events with times-

tamp at most 𝑡 . For example, a watermark with a period of three

seconds can be generated every three seconds, each one holding

an increasing value of 𝑡, 𝑡 + 3, 𝑡 + 6, An example is provided in

Fig. 4 where upon receiving a watermark with value 3, the events

in green (with 𝑡𝑠 ≤ 3) are processed. The green timestamp 2 is

dropped since it arrives after its corresponding (green) watermark.

Upon receiving the blue watermark with value 6, blue events (with

𝑡𝑠 ≤ 6) are processed. In this paper, we design an algorithm that

automates the generation of watermarks based on the workload

properties. We discuss this further in Sec. 3.

6 5 5 3 4 3 12

materialize
window [3, 6]

materialize
window [0 3]

event
dropped

ts ts watermarkevent

Window
6 seconds

4

straggler

Figure 4: Example illustrating the concept of watermarks in
SPEs. Events are consumed in order starting from right to
left and each event holds its generation timestamp at the
source. Events that are of the same colour as a watermark
are processed with the ingestion of that watermark.

Importantly, the watermark’s spawning frequency can be used

to determine progress of the stream. By continuously receiving wa-

termarks, window operators can estimate their input completion

percentage. In the example of Fig. 4, consider a window of size 6

seconds. A watermark of value 3 indicates to the window operator

that it has seen half of its expected input.

2.2 Approximate Query Processing
Approximate Query Processing (AQP) techniques generally applied

on the windowed operators in streaming queries offer a trade-off

on accuracy to optimize for specific performance goals. There exist

multiple ways in which AQP achieves this balance.

Sketches [9, 13, 37] aim to minimize the memory footprint of

stateful operators like windows. Sketches utilize complex data struc-

tures that maintain statistically representative information of the

input. The stored information is then leveraged to approximate the

window’s output. However, sketches are not designed to reduce

output latency as the entailed complex processing can significantly

add to the processing cost. Since we are interested in reducing the

output latency, the use of sketches is out of scope for this work.

Sample Processing [24, 31, 35, 40, 41] is an AQP technique that

aims to minimize the output latency by rapidly producing an output

with accuracy guarantees. Sample processing achieves its goal by

limiting its input only to subset of events such that the sample is

statistically representative of the input to ensure output accuracy

guarantees. In doing so, existing sample processing techniques

experience high output latency delay to account for stragglers

before emitting an output.

Aion is designed as a sample processing technique since we

are interested in the problem of reducing output latency through

mitigating the impact of stragglers.

2.3 Sample Processing
Sample processing techniques select a sample that is a subset of

events such that the sample is small enough in size to reduce the pro-

cessing cost while being sufficiently representative of the original

population to achieve the specified accuracy guarantees.

We leverage Bernoulli sampling in the design of Aion. Bernoulli

sampling determines whether an event becomes part of the sample

with probability 𝜃 ∈ (0, 1). This sampling guarantees that (i) all

events have an equal probability, 𝜃 , of being included in the sample,

and (ii) the sample size is a fraction, 𝜃 , of the original input size.

17

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Omar Farhat, Harsh Bindra, Khuzaima Daudjee

Bernoulli sampling can be employed in applications where the input

size is unknown as the technique always produces a sample of size

proportional to the original input. Due to these properties, Bernoulli

sampling integrates well into SPEs where the stream size and input

arrival rate are unknown. Aion leverages Bernoulli sampling to

build a sample that is statistically representative of the original

input while being sufficiently small to reduce the processing cost.

3 AION: STRAGGLER-FREE SAMPLING
We now present the design of Aion including its algorithmic details.

Fundamentally, in the context of windowed streams, Aion’s main

objective is to collect a sample of minimal size such that processing

this sample produces an output that is within a specified error

threshold 𝑟𝑡ℎ𝑟 of the exact output. We formally express the error by

𝑃 (𝑟 ≤ 𝑟𝑡ℎ𝑟) ≥ 1−𝛿 , where 𝑟 refers to the relative error discrepancy
obtained by processing the original and the sampled inputs, and 1 -

𝛿 represents the probability of obtaining an error less than 𝑟𝑡ℎ𝑟 . The

sample needs to be carefully chosen such that its size is minimal so

as to reduce its processing cost. Importantly, the sample size and

distribution of its values need to be sufficiently representative of

the original input to satisfy the accuracy requirements.

Traditional sample processing techniques complete sampling

their input only after the stream consumes a watermark. However,

since watermarks signal input completion thereby accounting for

stragglers, a significant output latency can be imposed. For instance,

[33] presented an algorithm that mandates all events to slack for 𝑘-

seconds before being processed, where 𝑘 is continuously adjusted to

the maximum observed network delay value. Stragglers, however,

contribute minimally in improving the accuracy of the sample

(Fig. 3).

To circumvent the effects of stragglers on output latency, Aion

leverages control over stream progress by automating the genera-

tion of watermarks. Watermarks divide a stream into sub-streams,
each of which is defined over a periodic time-range. After water-

mark ingestion by the window operator, all events of prior times-

tamps consumed as part of sub-streams can then be safely processed.

Therefore, Aion generates watermarks frequently to ensure incre-

mental processing by window operators [5, 28]. Aion minimizes the

impact of stragglers on output latency by generating a watermark

as soon as the sampling requirements over each sub-stream are

satisfied, even if all stragglers have not yet been ingested.

Aion’s design inherently supports incremental processing by

sampling from each sub-stream at a customized rate. This strategy

ensures more accurate estimations (for network and inter-event

generation delays) since the workload data distribution has a lower

likelihood of changing within each sub-stream. As soon as the accu-

racy requirements are achieved, potentially before input completion,

Aion generates a watermark to process the sub-stream at the win-

dow operator, effectively circumventing the effects of stragglers.

The length of each sub-stream 𝑓 (in milliseconds), also defined as

the periodicity of watermarks, is essential to the algorithm’s perfor-

mance. A smaller value of 𝑓 ensures higher uniformity for the input

rate of each sub-stream at the expense of higher algorithm over-

head. On the other hand, a larger value of 𝑓 benefits from a lower

overhead but imposes higher likelihood of input rate fluctuation.

Aion is designed to leverage the granularity of 𝑓 to proactively fine

Symbols Definitions

𝑟𝑡ℎ𝑟 User defined error margin

𝑟 True error margin

𝛿 Probability of obtaining 𝑟 below 𝑟𝑡ℎ𝑟
𝑓 Defined length for every sub-stream

𝑛𝑤 Target Sample size over the windowed stream𝑤

𝑛𝑤
𝑖

Number of events sampled over sub-stream 𝑖 in stream𝑤

𝑑𝑤
𝑖

Network delays over the 𝑖𝑡ℎ sub-stream in the windowed stream𝑤

𝑔𝑤
𝑖

Inter-event generation delays over the 𝑖𝑡ℎ sub-stream in stream𝑤

𝑣𝑤
𝑖

Event values over the 𝑖𝑡ℎ sub-stream in stream𝑤

𝐷𝑤
𝑖

Random variable defined over the distribution of 𝑑𝑤
𝑖

𝐺𝑤
𝑖

Random variable defined over the distribution of 𝑔𝑤
𝑖

𝑉𝑤
𝑖

Random variable defined over the distribution of 𝑣𝑤
𝑖

𝑚 History size considered by the random distributions 𝐷𝑤
𝑖
, 𝐺𝑤

𝑖
, and 𝑉𝑤

𝑖

𝑁𝑤 , 𝑁𝑤
𝑖

Number of events received in stream𝑤 , and sub-stream 𝑖 in stream𝑤 , respectively

𝑛𝑤
𝑖

Total number of events sampled over sub-stream 𝑖 in stream𝑤

𝑠𝑤
𝑖

Sampled events over sub-stream 𝑖 in stream𝑤

𝑁𝑤
𝑖,𝑡

Number of events observed in sub-stream 𝑖 in stream𝑤 at time 𝑡

𝜃𝑤
𝑖

Sample rate defined by Aion over sub-stream 𝑖 in stream𝑤

𝑑𝑑𝑙𝑤
𝑖

Deadline for the 𝑖th sub-stream in stream𝑤

Table 1: Symbols Used

Statistics MonitorWindow
Sample Size Estimator

Sub-stream
Sample Size Estimator

D, G, V

nw

nw3 nw1nw2

7

SWM W2

5

W1

3 1

S2 S1S3
Window

[1; 7]

Sampling Algorithm

events

Figure 5: Example illustrating Aion components’ interac-
tion over a logically divided stream.

tune its input rate anticipation over the upcoming sub-streams. In

our experimentation section, we choose values of 𝑓 that empirically

struck the best balance.

Aion is composed of (i) an algorithm that monitors properties of

the workload including the network delay, the inter-event genera-

tion delay, and the distribution of the event values (Section 3.1), (ii)

a proactive algorithm that estimates the sample size such that the

error margin is bounded by 𝑟𝑡ℎ𝑟 (Sections 3.2 and 3.3), and (iii) a

sampling algorithm that effectively samples the input based on the

computed sample size (Section 3.3).

To illustrate Aion’s functionality, consider Fig. 5 of a win-

dow operator encompassing all events generated between

1 and 7, with watermark frequency of 𝑓 = 2. Initially, the

Statistics Monitor collects and stores information such as the

network delay (𝐷), inter-event generation delay (𝐺), and the

event values (𝑉). Then, the Window Sample Size Estimator

is invoked either to build an estimation on the targeted win-

dowed sample size or to update an existing one (Sec. 3.2). The

sample size is estimated based on the specified error margin

𝑟𝑡ℎ𝑟 and the type of the windowed operator. For a window

18

Leaving Stragglers at the Window:
Low-Latency Stream Sampling with Accuracy Guarantees DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

stream𝑤 , this part of the algorithm outputs 𝑛𝑤 as the desired

sample size estimate for the entire windowed stream. Finally,

𝑛𝑤 is forwarded to the Sub-Stream Sample Size Estimator that

computes the desired sample size for each sub-stream. Aion

computes the sample size as a function of 𝑛𝑤 and the expected

ingestion delay of stragglers. Then, at each sub-stream, Aion

runs its sampling algorithm to choose a sample with the target

sampling size that is fair and representative.

Each of the aforementioned components in Fig. 5 are described in

detail in the following sections.

3.1 Monitoring the Workload
Aion collects necessary information from the stream to quantify the

target sampling size that achieves the output accuracy guarantees

𝑃 (𝑟 ≤ 𝑟𝑡ℎ𝑟) ≥ 1 − 𝛿 (Fig. 5). In this section, we discuss in detail the

collected information, their statistical representation, and their role

in Aion.

Aion collects its information on a sub-stream basis to ascertain

high output accuracy and to leverage incremental window pro-

cessing. For the 𝑖𝑡ℎ sub-stream in the windowed stream 𝑤 , Aion

collects from the stream three main pieces of information: the net-

work delay 𝑑𝑤
𝑖
, the inter-event generation delay 𝑔𝑤

𝑖
, and the event

values distribution 𝑣𝑤
𝑖
. We denote by 𝑑𝑤

𝑖
= {𝑑𝑤

𝑖,0
, 𝑑𝑤

𝑖,1
, ...} the set of

observed network delays by the SPE over the 𝑖𝑡ℎ sub-stream. For

an event 𝑒 , the network delay can be computed by 𝑒.𝑟𝑡𝑠 − 𝑒.𝑔𝑡𝑠 ,
where 𝑒.𝑟𝑡𝑠 refers to 𝑒’s ingestion time by the SPE, and 𝑒.𝑔𝑡𝑠 to its

generation time at the source. Similarly, for every two consecutive

events 𝑒𝑘 and 𝑒𝑘+1, 𝑔
𝑤
𝑖

= {𝑔𝑤
𝑖,0
, 𝑔𝑤

𝑖,1
, ...} encompasses the set of all

inter-event generation delays computed by 𝑒𝑘+1 .𝑔𝑡𝑠−𝑒𝑘 .𝑔𝑡𝑠 . Finally,
𝑣𝑤
𝑖

= {𝑣𝑤
𝑖,0
, 𝑣𝑤
𝑖,1
, ...} contains the set of event values observed in the

corresponding sub-stream 𝑖 in stream𝑤 . In Aion, this information

is collected at the ingestion of every new event (Algorithm 1). More

specifically, after identifying the windowed stream and the sub-

stream to which event 𝑒 belongs based on its generation timestamp

(lines 3–4), the necessary information is then extracted (lines 6–10).

Aion utilizes the collected information over the processed sub-

streams to proactively estimate the patterns of the upcoming sub-

streams. For a processed sub-stream 𝑖 whose watermark has been

emitted, we capture the statistical significance of the collected in-

formation distribution by the mean and the standard deviation.

More specifically, we denote mean network delay by 𝜇 (𝑑𝑤
𝑖
) =

1

|𝑑𝑤
𝑖
|
∑ |𝑑𝑤

𝑖
|

𝑗=0
𝑑𝑤
𝑖,𝑗

and 𝜎 (𝑑𝑤
𝑖
) as the standard deviation. Similarly, We

define 𝜇 (𝑔𝑤
𝑖
), 𝜎 (𝑔𝑤

𝑖
), and 𝜇 (𝑣𝑤

𝑖
), 𝜎 (𝑣𝑤

𝑖
), for inter-event generation

delays and event values distribution to follow the above definitions.

Aion computes the mean delay and the standard deviation on-the-

fly, imposing no storage or computational overhead. Furthermore,

Aion does not assume any underlying distribution over the col-

lected information as information patterns can vary over multiple

distributions [38] As for an upcoming sub-stream 𝑖 , Aion estimates

the statistical representation of the needed information i.e., 𝑑𝑤 ,

𝑣𝑤 , 𝑔𝑤 based on the historically processed sub-streams. We denote

by the random variables 𝐷𝑤
𝑖
, 𝐺𝑤

𝑖
, and 𝑉𝑤

𝑖
the network delay, the

inter-event generation delay, and the event values, respectively.

Then, for the upcoming sub-stream 𝑖 , we estimate the mean for 𝐷𝑤
𝑖

Algorithm 1 Aion: Processing Events

1: procedure processEvent(𝑒)
2: /* Identify the stream and sub-stream event 𝑖 belongs to */
3: 𝑤 ← 𝑔𝑒𝑡𝑊 𝑖𝑛𝑑𝑜𝑤𝐼𝑛𝑑𝑒𝑥 (𝑒)
4: 𝑖 ← 𝑔𝑒𝑡𝑆𝑢𝑏𝑆𝑡𝑟𝑒𝑎𝑚𝐼𝑛𝑑𝑒𝑥 (𝑒)
5: /* Examples of the collected statistics */
6: 𝑑𝑤

𝑖
← 𝑑𝑤

𝑖
∪ (𝑒.𝑟𝑡𝑠 − 𝑒.𝑔𝑡𝑠)

7: 𝑔𝑤
𝑖
← 𝑔𝑤

𝑖
∪ 𝑒.𝑔𝑡𝑠

8: 𝑣𝑤
𝑖
← 𝑣𝑤

𝑖
∪ 𝑒.𝑣𝑎𝑙

9: 𝑤.𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 ←𝑤.𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 + 1
10: 𝑖 .𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 ← 𝑖 .𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 + 1
11: /* If watermark was already emitted for 𝑖th substream */
12: if 𝑖 .𝑖𝑠𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 then
13: 𝑑𝑟𝑜𝑝𝐸𝑣𝑒𝑛𝑡 (𝑒)
14: return
15: end if
16: 𝑛𝑤

𝑖
← GetSampleSize(𝑤, 𝑖)

17: 𝑠𝑤
𝑖
← 𝑔𝑒𝑡𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 (𝑤, 𝑖)

18: /* Sampling Alg chooses whether to sample 𝑒 or drop it */
19: 𝑖𝑠𝑆𝑎𝑚𝑝𝑙𝑒𝑑 ← 𝑟𝑢𝑛𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑠𝑤

𝑖
, 𝜃𝑤

𝑖
)

20: if !𝑖𝑠𝑆𝑎𝑚𝑝𝑙𝑒𝑑 then
21: 𝑑𝑟𝑜𝑝𝐸𝑣𝑒𝑛𝑡 (𝑒)
22: else
23: 𝑠𝑤

𝑖
← 𝑠𝑤

𝑖
∪ 𝑒

24: end if
25: /* Check if requirements are met to generate a watermark */
26: if SafeToProcess(𝑛𝑤

𝑖
, 𝑠𝑤
𝑖
) then

27: 𝑔𝑒𝑛𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 (𝑤, 𝑖)
28: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑆𝑎𝑚𝑝𝑙𝑒 (𝑠𝑤

𝑖
)

29: 𝑖 .𝑖𝑠𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝑇𝑟𝑢𝑒

30: end if
31: end procedure
32: procedure SafeToProcess(𝑛𝑤

𝑖
, 𝑠𝑤
𝑖
)

33: 𝑚𝑖𝑛𝑁𝑒𝑒𝑑𝑒𝑑𝑆𝑖𝑧𝑒 ← 𝑔𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑧𝑒 (𝑤, 𝑖)
34: return 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 ≥ 𝑖 .𝑑𝑑𝑙 && 𝑛𝑤

𝑖
≥𝑚𝑖𝑛𝑁𝑒𝑒𝑑𝑒𝑑𝑆𝑖𝑧𝑒

35: end procedure

by:

𝐸 [𝐷𝑤
𝑖] =

1

𝑚

𝑖−1∑
𝑗=𝑖−1−𝑚

𝐸 [𝐷𝑤
𝑗] =

1

𝑚

𝑖−1∑
𝑗=𝑖−1−𝑚

𝜇 (𝑑𝑤𝑗) = 𝜇 (𝑑𝑤𝑖) (1)

Note that our estimations are limited to the last𝑚 sub-streams to

reduce the storage overhead. .

Since 𝐷𝑤
𝑖

is the result of a summation of means, 𝐷𝑤
𝑖

follows

a normal distribution through the central limit theorem. Having

known distributions, specifically normal distribution, provides reli-

ability on calculations using the aforementioned random variables.

These reliability properties are also shared by𝐺𝑤
𝑖

and𝑉𝑤
𝑖

since we

define them similarly to Eq. 1.

Aion leverages these random variables for key calculations. That

is, in Algorithm 2, Aion utilizes the network delay and the inter-

event generation delay to collect the sub-stream size (line 4), and it

utilizes the event values to estimate the sample size in Algorithm 1

(line 16) and Algorithm 2 (line 10). We discuss the estimations

further in the next section.

19

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Omar Farhat, Harsh Bindra, Khuzaima Daudjee

3.2 Window and Sample Size Estimators
Aion intelligently selects and processes a sample which delivers a

result within 𝑟𝑡ℎ𝑟 of the true result. Initially, Aion quantifies the

projected number of events in the windowed stream. Then, based

on the estimated number of events, 𝑟𝑡ℎ𝑟 , and the type of the window

operator, Aion estimates a target sample size. This section discusses

Aion’s estimation techniques for the window and sample sizes.

Initially, Aion quantifies the projected number of events in the

windowed stream based on the collected information (Section 3.1).

For a windowed stream 𝑤 , we denote the size of the window by

𝑁𝑤
representing the total number of events including stragglers

of the window. Intuitively, the size of the windowed stream is a

function of the size of each of its sub-stream constituents, that is,

𝑁𝑤 =
∑𝑘
𝑖=1 𝑁

𝑤
𝑖
, where 𝑘 represents the number of sub-streams in

the windowed stream𝑤 , and 𝑁𝑤
𝑖

refers to the number of events in

sub-stream 𝑖 (Algorithm 2, lines 3–6). The size for each sub-stream is

then estimated based on the inter-event generation delays observed

over previously processed sub-streams. Note that a workload with

a high frequency of event generation would entail low values of

𝑔𝑤
𝑖
, while sparser event generation would mean higher values of

𝑔𝑤
𝑖
. The size estimation of sub-stream 𝑖 can be expressed by:

𝐸 [𝑁𝑤
𝑖] =

𝑓

𝐸 [𝑔𝑤
𝑖
] =

𝑓

𝜇 (𝑔𝑤
𝑖
) (2)

Aion continuously adjusts its estimations of the size of the win-

dowed stream and its sub-stream constituents as earlier sub-streams

are processed (i.e., as corresponding watermarks are emitted). In do-

ing so, it guarantees more accurate estimations as time progresses

towards the window’s deadline. It is important to note that regard-

less of the distribution of 𝑔𝑤
𝑖

which can vary depending on the

application type [36], Aion makes no assumptions on the input’s

arrival rate.

Aion computes the sample size based on the statistics monitor’s

estimation of 𝑁𝑤
. However, since estimation elicits uncertainty

thereby affecting the accuracy of the sample size, Aion seeks to

overestimate 𝑁𝑤
based on the level of uncertainty quantified by

the standard deviation. In doing so, the sample size is marginally

augmented to achieve higher accuracy guarantees while keeping

it small enough to maintain low processing cost. Overestimation

of 𝑁𝑤
is extremely helpful in the case of ingesting more events

than the anticipated size. As for underestimation, the processing

cost is marginally increased, thereby hardly affecting it. Hence,

marginally overestimating 𝑁𝑤
helps Aion to consistently achieve

robust performance in the face of workload fluctuation. In our

experiments, we overestimate the window length based on two

standard deviations.

After estimating the windowed stream size 𝑁𝑤
, we quantify

the desired sample size (Algorithm 2, line 8) based on 𝑟𝑡ℎ𝑟 , and

the type of the window operator. From the related literature, there

has been work on sample processing that did not account for the

functionality of the window operator and therefore limited their

sample selection to achieving similar statistical properties to that of

the original input [25]. However, as illustrated and recommended in

[11], specifying an error function based on thewindow functionality

yields consistent higher accuracy. Aion adopts the latter approach

to achieve the highest accuracy possible. We provide two examples

Algorithm 2 Aion: Estimations & Sampling

1: procedure getSampleSize(𝑤 , 𝑖)

2: /* Estimate the window size for each sub-stream (Sec. 3.2) */
3: for 𝑗 in range (0, 𝑑𝑑𝑙

𝑤−𝑑𝑑𝑙𝑤−1
𝑓

) do
4: 𝑁𝑤

𝑗
← 𝑒𝑠𝑡𝑚𝑆𝑢𝑏𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑖𝑧𝑒 (𝑤, 𝑗) // (Eq. 2)

5: 𝑁𝑤 ← 𝑁𝑤 + 𝑁𝑤
𝑗

6: end for
7: /* Estimate the sample size for each sub-stream (Sec. 3.3) */
8: 𝑛𝑤 ← 𝑒𝑠𝑡𝑚𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 (𝑁𝑤) // (Eq. 4
9: for 𝑗 in range (0, 𝑑𝑑𝑙

𝑤−𝑑𝑑𝑙𝑤−1
𝑓

) do
10: 𝑛𝑤

𝑗
← 𝑒𝑠𝑡𝑚𝑆𝑢𝑏𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 (𝑛𝑤 , 𝑗) // (Eq. 8)

11: end for
12: return 𝑛𝑤

𝑖
13: end procedure
14: procedure runSamplingAlgorithm(𝑛𝑤

𝑖
, 𝑒)

15: 𝜃𝑤
𝑖
← 𝑔𝑒𝑡𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒 (𝑛𝑤

𝑖
) // (Eq. 8)

16: 𝑟 ← 𝑔𝑒𝑛𝑁𝑢𝑚𝑏𝑒𝑟 (0, 1)
17: return 𝑟 ≤ 𝜃𝑤

𝑖
18: end procedure

of error function derivations for the two commonly used window

functionalities: events-mean computation, and summation. For each

functionality, we derive a formula relating the error bound 𝑟𝑡ℎ𝑟 , the

windowed stream size 𝑁𝑤
, and its corresponding sample size 𝑛𝑤 .

We consider the first case of events-mean computation, where

the window is computing the average of observed events. The

relative error function can be expressed as
|𝜇 (𝑠𝑤)−𝜇 (𝑣𝑤) |

𝜇 (𝑣𝑤) , where

𝜇 (𝑠𝑤) represents the mean of the sampled input, and 𝜇 (𝑣𝑤) denotes
the mean of the original input. To maintain the processing cost

at a minimum, we are interested in finding the minimum sample

size 𝑛𝑤 that satisfies 𝑃 (| 𝜇 (𝑠
𝑤)−𝜇 (𝑣𝑤)
𝜇 (𝑠𝑤) | ≤ 𝑟𝑡ℎ𝑟) ≥ 1−𝛿 . Per [30], the

error 𝑟𝑡ℎ𝑟 is tightly related to sample size 𝑛𝑤 , and the original input

size 𝑁𝑤
by:

𝑟𝑡ℎ𝑟 =

𝑧𝛿/2
√
(1 − 𝑛𝑤

𝑁𝑤) × 𝜎 (𝑠𝑤)√
𝑛𝑤

𝜇 (𝑣𝑤−1)
(3)

where 𝑧𝛿/2 refers to the confidence intervalmatching the z-valuewith

the specified probability 𝛿 . Then, solving for 𝑛𝑤 , we have:

𝑛𝑤 =
𝑧2
𝛿/2𝜎

2 (𝑠𝑤)

𝑟2
𝑡ℎ𝑟

𝜇 (𝑣𝑤−1)2 +
𝑧2
𝛿/2𝜎 (𝑠𝑤)2

𝑁𝑤

(4)

By solving for the minimum sample size in Eq. 3, 𝑛𝑤 can be derived

as in Eq. 4. Thus, Aion collects at least 𝑛𝑤 events in the windowed

stream 𝑤 to achieve the accuracy guarantees. The 𝜇 (𝑣𝑤−1) is a
historical mean.

𝑛𝑤/𝑁𝑤
is the proportion of events that were sampled from the

original input. Therefore, taking the estimate for the sample total

and scaling it up by 𝑁𝑤/𝑛𝑤 accounts for events that are not in the

sample. Using the derived equations for events-mean computation,

a formula for estimating the input summation is given by:

20

Leaving Stragglers at the Window:
Low-Latency Stream Sampling with Accuracy Guarantees DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

𝑁𝑤

𝑛𝑤

𝑛𝑤∑
𝑖=1

𝑠𝑤𝑖 = 𝑁𝑤

∑𝑛𝑤

𝑖=1 𝑠
𝑤
𝑖

𝑛𝑤

= 𝑁𝑤𝜇 (𝑠𝑤)
(5)

Eq. 5 expresses that an estimate for the original input can be taken

by scaling 𝜇 (𝑠𝑤) up by the known𝑁𝑤
. Thismethod requires finding

an estimate for 𝜇 (𝑠𝑤) and therefore, the same sample size estimate

for determining 𝜇 (𝑠𝑤) as seen in Eq. 4 can be used to get an accurate
estimate for the total input summation.

As for the summation operator, that is, computing the sum over

all elements considered, the relative error function is defined by:

𝑟 =
|∑𝑁𝑤

𝑖=1 𝑣𝑤
𝑖
− (𝑁𝑤 × 𝜇 (𝑠𝑤)) |
|∑𝑁𝑤

𝑖=1 𝑣𝑤
𝑖
|

(6)

There exist multiple approaches to define error bounds over a

window functionality. For instance, a different error function for the

summation functionality is used by AQ-K-Slack [24]. This approach

imposes an unnecessarily large sample size. The literature also

includes work on other types of scalar window functions like MAX,

MIN, and quantiles [12, 26]. Other event-based vector operations

can be adapted for Aion by utilizing the error functions derived as in

[3, 26] for grouping. They can be incorporated into Aion following

similar derivations from Sec. 3.2.

After estimating thewindow and sample sizes, Aion utilizes these

estimations in its “Sub-stream Sample Size Estimator” component

(Fig. 5). Aion leverages these estimations over each sub-stream and

then executes its sampling algorithm accordingly, as described in

the next section.

3.3 Sampling over Sub-Streams
Aion is optimized to select a sample free of stragglers that is repre-

sentative of the original input. In this section, we describe Aion’s

sampling algorithm that minimizes the impact of stragglers.

On the arrival of each event, Aion runs its sampling algorithm

(line 16 in Algorithm 1, procedure call defined in Algorithm 2 line

14) to select its sample. Based on the computed sample size 𝑛𝑤

(Section 3.1, and line 10 in Algorithm 2), an event can be added to

the sample based on the rate
𝑛𝑤

𝑁𝑤 . However, this approach suffers

from the stragglers’ problem as the sample is unlikely to be complete

by the window’s deadline. Aion, therefore, optimizes the sampling

rate over each sub-stream 𝑖 so that at the window’s deadline, the

sample would be complete or near completion. To express this

formally, we denote 𝑁𝑤
𝑖,𝑡

to be the total number of events ingested

by time 𝑡 . By using the inter-event generation and network delays,

we can estimate 𝑁𝑤
𝑖,𝑡

by:

𝑁𝑤
𝑖,𝑡=𝑑𝑑𝑙𝑤

𝑖

=
(𝑑𝑑𝑙𝑤

𝑖
− 𝐸 [𝐷𝑤

𝑖
]) − 𝑑𝑑𝑙𝑤

𝑖−1
𝐸 [𝐺𝑤

𝑖
] (7)

Then, the updated sampling rate at sub-stream 𝑖 is computed by:

𝜃𝑤𝑖 =
𝑛𝑤

𝑁𝑤
𝑖,𝑡=𝑑𝑑𝑙𝑤

𝑖

(8)

Aion then samples the incoming events according to 𝜃𝑤
𝑖

thereby

mitigating the presence of stragglers. Note that if 𝜃𝑤
𝑖

is greater

than 1, Aion includes the minimum number of stragglers to meet 𝑛

thereby imposing minimal slack delay. The algorithm is shown in

Algorithm 2 (lines 14–17).

As such, Aion minimizes the numbers of stragglers in the sample

by prioritizing sample completion before the window’s deadline.

Then, Aion generates a watermark as soon as the window’s deadline

is due and the accuracy guarantees are achieved (Algorithm 1, lines

32–34). These conditions ensure that a watermark is generated

when the accuracy guarantees are met while minimizing the output

latency.

4 PERFORMANCE EVALUATION
In this section, we present the results of a series of experiments

conducted on multiple benchmark workloads to demonstrate the

performance advantage that Aion possesses over representative

algorithms from prior work.

4.1 Experimental Setup
We describe our experimental setup and methodology, including

machine configurations, the sampling algorithms that we compare

Aion against, benchmarks, and the delay distribution settings. Our

experiments are run on a machine having an Intel Xeon processor

consisting of 24 cores (using hyper-threading) and 32 GB of memory.

The machine is running Java OpenJDK implementation v1.8.0_191

on top of Ubuntu 16.04 LTS. The implementation of Aion is on

Apache Flink v1.8. We dedicate a different machine with the same

configuration for generating the workload, which is transmitted to

the SPE nodes via Kafka v2.2.1.

4.1.1 Benchmarks. We conduct our evaluation using three well-

known streaming benchmarks: the Yahoo! Streaming Benchmark

(YSB) [20], the New York City Taxi (NYT) [23], and the kMeans
benchmark. We implement these benchmarks on Apache Flink and

evaluate performance by running different sampling algorithms

in each experiment. YSB emulates an advertisement tracking sys-

tem where users launch ad campaigns, each of which is composed

of multiple ads. The YSB query handles a stream of ad clicks and

outputs the interest in each ad campaign. We use the code-base

provided by [20] with the addition of generating periodic water-

marks from the source. NYT covers a large dataset of taxi trips in

New York, spanning six years. The dataset is rich with informa-

tion such as the number of passengers, distances, and fares. The

query measures the average distance of each trip ride in sliding

windows. KMeans query is an algorithm that partitions the dataset

into 𝑘 clusters. The dataset originally at the source is filtered and

processed in the pipeline before running the kMeans algorithm in

a windowed operator.

4.1.2 Algorithms. Sample processing algorithms generally need

to run in conjunction with a deployed stream progress control al-

gorithm. Specifically, sample processing algorithms continuously

update their sample until the accompanying stream progress control

algorithm generates a watermark. Popularly used stream progress

control algorithms include slacking techniques [33, 36]. Slack al-

gorithms compute the minimum slack delay needed to guarantee

input completion, then generating a watermark as soon as the slack

delay expires. We implemented onto our system the K-Slack [33]

21

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Omar Farhat, Harsh Bindra, Khuzaima Daudjee

algorithm to automate the generation of watermarks. K-Slack gen-

erates a watermark every 𝑘 seconds, where 𝑘 is set to the maximum

observed network delay. Since Aion uniquely combines sampling

and stream progress control, it overrides K-Slack by running its

own stream progress control algorithm proposed in this paper.

To demonstrate Aion’s efficacy, we compare Aion againstDefault,
which is the baseline approach that constitutes running Flink with

no sampling. In Default, windows process their input as soon as the

deployed stream progress control algorithm emits a watermark. We

also compare against the following sample processing algorithms:

• AQ-K-Slack [24]: Similarly to Aion, this algorithm samples

events as they are ingested by the SPE. It computes the sam-

pling ratio needed to achieve the necessary output accuracy

guarantees. Using an error function specific to summation

windowed functionality, AQ-K-Slack ties the relative error

function with the target accuracy while accounting for strag-

glers in processing output.

• Aion-: denotes Aion without (minus) the stragglers’ circum-

vention technique employed (Sec 3.3). The Aion- algorithm

applies Aion’s sampling technique but without the stream

progress control algorithm. Specifically, the sample size is

estimated as a fraction of 𝑁𝑤
𝑖

and not 𝑁𝑤
𝑖,𝑡=𝑑𝑑𝑙𝑤

𝑖

. We imple-

mented Aion- to study the impact of circumventing strag-

glers when sampling.

4.1.3 Delay Distributions. As in [36] , we vary two main types

of delay for our experiments, namely the network delay, and the

inter-event generation delay. Similarly to [36], we refer to these as

follows in our experiments;

• CC: Network and inter-event generation delays are constant

at 150ms and 1ms, respectively.

• GG: Network delay and inter-event generation delay are

distributed with 𝐺𝑎𝑚𝑚𝑎(𝑘 = 60, 𝜃 = 4) and 𝐺𝑎𝑚𝑚𝑎(𝑘 =

2, 𝜃 = 0.5) respectively.
• EC: Network delay is exponentially distributed with mean

delay of 240mswhile inter-event generation delay is constant

at 1ms.

• EG: Network delay is exponentially distributed with mean

delay of 240ms while inter-event generation delay is Gamma

distributed with 𝐺𝑎𝑚𝑚𝑎(𝑘 = 2, 𝜃 = 0.5).

We generate ten different streams for each combination. Each

data point on the graph is an average over at least 10 independent

runs (unless stated otherwise). Ideally, Aion’s watermark periodic-

ity 𝑓 should be a divisor of the window deadline so that a watermark

can be emitted at the window’s deadline, effectively minimizing

latency. Based on empirical evidence collected through our experi-

ments, we set 𝑓 to 600ms for deployed windows of size 3s and 6s.

This value strikes a balance between the estimation granularity and

the overhead of the algorithm.

4.2 Results
4.2.1 YSB. Figure 6 shows the performance of the sampling algo-

rithms running the YSB workload under different delay distribu-

tions. For the first distribution of UU, Aion delivers lower latency

than the other algorithms as it reduces both the stragglers’ impact

Figure 6: Mean latency vs. different environment distribu-
tions of network delay and inter-event generation delay run-
ning YSB benchmark.

on output latency and the processing cost of events. More specif-

ically, while Default, AQ-K-Slack, and Aion- algorithms impose

150𝑚𝑠 delay to account for stragglers, Aion circumvents the slack

delay by emitting a watermark as soon as the output accuracy guar-

antees are achieved. For the processing cost, since Default processes

all of the events, its processing overhead dominates the output la-

tency. As for Aion- and Aion, both algorithms sampled at a rate

reaching 30% of the original input, while the AQ-K-Slack sampling

mechanism is more restrictive, pushing its sampling rate to exceed

60%. Aion minimizes both the slack delay and the processing cost

yielding significant latency reduction over the other algorithms.

For the GG delay distribution, the maximum observed network

delay reached 350ms adding significant overhead for both Default

and AQ-K-Slack. However, as in the case of UU, the processing cost

dominated the output latency for both Default and AQ-K-Slack.

Aion delivers lower output latency over Default and AQ-K-Slack

by 80% and 70%, respectively.

When network delay is exponentially distributed, the perfor-

mance of Default and Aion- worsens as the maximum observed

network delay exceeds 1500ms. That is, the two algorithms process

windowed data long after generating a watermark that is past the

window’s deadline. Note that Aion- quickly processes its data after

slacking for 1500ms while Default processes the entire input. As

for AQ-K-Slack, it delivers better performance over these two algo-

rithms since its slack function uses randomization to mitigate the

delay. Since AQ-K-Slack’s sampling function is costly, its process-

ing cost dominates output latency. Aion outperforms Default and

AQ-K-Slack with latency reductions of 85% and 78%, respectively.

Aion significantly outperforms the two algorithms by mitigating

the effect of stragglers and significantly reducing the processing

cost.

We also compared Aion’s latency to the other algorithms for

different input loads. Fig. 7 presents the cumulative distribution

function (CDF) of recorded latencies for the range of 40
𝑡ℎ

to 99
𝑡ℎ

percentile tail latency under two input load levels of number of

events generated: 5, 000 and 25, 000 (5x) events/s. The experiment

22

Leaving Stragglers at the Window:
Low-Latency Stream Sampling with Accuracy Guarantees DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

(a) 5, 000 events/s (b) 10, 000 events/s

Figure 7: CDF latency running YSB benchmark for delay dis-
tribution EG with 5, 000 and 25, 000 number of input events
generated per second.

is run with distribution EG where the network delay is exponen-

tially distributed and the inter-event generation delay is gamma-

distributed. For the 90
𝑡ℎ

percentile, Aion achieves latency reduc-

tions over Default and AQ-K-Slack of 76% and 70% respectively

for both 5, 000 and 25, 000 events generated per second. As for tail

latencies, and specifically 95
𝑡ℎ

to 99
𝑡ℎ

percentiles, Aion maintains

a low latency level delivering consistent latency performance as

with smaller percentiles. However, this was not the case for other

algorithms as Aion reduced latency over Default and AQ-K-Slack

by 80% and 75% respectively for 5, 000 events generated per second,

and 84% and 80% respectively for 25, 000 events generated per sec-

ond. Interestingly, Aion- performed similarly to Aion for 25, 000

events/s but not for 5, 000 events/s. This is due to the output latency

for 25, 000 events/s being dominated by the processing cost and

not the slack cost, while for 5, 000 events/s it was dominated by

the slack delay. Aion optimizes for both of these costs to attain the

large aforementioned latency reductions.

Aion optimizes for reduced latency while still achieving the

specified accuracy guarantees. Figs. 6 and 7 show that Aion out-

performs the other algorithms significantly in terms of reducing

output latency. Next, we show the accuracy guarantees delivered

by the sampling algorithms Aion, Aion-, and AQ-K-Slack through

experiments with parameters 𝑟𝑡ℎ𝑟 = 5% and 𝛿 = 0.95.

Fig. 8 presents the distribution of error obtained while running

YSB. The experiments were executed for EG with 25, 000 events

generated per second. For the three tested algorithms, although

the relative error margin was set to 5%, the algorithms recorded

significantly lower error margins. Specifically, the mean relative

error (Sec. 3.2) reached 3% for all algorithms with a relatively small

standard deviation. Interestingly, for all algorithms, the maximum

experienced error was less than the threshold, thereby delivering

excellent accuracy exceeding the required guarantees. As such, this

figure proves that circumventing stragglers have little to no impact

on finding a sample with high accuracy guarantees.

4.2.2 NYT. The NYT benchmark is a relatively expensive query

compared to YSB as it includes a longer pipeline and more pro-

cessing intensive operators. As such, the processing cost in NYT

factors higher in output latency compared to the processing cost

Figure 8: Error plot showing statistical significance obtained
byAQ-K-Slack, Aion-, andAion running YSB benchmark for
delay distribution EGwith 25, 000 input events generated per
second.

Figure 9: Mean latency vs. different environment distribu-
tions of network delay and inter-event generation delay run-
ning NYT benchmark.

factor in YSB’s output latency. Fig. 9 shows the performance of

the sampling algorithms running the NYT workload under differ-

ent delay distributions. For UU, Aion achieves significantly lower

output latency over Default and AQ-K-Slack mainly due to Aion’s

superior sampling mechanism as it samples at a lower rate. Since

the slack delay in UU is minimal and processing cost of NYT is

expensive, Aion achieves a latency reduction of 75% over Default

that processes all events, and 60& reduction over AQ-K-Slack as

it suffers from higher processing cost and a high slack delay. For

other delay distributions, and specifically EU and EG, where the

experienced network delay is significantly higher, Aion’s mecha-

nism of circumventing stragglers significantly reduced the output

latency. Specifically, Aion achieved an 80% output latency reduction

over Default and 72% over AQ-K-Slack. Furthermore, the difference

between Aion and Aion- in EU and EG indicate that it is essential to

minimize the straggler count in the sample to minimize the output

latency, regardless of the query complexity.

Aion’s latency CDF for NYT is shown in Fig. 10. As explained

earlier, this experiment delivered different results than that for YSB

in Fig. 7 due to the higher complexity of NYT benchmark. At the

lighter workload of 5, 000 events per second, the output latency of

Aion- was dominated by slack delay while Default and AQ-K-Slack

23

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Omar Farhat, Harsh Bindra, Khuzaima Daudjee

(a) 5, 000 events/s (b) 10, 000 events/s

Figure 10: CDF latency running NYT benchmark for delay
distribution EGwith 5, 000 and 25, 000number of input events
generated per second.

suffered from both the slack delay and processing cost. Conse-

quently, Aion’s tail latency, 95
𝑡ℎ

to 99
𝑡ℎ

percentile, is significantly

reduced over Default and AQ-K-Slack by 80% and 75%, respectively.

As for the heavier workload of 25, 000 events per second, the tail

latency reduction attained by Aion over Default and AQ-K-Slack

reaches 87% and 85%, respectively. Aion- performs similarly to Aion

as output latency is dominated by the processing cost in both of

these Aion-based algorithms. Aion incurs lower processing cost

because its sampling mechanism requires a significantly smaller

sample size. Therefore, Aion can attain greater scalability than other

algorithms as it avoids slack delays while reducing processing costs.

Figure 11: Error plot showing statistical significance ob-
tained by AQ-K-Slack, Aion-, and Aion running NYT bench-
mark for delay distribution EGwith 25, 000 input events gen-
erated per second.

We studied the distribution of errors obtained when running the

NYT benchmark in Fig. 11 with parameters 𝑟𝑡ℎ𝑟 = 5% and 𝛿 = 0.95.

In this case, since the NYT window operator is a mean estimation

and the workload entails a higher standard deviation of 𝑉 , both

Aion- and Aion experience error greater than 5%. However, the

error crossed the threshold only three times from one-hundred data

points collected, therefore achieving a high confidence level of 97%.

Furthermore, while AQ-K-Slack delivered a significantly higher

latency, by 80%, the error for both algorithms was very similar.

Finally, Aion’s stringent accuracy requirements are a function of

𝛿 as Aion guarantees 𝑃 (𝑟 ≤ 𝑟𝑡ℎ𝑟) ≥ 𝛿 . But in the cases where the

obtained error exceeded 𝑟𝑡ℎ𝑟 , the max error is relatively close to

𝑟𝑡ℎ𝑟 indicating that Aion delivers consistent accuracy performance.

Figure 12: Mean latency vs. different distributions of
network delay and inter-event generation delay running
kMeans benchmark.

4.2.3 kMeans. The benchmark kMeans is the third andmost expen-

sive query for which we compare Aion against the other algorithms.

Furthermore, the sampling rate in kMeans reached 45% for the Aion

algorithms, whereas it reached 85% for AQ-K-Slack. In this case,

the processing cost dominates the output latency for all tested con-

figurations. This is shown in Fig. 12 as the two Aion algorithms

delivered significantly lower output latency results over Default and

AQ-K-Slack for all environment settings. Aion’s sampling mech-

anism helped it to reduce the output latency significantly. Aion

minimized both the processing cost and the network penalty over

Default and AQ-K-Slack by up to 75% and 65%, respectively.

(a) 5, 000 events/s (b) 10, 000 events/s

Figure 13: CDF latency running kMeans benchmark for de-
lay distribution EG with 5, 000 and 25, 000 number of input
events generated per second.

Aion’s latency CDF for kMeans is shown in Fig. 13. The bench-

mark kMeans is even more expensive than NYT, making process-

ing cost the dominating factor in output latency. For 5, 000 events

generated per second, Aion achieves significantly lower 95
𝑡ℎ

to

99
𝑡ℎ

percentile tail latencies, reducing them over Default and AQ-

K-Slack by about 80% and 72%, respectively. AQ-K-Slack, which

24

Leaving Stragglers at the Window:
Low-Latency Stream Sampling with Accuracy Guarantees DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Figure 14: Error plot showing statistical significance ob-
tained by AQ-K-Slack, Aion-, and Aion running kMeans
benchmark for delay distribution EG with 25, 000 input
events generated per second.

suffers from a significantly higher sampling rate, incurs high output

latency thereby displaying similar tail latency growth to that of

Default. As for the 25, 000 events generated per second input load,

we observe that Aion and Aion- achieve very similar performance,

further indicating that the processing cost dominated the output

latencies in this experiment. As for Default and AQ-K-Slack, both

algorithms suffered significant performance degradation, adding

82% and 78% latency overhead, respectively, at the tail. Aion de-

livers slightly better performance over Aion- since Aion exhibits

no slack delay while Aion- waited for an additional 1.5s to ensure

input completion.

Similar to previous experiments, we ran experiments with the

following parameters: 𝑟𝑡ℎ𝑟 = 5%, 𝛿 = 0.05. Fig. 14 presents the

distribution of error obtained while running kMeans. In this case,

since the window operator is computing the 𝑘-means algorithm

that involves more complex processing, the resulting error was

higher. While all algorithms achieved a maximum latency higher

than that of the threshold, all of them achieved this within the

constraint 𝑃 (𝑟 ≤ 𝑟𝑡ℎ𝑟) ≥ 1 − 𝛿 . Furthermore, while AQ-K-Slack

delivered significantly higher latency by 80%, the mean error for

both algorithms was very similar. Empirical verification and exper-

imentation consistently demonstrated that Aion error values rarely

stretched over the specified error threshold.

We measured Aion’s runtime overhead incurred by statistics

collection, window and sample size estimation, and sampling in-

coming events. Aion’s overhead is about 0.15% of the measured

output latency per window. This low overhead is due to Aion’s min-

imal monitoring of workload and its efficient sampling technique.

5 RELATED WORK
Approximate Query Processing (AQP) has been applied in multiple

systems. For relational databases, AQP has been studied exten-

sively [2, 11, 29] with techniques based on sampling [4], sketches

[18], and aggregations [22]. These techniques try to expedite query

processing latency and memory utilization by approximating the

results of the query. Such AQP techniques inherently assume that (i)

databases have their data stored on disk and can, therefore, sample

offline [10], and (ii) read-heavy databases can be exploited to build

and store high-quality samples [29]. However, these assumptions

do not apply to SPEs as events are ingested continuously, are not

stored, and are then processed on the fly.

AQP has also been studied in the context of SPEs [14, 25]. Sketches

has been applied in the context of reducing memory footprint of

stateful operators [9, 13, 16, 37]. Sketches utilize various data struc-

tures to store statistically significant information about the original

input. However, sketches are designed to reduce memory utilization

by running algorithms to summarize the input. As such, these tech-

niques that are geared towards reducing memory utilization cannot

be efficiently adopted to reduce output latency at the expense of

accuracy.

Earlier AQP research proposed a framework to implement sam-

ple processing algorithms on the Gigascope SPE [25]. Examples of

common sample processing approaches discussed in [25] include

[24, 31, 35, 40, 41] that optimize for different goals in the system. For

instance, [6] gracefully degrades performance by dropping events

when the system is overloaded. This proposal computes the mini-

mum shedding rate such that system resources are not over-utilized

while still maintaining adequate query accuracy. A proactive load-

aware shedding (LAS) mechanism that aims to limit queue latencies

was proposed [35]. LAS utilizes learning techniques thereby ad-

vancing a model-free algorithm to assess the cost of processing

events. Another approach is presented in [24] whereby the sam-

ple size is estimated for aggregations with dynamic slack time for

window processing. However, these methods generally wait for the

arrival of watermarks before processing the sample. As previously

illustrated, methods that include stragglers for their input are prone

to suffer from high output latency.

Sample processing has also been studied in different contexts. In-

cApprox [27] is an approximation method that studies the problem

of having the deployed SPE ingest events from multiple sources,

each of which is emitting at a different rate. IncApprox presents

a solution that represents the data received from each source as

strata through stratified sampling. The weight of each stream is

then computed based on the arrival rate. Reservoir sampling is then

applied to each source which is used for approximation. However,

IncApprox is designed for systems relying on emitting mini-batches

as in Apache Spark [45]. StreamApprox [34], an evolution of In-

cApprox, relaxes this assumption by presenting a system designed

for both mini-batches and event-at-a-time processing paradigms.

While Aion does not discriminate between stream sources, the al-

gorithm can be easily extended by stratifying each stream source

as described in StreamApprox and IncApprox. These papers as-

sume that the user is knowledgeable enough to provide a static

sample size that minimizes the error rate, raising practicality con-

cerns. Additionally, all of these algorithms suffer from the stragglers

problem.

There exists a multitude of techniques proposed to include strag-

glers by imposing extra latency to ensure input completion [14,

17, 24, 33, 36, 38, 44]. Heartbeats [38] are watermark-like events

injected in the stream to signify end of sub-streams. This algorithm

assumes static maximum latency delay and consequently is prone

to suffer from high latency. Similar work [33] proposed a water-

mark generation algorithm that processes an event only if has been

idle in the stream for 𝑘 seconds where 𝑘 is set to the maximum

25

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Omar Farhat, Harsh Bindra, Khuzaima Daudjee

observed network delay. More recently, [36] proposed an algorithm

with probability guarantees on slacking for stragglers by moni-

toring both network and inter-event generation delays. However,

these algorithms present a solution against the uncertainty of the

number of stragglers by imposing slack delay. In contrast, Aion’s

novelty lies in its observation that stragglers are unproductive to

sample processing, thereby circumventing them and minimizing

slack delay to deliver minimized output latency.

6 CONCLUSION
In this paper, we presented Aion, a state-of-the-art sample process-

ing algorithm optimized to reduce output latency while achieving

specified accuracy guarantees. Aion mitigates the impact of strag-

glers on output latency by leveraging control on stream progress,

effectively automating the generation of watermarks. Through in-

tegration into Apache Flink and extensive experimentation, we

demonstrated that Aion outperforms existing sampling techniques.

Our experiments show that Aion can deliver large output latency

reductions of up to 85% over existing techniques. These results

demonstrate the effectiveness of Aion’s intelligent sampling de-

sign for circumventing stragglers in delivering superior stream

processing performance with accuracy guarantees.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC), Canada Foundation for

Innovation and Ontario Research Fund.

REFERENCES
[1] Zainab Abbas, , et al. 2018. Streaming graph partitioning: an experimental study.

In PVLDB, Vol. 11. 1590–1603.
[2] Swarup Acharya et al. 1999. The Aqua approximate query answering system. In

SIGMOD. ACM, 574–576.

[3] Swarup Acharya et al. 2000. Congressional samples for approximate answering

of group-by queries. In SIGMOD. ACM, 487–498.

[4] Sameer Agarwal et al. 2013. BlinkDB: queries with bounded errors and bounded

response times on very large data. In EUROSYS. ACM, 29–42.

[5] Tyler Akidau et al. 2013. MillWheel: Fault-Tolerant Stream Processing at Internet

Scale. In PVLDB, Vol. 6. ACM, 1033–1044.

[6] Brian Babcock et al. 2004. Load shedding for aggregation queries over data

streams. In ICDE. IEEE, 350–361.
[7] Magdalena Balazinska et al. 2007. Moirae: History-Enhanced Monitoring.. In

CIDR. 375–386.
[8] Paris Carbone et al. 2015. Apache flink: Stream and batch processing in a single

engine. In TCDE, Vol. 36. IEEE, 28–38.
[9] Moses Charikar et al. 2002. Finding frequent items in data streams. In International

Colloquium on Automata, Languages, and Programming. Springer, 693–703.
[10] Surajit Chaudhuri et al. 2007. Optimized stratified sampling for approximate

query processing. In TODS, Vol. 32. ACM, 9–es.

[11] Surajit Chaudhuri et al. 2017. Approximate query processing: No silver bullet. In

SIGMOD. ACM, 511–519.

[12] Graham Cormode et al. 2006. Space-and time-efficient deterministic algorithms

for biased quantiles over data streams. In PODS. ACM, 263–272.

[13] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream

summary: the count-min sketch and its applications. In Journal of Algorithms.
Elsevier, 58–75.

[14] Miyuru Dayarathna and Srinath Perera. 2018. Recent advancements in event

processing. ACM Computing Surveys (CSUR), 1–36.
[15] Alan Demers et al. 2006. Towards Expressive Publish/Subscribe Systems. In EDBT.

Springer, 627–644.

[16] Edward Gan et al. 2018. Moment-Based Quantile Sketches for Efficient High

Cardinality Aggregation Queries. In PVLDB, Vol. 11. ACM, 1647–1660.

[17] Nikos Giatrakos et al. 2020. Complex event recognition in the big data era: a

survey. In VLDBJ. Springer, 313–352.
[18] Phillip B. Gibbons and Yossi Matias. 1998. New Sampling-Based Summary Statis-

tics for Improving Approximate Query Answers. In SIGMOD. ACM, 331–342.

[19] Lukasz Golab and M Tamer Özsu. 2003. Issues in data stream management. In

SIGMOD. ACM, 5–14.

[20] Jamie Grier. 2016. Extending the yahoo! streaming benchmark. URL http://data-
artisans.com/extending-the-yahoo-streamingbenchmark (2016).

[21] Michael Grossniklaus et al. 2016. Frames: data-driven windows. In DEBS. ACM,

13–24.

[22] Joseph M Hellerstein et al. 1997. Online aggregation. In SIGMOD. ACM, 171–182.

[23] Zbigniew Jerzak and Holger Ziekow. 2015. The DEBS 2015 Grand Challenge. In

DEBS. ACM, 289–294.

[24] Yuanzhen Ji et al. 2015. Quality-Driven Continuous Query Execution over Out-

of-Order Data Streams. In SIGMOD. ACM, 889–894.

[25] Theodore Johnson et al. 2005. Sampling algorithms in a stream operator. In

SIGMOD. ACM, 1–12.

[26] Nikos R Katsipoulakis et al. 2020. SPEAr: Expediting Stream Processing with

Accuracy Guarantees. In ICDE. IEEE.
[27] Dhanya R Krishnan et al. 2016. Incapprox: A data analytics system for incremental

approximate computing. InWWW. 1133–1144.

[28] Jin Li et al. 2008. Out-of-Order Processing: A New Architecture for High-

Performance Stream Systems. In PVLDB, Vol. 1. ACM, 274–288.

[29] Kaiyu Li and Guoliang Li. 2018. Approximate query processing: What is new

and where to go?. In Data Science and Engineering. Springer, 379–397.
[30] S.L. Lohr. 2010. Sampling: Design and Analysis. Brooks/Cole.
[31] Barzan Mozafari and Carlo Zaniolo. 2010. Optimal load shedding with aggregates

and mining queries. In ICDE. IEEE, 76–88.
[32] Christopher Mutschler et al. 2013. The DEBS 2013 Grand Challenge. In DEBS.

ACM, 289–294.

[33] C. Mutschler and M. Philippsen. 2013. Distributed Low-Latency Out-of-Order

Event Processing for High Data Rate Sensor Streams. In IPDPS. IEEE, 1133–1144.
[34] Do Le Quoc et al. 2017. StreamApprox: approximate computing for stream

analytics. In Middleware. USENIX, 185–197.
[35] Nicoló Rivetti et al. 2016. Load-Aware Shedding in Stream Processing Systems.

In DEBS. ACM, 61–68.

[36] Nicolo Rivetti et al. 2018. Probabilistic management of late arrival of events. In

DEBS. ACM, 52–63.

[37] Anshumali Shrivastava et al. 2016. Time adaptive sketches (ada-sketches) for

summarizing data streams. In SIGMOD. ACM, 1417–1432.

[38] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Management in

Data Stream Systems. In PODS. ACM, 263–274.

[39] Michael Stonebraker et al. 2005. The 8 Requirements of Real-Time Stream Pro-

cessing. In SIGMOD. ACM, 42–47.

[40] Nesime Tatbul et al. 2003. Load shedding in a data stream manager. In PVLDB.
ACM, 309–320.

[41] Nesime Tatbul et al. 2007. Staying fit: Efficient load shedding techniques for

distributed stream processing. In PVLDB. ACM, 159–170.

[42] Ankit Toshniwal et al. 2014. Storm at twitter. In SIGMOD. ACM, 147–156.

[43] N. Zacheilas et al. 2015. Elastic complex event processing exploiting prediction.

In BigData. IEEE, 213–222.
[44] Nikos Zacheilas et al. 2017. Maximizing determinism in stream processing under

latency constraints. In DEBS. ACM, 112–123.

[45] Matei Zaharia et al. 2016. Apache Spark: A Unified Engine for Big Data Processing.

In Communications of the ACM, Vol. 59. ACM, 56–65.

26

	Abstract
	1 Introduction
	2 Background
	2.1 Windows and Watermarks
	2.2 Approximate Query Processing
	2.3 Sample Processing

	3 Aion: Straggler-Free Sampling
	3.1 Monitoring the Workload
	3.2 Window and Sample Size Estimators
	3.3 Sampling over Sub-Streams

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

