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Abstract. We propose an inviscid model for nonrigid image registration in a
particle framework, and derive the corresponding nonlinear partial differential
equations for computing the spatial transformation. Our idea is to simulate
the template image as a set of free particles moving toward the target positions
under applied forces. Our model can accommodate both small and large defor-
mations, with sharper edges and clear texture achieved at less computational
cost. We demonstrate the performance of our model on a variety of images
including 2D and 3D, mono-modal and multi-modal images.

1. Introduction. Image registration requires aligning an image pair, the template
and the target, with an optimal transformation. In contrast with rigid registration,
nonrigid registration allows changes in shape and size. Numerous approaches for
nonrigid registration have been developed. For example, the affine transformation
model [26], splines [3], and wavelets [1] have all been suggested. These parametric
models usually require user-supplied correspondence between labeled landmarks. A
disadvantage of the parametric models is that the limited degrees of freedom may
not be adequate for complicated registration problems. An alternative approach is
to compute the displacement for each of the pixels. Typically a partial differential
equation (PDE) needs to be solved (e.g., [2, 13, 33]). These methods directly exploit
image intensities to compute the transformation and hence do not require user-
supplied landmarks. (We remark, however, that preprocessing of medical images is
often necessary to address the issues of inhomogeneity and nonstandardness before
registration starts [21].)

Mathematical models for nonrigid registration can be formulated as a minimiza-
tion problem where the objective function is a sum of two terms (see e.g. [25]). The
first term is a similarity measure which computes the differences (or similarities)
between the transformed template and target images. A good quality registration
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should give a good match with the target. Minimization of the similarity measure
alone, however, is a very ill-posed problem. Hence a second term, often known as the
regularization term, is added. The PDE-based approach assigns derivatives for the
regularization term. For instance, the diffusion and curvature models [25] involve
the second and higher derivatives of the solution. More sophisticated PDE mod-
els have been proposed that are motivated by physics. Generally speaking, these
models interpret the nonrigid transformation as a physical process. The elastic
methods, first proposed by Broit [5] and later extended by Bajcsy et al. [2], model
the registration process as the deformation of an elastic solid. Various variational
forms [7, 12] and efficiency issues have been discussed [15]. Since the deformation
energy caused by stress increases proportionally with the strength of the deforma-
tion, elastic models are usually used for accommodating small deformations. To
overcome this drawback, Christensen et al. [10] proposed another approach which
modeled the registration process by the flow of a viscous fluid. Fluid models can
allow relatively larger deformations. However, the computational cost can be high
[4, 36]. A fast fluid registration using a convolution technique was developed in [4]
to address the efficiency issue.

The viscosity term present in the fluid registration model results in a smooth-
ing effect on the transformation. Consequently, the transformed image using the
resulting transformation does not look sharp since edges and small details appear
smeared. To minimize the “smearing artifact” resulting from fluid viscosity, we
propose to use an inviscid model. Instead of regarding the template image as a
fluid continuum with viscous interaction, we simulate the deformation process as a
set of free particles moving toward the target positions under applied forces. This
is similar to the case of an ideal gas [19] where distances between gas molecules
are large enough that internal interaction can be safely ignored and each molecule
is viewed as a free particle. If the elastic model is analogous to a solid and the
fluid model to a liquid, then our model would be analogous to a gas. Comparing
the elastic and fluid models, the latter allows larger deformation in the same way
that a liquid is more mobile than a solid. Our particle model preserves this large
deformation property, and in addition, it allows more local changes. At this point,
it is important to note that physically-based methods model the image alignment,
rather than the objects in the images, as a physical process. Thus, it is not true
that elastic model is only used for images with solid objects, fluid model for images
with liquid objects, and our model for images with gaseous objects. These models
are generally applicable to a wide range of images.

Based on the physical behavior of particles, we develop a registration technique
expressed in a particle framework. To compute the movement of particles, a La-
grangian reference frame is often used. However, the need to track individual parti-
cles can become computationally expensive. Assuming there are a sufficiently large
number of particles, we can fit an Eulerian reference frame to the particle framework.
The resulting partial differential equations are a nonlinear hyperbolic system whose
solution describes the spatial transformation between the images to be registered.
This system can be numerically solved using finite difference methods.

We note that a particle registration method was studied in [24] in the context
of landmark matching using a geodesic interpolating splines technique. In this ap-
proach, a number of particles or knotpoints on the template image and those on the
target image are pre-selected. A constrained minimization problem is solved to com-
pute the trajectories connecting the corresponding landmark points. Our approach,
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however, has much more particles. In fact, each pixel is a particle. Moreover, the
destination of each particle is not specified. The destination points are determined
by the model equations. See also [23, 34] for details concerning diffeomorphic rep-
resentations of deformations and the connection with the fluid registration model.
Another related approach is based on the optimal mass transport [16], which also
does not have a smoothness constraint. It views images as objects with equal mass,
and move one mass to another optimally by applying the Monge-Kantorovich the-
ory. This approach has been applied to image registration as well as morphing
applications.

The proposed particle registration technique is quite simple and efficient. Since
the particle method can be viewed as an inviscid fluid model, the smearing artifact
caused by the viscous terms is eliminated and large deformations can be accom-
modated. Total computational cost is decreased due to the simple form of the
underlying model. Our particle registration technique can produce deformed im-
ages with more contrast and sharper edges in less time, as we will demonstrate
(cf. Section 4). Moreover, the displacement field is allowed to vary only locally,
which would be suitable for applications where local changes in displacement field
are desired (see e.g. [18]). We have successfully applied the proposed model to align
mono- and multi-modality images, yielding fast and accurate registrations.

The rest of the paper is organized as follows. Section 2 contains an overview
of the particle registration technique from derivation to formulation. Section 2.1
interprets the particle framework from the variational point of view, and derives the
definition of the body force. Section 3 presents a numerical algorithm for solving
the consequent PDE system, with a discussion on regularity. Section 4 compares
our approach with the fluid approach on a variety of images. Finally, conclusions
are given in Section 5.

2. Methodology. We denote the intensity of the template image by I1(x) and that
of the target image by I2(x), where 0 ≤ I1(x), I2(x) ≤ 1, and x ∈ Ω is the image
region. The purpose of image registration is to determine a spatial transformation

Φ : x 7→ x− r(x)

such that the transformed or deformed template I1(Φ(x)) is close to the target in
a certain sense. Here r(x) is the displacement (or deformation). Physically-based
models determine r(x) by modeling the image deformation process as a dynamical
physical system.

In addition to mapping I1(x) to I2(x), it is desirable that the spatial transfor-
mation Φ have additional properties such as smoothness, angle preservation, and
rigid body motion preservation. The fluid model, for instance, would compute a
transformation that yields a smoothly varying displacement field due to the viscos-
ity term in the PDE. While the smoothness property may be useful and sometimes
necessary in some cases, it also tends to diffuse the displacement field. Consider
a moving object on a background which does not move. The correct displacement
field should be nonzero on the object but then change to zero discontinuously when
approaching the background. The fluid model would not be able to obtain the cor-
rect displacement field since the nonzero displacements of the object would diffuse
into the displacements in the background, making them nonzero.

We need a model which would allow local changes in the displacement field so that
it can capture the motion of a moving object without interfering the displacement
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field of the stationary parts. Here, we propose a particle registration method based
on an inviscid model. This model has the following features:

1. Local motion of the object is allowed;
2. Zero displacement for objects that do not move (e.g. the background);
3. Topological changes in the object are possible, if needed;
4. The resulting transformed template shows sharp edges and high contrast.

We remark that our model would only produce discontinuous displacement fields
at where local changes are necessary. In general, it will still yield smoothly varying
displacement fields in regions where there are no sudden changes; see the numerical
results in Section 4. The situation is similar to gas dynamics where regions away
from shocks remain smooth. We refer to the readers [18] for examples where local
varying displacement fields are desired. It is beyond the scope of this paper what
applications should employ which registration models. Here, we propose a simple
and flexible alternative model that allows the displacement field to change locally
when desired, which other models (elastic and fluid) cannot provide.

The construction of the particle registration is as follows. We consider the tem-
plate image as a set of particles carrying intensity information, each with position
x, velocity u, displacement r, unit mass, and responding to a body force b. The
image deformation process is simulated as free particles moving toward the target
positions under applied forces. The total number of particles is assumed to be large
enough that we can fit Eulerian reference frame [32] to particle simulation. The
velocity field u(x, t) and the displacement field r(x, t) are both defined based on
final coordinates of particles. A particle currently located at position x at time t
originates at position x− r(x, t).

The initial conditions for the particle registration is naturally chosen to be:

r(x, 0) = 0, u(x, 0) = 0, for any x ∈ Ω.

For the boundary conditions, since the objects to be registered usually lie at the
center of the image, we assume the image boundary only contains background in-
formation (i.e. black). Hence zero Dirichlet boundary conditions are used for the
particle model:

r(x, t) = 0, u(x, t) = 0, for any x ∈ ∂Ω and t > 0.

We note that other boundary conditions, e.g. Neumann, can also be used, if the
boundary intensities are not zero.

For any time t > 0, the instantaneous state of a particle is governed by Newton’s
law of motion. If we assume that there is no internal interaction between particles,
the conservation of momentum equations can be written as

du

dt
− b = 0, (1)

where b is the body force applied to that particle and will be defined later by infor-
mation from the template and the target images. The first term of (1) represents
the force of inertia, i.e., unit mass times the acceleration of a particle.

In the Eulerian reference frame, we have the following relationship [32] between
total derivatives and partial derivatives with respect to time

d

dt
=

∂

∂t
+ u · ∇, (2)
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where ∇ is the gradient operator. Substituting (2) into (1), we obtain the governing
equations for particle registration

∂u

∂t
+ u · ∇u− b = 0. (3)

Physically, this means that the body force b, which acts upon the whole image
domain and drives the registration process, is balanced by the inertial force du/dt
caused by the motion of image deformation.

In contrast with fluid registration, equation (3) ignores internal friction and there-
fore describes an inviscid model. This is similar to the Euler equations commonly
used in gas dynamics

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p− b = 0, (4)

where ρ is the mass density, and p is the isotropic pressure. In the case of unit
density and constant pressure, ∇p and ρ are both neglected and (4) is reduced to
(3).

Hyperbolic equations such as (4) have the property of allowing shocks (disconti-
nuities) in the solution, which have been shown to be useful for maintaining sharp
edges in image denoising [31] and segmentation [6]. It turns out to be useful for im-
age registration problems as well. For example, multi-object registration with very
close distances and totally different motions necessitates a transformation which
varies rapidly over a very small common area between the objects. Even for single
object registration, as mentioned previously, the displacement field experiences a
discontinuous change across the object and the background. Hence, as a special
case of (4), our model equation (3) should be able to handle such situations.

To track the movement of a particle through time, we need the notion of velocity

u =
dr

dt
, (5)

where r is the resulting displacement which describes the offset of current particle
to its original position. Using (2), equation (5) can be rewritten as

u =
∂r

∂t
+ u · ∇r. (6)

With the computed velocity from (3), equation (6) is used to update the current
displacement. Thus, particle registration consists of solving (3) and (6). However,
there are three unknowns: u, r, and b. To close the PDE system, we need a
definition for the body force b. This will be derived by interpreting the particle
registration problem as a minimization problem.

2.1. Minimization formulation. As mentioned in Section 1, nonrigid registra-
tion approaches are often formulated as a minimization problem. In this section,
we will consider a variational formulation whose Euler-Lagrange equation is closely
related to the particle registration model. By considering this Euler-Lagrange equa-
tion, the body force is then defined in the next section.

In the variational formulation, the image registration problem is to determine a
transformation Φ such that the distance between the deformed template and the
target is minimized in some measure D(Φ). For mono-modal data, we use an L2
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distance measure [8], also called the sum of squared differences, for D(Φ):

DSSD(Φ) =
∫

Ω

|I1(Φ(x))− I2(x)|2 dx. (7)

We seek the transformation Φ which minimizes the distance measure DSSD(Φ).
We often require Φ to have certain desired properties. An additional term, R(Φ),
known as the regularization term, is imposed. Consequently, image registration is
formulated as the following minimization problem

min
Φ

α

2
DSSD(Φ) + λR(Φ), (8)

where λ is a parameter to be discussed in the next section. The constant α is a
user-selected parameter. Varying α changes the weight of the L2 distance measure,
and thus influences the final solution of the underlying model. When α is large, the
deformed template will be forced to be identical to the target. However, the corre-
sponding registration problem tends to be ill-posed. The choice of an appropriate α
is problem dependent. In practice, we determine α by numerical experiment. Since
Φ is determined by r, (8) can be rewritten as

min
r

α

2
DSSD(r) + λR(r).

The regularization term R(r) specifies additional information about the desired
displacement, and is typically selected to be some form of energy. In elastic models
[7, 12], R(r) is defined as the elastic potential energy, which has the form (in 2D):

R(r) =
∫

Ω

2∑

i=1

2∑

j=1

{
λe

2
∂ri

∂xi

∂rj

∂xj
+

µe

4

(
∂ri

∂xj
+

∂rj

∂xi

)2
}

dx.

Other regularization terms have also been defined for diffusion and curvature models
(see e.g. [25]). Instead of using elastic potential for the regularization term as in
elastic models, we consider to use a regularization term which is based on kinetic
energy:

R(r) =
∫

Ω

1
2
‖u(x)‖2 dx. (9)

The kinetic energy model minimizes the motion of deformation while registering
the image pair. The use of a measure of the velocity as a cost function for a time-
dependent deformation process is also considered in [17] which describes it as a
minimal action term.

Hence, at any time t during registration, the following minimization problem is
solved:

min
r

∫

Ω

α

2
|I1(x− r(x, t))− I2(x)|2 dx + λ

∫

Ω

1
2
‖u(x, t)‖2 dx. (10)

The distance measure in (10) drives the registration process, while the kinetic en-
ergy regularization term tends to resist the motion. More precisely, in the inviscid
particle model, the differences of the transformed template and the target image try
to move the pixels (or particles) of the template towards the pixels of the target.
In the mean time, the kinetic energy regularization term tries to stop the moving
particles. The compromise between the two leads to the minimal motion to register
the image pair. This idea is similar to the elastic model in which the amount of
displacement is constrained by the potential energy regularization term.
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It can be shown that the variation of (9) is just the inertial force du/dt. We
illustrate this in the 1D case. Since the integrand in (9) is not written explicitly as
a functional of the displacement function, we will rewrite it in terms of r. As stated
in Section 2, the initial velocity is set to zero. Thus, we have

1
2
u2(x, t) =

1
2
u2(x, t)− 1

2
u2(x, 0)

=
∫ t

0

d

(
1
2
u2

)
.

Using the chain rule and taking into account that u = dr/dt, we obtain

1
2
u2(x, t) =

∫ t

0

du

dt
udt =

∫ r(x,t)

r(x,0)

du

dt
dr. (11)

Hence, (9) can be written as

R(r) =
∫

Ω

K(r)dx, (12)

where the functional K(r) is given by (11). The variation of (12) can be calculated
by

δR(r)
δr

=
∂K(r)

∂r
=

du

dt
(x, t).

Now, taking the variation of the objective functional in (10) with respect to the
displacement, r(x, t), gives the following PDE

du(x, t)
dt

− α

λ
(I1(x− r(x, t))− I2(x)) · ∇I1(x− r(x, t)) = 0. (13)

2.2. Body force. Comparing (13) with (1), we find that the particle dynamic
equation is just the Euler-Lagrange equation of (10) where the second term in (13)
is the body force b which moves particles from the template I1 to the target I2.
Thus, the body force can be viewed as the negative variation of the distance measure
DSSD(r) with respect to the displacement r. Motivated by this observation, one
suggestion for the body force is

b(x, t) =
α

λ
(I1(x− r(x, t))− I2(x))∇I1(x− r(x, t)). (14)

There are two terms in (14); one is the difference term I1(x− r(x, t))− I2(x), and
the other is the gradient term ∇I1(x − r(x, t)). For the purpose of registration,
the movement of particles should only slow down when the difference term becomes
small, which means the magnitude of b(x, t) should be determined solely by the
difference term. Thus, we simplify the model by choosing λ = ‖∇I1(x − r(x, t))‖
which will normalize the gradient term in the body force definition. Hence, equation
(14) becomes

b(x, t) = α(I(x, t)− I2(x))
∇I(x, t)
‖∇I(x, t)‖ , (15)

where I(x, t) = I1(x− r(x, t)) denotes the deformed template at time t.
We note that in the derivation of (13), λ is a parameter independent of r. How-

ever, in practice, we observe that the value of λ mainly affects the number of iter-
ations to convergence and has minimal effect on the image result. For convenience,
we choose λ to normalize ∇I(x, t) in the body force. Mathematically speaking, the
resulting particle registration model would not be equivalent to the variational for-
mulation. However, in practice, we observe essentially the same registration results
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when λ is a constant and when λ is not. Our choice, however, leads to much fewer
number of iterations. After the choice for λ is fixed, we determine the appropriate
range of α for fast convergence.

2.3. Multi-modality. For multi-modal image registration, the template and tar-
get images have very different intensities for corresponding objects or structures.
The L2 distance measure (7) is not preferable. (However, we note that SSD could be
applied for motion estimation based registration techniques [27].) A more general
statistical measure, known as the “mutual information” [22, 29, 35], is commonly
used.

The particle dynamic equations (3), (6) follow in this case as they are independent
of the similarity measure. Similar to the mono-modality case, we will determine
the body force by considering a minimization problem which combines the mutual
information similarity measure with the proposed kinetic regularizer (9):

min
r
−αM(I1, I2, r) + λ

∫

Ω

1
2
‖u(x, t)‖2 dx, (16)

whereM(I1, I2, r) is the mutual information between the transformed image I1 and
image I2. The displacement r is determined by maximizing the mutual information
with minimal kinetic energy.

We follow the same procedure as in the derivation from (10) to (15). Everything
follows similarly except for the definition of the body force, which is now the the
variation of the mutual information measure with respect to the displacement r.
This new body force has a similar form as in [11]. Let pI1,I2

r (α, β) be the joint
intensity distribution for the deformed template I1(x−r) and the target I2(x). The
mutual information expressed in terms of a Kullback-Leibler divergence is given by

M(I1, I2, r) ≡
∫

Ω

pI1,I2
r (α, β) log

pI1,I2
r (α, β)

pI1
r (α)pI2(β)

dαdβ,

where pI1
r (α) and pI2(β) are the marginal intensity distribution for I1(x − r) and

I2(x), respectively. Using the Parzen windowing approach, the joint intensity dis-
tribution is estimated by

pI1,I2
r (α, β) =

1
|Ω|

∫

Ω

Ψ(α− I1(x− r), β − I2(x))dx,

where Ψ(α, β) is a Parzen windowing kernel. Taking the variation of the mutual
information function with respect to the displacement r, we obtain

δM
δr

=
1
|Ω| [Ψ ∗ Γ](I1(x− r), I2(x))∇I1(x− r),

where ∗ is the convolution operator and

Γ(α, β) =
1

pI1,I2
r (α, β)

∂pI1,I2
r (α, β)

∂α
− 1

pI1
r (α)

∂pI1
r (α)
∂α

.

Finally, the new body force is given by

b(x, t) = α
1
|Ω| [Ψ ∗ Γ](I(x, t), I2(x))

∇I(x, t)
‖∇I(x, t)‖ ,

where λ is defined as in (15).
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3. Implementation. Combining (3), (6), and (15), the particle registration prob-
lem requires solving the following PDE system

b(x, t) = α(I(x, t)− I2(x))
∇I(x, t)
‖∇I(x, t)‖ ,

∂u(x, t)
∂t

= b(x, t)− u(x, t) · ∇u(x, t),

∂r(x, t)
∂t

= u(x, t)− u(x, t) · ∇r(x, t).

Note the nonlinearity introduced by the body force and the kinematic derivatives.
We numerically solve these equations using finite difference methods.

We note that the gradient operator is sensitive to noise in the image. Thus
the deformed template is convolved with a Gaussian kernel prior to the gradient
computation. Let Gσ denote the Gaussian kernel with standard deviation σ. Then
(15) becomes

b(x, t) = α(I(x, t)− I2(x))
∇Gσ ∗ I(x, t)
‖∇Gσ ∗ I(x, t)‖ . (17)

To update the movement of particles through time, we discretize the time domain
[0, T ] into small intervals 0 = t0 < . . . < tn < . . . < tN = T and apply explicit Euler
integration over time. The semi-discretization of (17), (3) and (6) gives

bn(x) = α(In(x)− I2(x))
∇Ĩn(x)
‖∇Ĩn(x)‖ ,

un+1(x) = un(x) + ∆tn(bn(x)− un(x) · ∇un(x)),
rn+1(x) = rn(x) + ∆tn(un+1(x)− un+1(x) · ∇rn(x)),

where

bn(x) : approximation of the body force at time tn,

un(x) : approximation of the velocity at time tn,

rn(x) : approximation of the displacement at time tn,

In(x) : approximation of the deformed image at time tn,

Ĩn(x) : approximation of the Gaussian smoothed deformed image at time tn,

∆tn : time step size at time tn.

To compute the movement of particles through space, we discretize the image
domain Ω into small cells with the same grid spacing h in every dimension. The
unknowns are defined at the cell centers. We use the following notation in two
dimensions:

(i, j) : discrete indices in (x, y) dimension,
D−

x /D−
y : backward difference operator,

D+
x /D+

y : forward difference operator,

(b, c) : body force in (x, y) dimension,
(u, v) : velocity in (x, y) dimension,
(r, s) : displacement in (x, y) dimension.
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To enhance the stability of the discrete gradient terms, we apply an upwind differ-
ence operator which is defined as (x-dimension):

Dup
x (γ) =

(1 + γ)D−
x + (1− γ)D+

x

2
,

where γ is either -1, 0 or 1. The upwind difference operator Dup
y (γ) in the y-

dimension can be defined similarly. The fully discrete system is given as follows:

bn
ij = α(In

ij − I2,ij)
Dup

x (γ1)Ĩn
ij√

(Dup
x (γ1)Ĩn

ij)2 + (Dup
y (γ1)Ĩn

ij)2
,

cn
ij = α(In

ij − I2,ij)
Dup

y (γ1)Ĩn
ij√

(Dup
x (γ1)Ĩn

ij)2 + (Dup
y (γ1)Ĩn

ij)2
,

un+1
ij = un

ij + ∆tn(bn
ij − un

ijD
up
x (γ2)un

ij − vn
ijD

up
y (γ3)un

ij),

vn+1
ij = vn

ij + ∆tn(cn
ij − un

ijD
up
x (γ2)vn

ij − vn
ijD

up
y (γ3)vn

ij),

rn+1
ij = rn

ij + ∆tn(un+1
ij − un+1

ij Dup
x (γ4)rn

ij − vn
ijD

up
y (γ5)rn

ij),

sn+1
ij = sn

ij + ∆tn(vn+1
ij − un+1

ij Dup
x (γ4)sn

ij − vn
ijD

up
y (γ5)sn

ij),

where

γ1 = sign(I2,ij − In
ij),

γ2 = sign(un
ij),

γ3 = sign(vn
ij),

γ4 = sign(un+1
ij ),

γ5 = sign(vn+1
ij ).

We remark that solving the particle registration equations is much more efficient
than solving the elastic and fluid model equations where a linear system needs to
be solved at each iteration.

The discretization above can be easily extended to 3D. We note that the numer-
ical scheme is first order accurate in time and space. Higher order methods such
as Runge-Kutta for the time discretization and total variation diminishing (TVD)
schemes for the spatial discretization can also be used. In our experience, we find
that our numerical method produces very acceptable registration results. There is
essentially no visible difference between the deformed template image and the target
image. Consequently, we will not consider higher order methods here and refer the
interested readers to [20].

To ensure the stability of numerical computation, we impose the Courant-Friedrichs-
Lewy (CFL) conditions [28] which read as follows

|umax|∆t < h, |vmax|∆t < h.

Here |umax|, |vmax| refer to the maximum absolute values of the velocity component
in each dimension. In our implementation, we select an adaptive control which
satisfies

∆t = β min
(

h

|umax| ,
h

|vmax|
)

,

where 0 < β < 1 is a safety factor.
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To ensure a regular transformation, we keep track of the Jacobian determinant
through time

J(x, t) = det(I −∇r(x, t)),
where I is the identity function. Whenever its minimum value over the grid falls
below a certain threshold δ, a regridding procedure is performed to avoid local
singularity [9]. We pause the computation and generate a propagated template
equal to the current deformed template. The registration process is restarted by
using the propagated template as the new template. The initial displacement is
reset to zero and the velocity remains the same.

The complete algorithm for particle registration is given in Algorithm 1. This
Algorithm will terminate if either the maximum timestep is reached or the deformed
template converges to the target.

Algorithm 1: Particle Registration
01. Initialize n← 0, (u0

ij , v
0
ij)← 0, and (r0

ij , s
0
ij)← 0

02. While n has not reached the maximum number of iterations N

03. Generate the corresponding deformed image In
ij

04. If maxij |In
ij − I2,ij | is less than some stopping criteria ε

05. STOP
06. EndIf
07. Calculate the applied body force (bn

ij , c
n
ij)

08. Compute the instantaneous velocity (un+1
ij , vn+1

ij )
09. Update the current displacement (rn+1

ij , sn+1
ij )

10. Track the resultant Jacobian determinant Jn+1
ij

11. If minij Jn+1
ij is less than a certain threshold δ

12. REGRID
13. EndIf
14. Choose the next step size ∆tn

15. n← n + 1
16. EndWhile

4. Numerical Results. The proposed model is implemented in C and executed
on a desktop PC with Intel Core 2 2.13GHz CPU having 3062MB memory. The
tunable parameters are typically set to N = 250, ε = 0.01, α = 100, δ = 0.5,
β = 0.5. As a reference, we also implemented the original fluid approach [10] and
the known fast acceleration version [4] with viscosity coefficients µ = 1, λ = 0
(standard values in the literature). As illustrated in [10], elastic models cannot
capture large variations from the template to the target. So, we shall compare the
particle model with the fluid approach only.

We demonstrate the effectiveness of the proposed model by six examples. The
first five are mono-modal registrations in 2D and 3D. The last one is a 2D multi-
modal registration. We assume in all the experiments that the objects of interest
are originally overlapped in the image pair. This requirement can be easily satisfied
by a simple initial alignment. The intensity values are normalized into the range of
[0, 1] before registration is performed.



12 ZHAO YI AND JUSTIN W.L. WAN

Examples 3-6 have noise in the images. For the typical noise level in the images
we have tried, we do not observe any significant effect caused by the noise. We have
not tried images with very high noise level, but it is anticipated that high noise
levels would in general affect the registration quality and that the iterative process
would more likely to converge to a local minimum.

4.1. Example 1. We demonstrate the ability of our model to accommodate large
curved deformations, as the fluid model does. The target image is the letter “C”
and the template image is a small patch of it; see Fig. 1. The same example images
are used by the fluid model in [10].

Figure 1. Example images from [10]. (Left) template, (right) target.

Fig. 2 shows the progress of deforming a small patch to a longer curved “C” using
the particle registration model. The images from left to right are the propagated
templates in a forward time series. We can see that our model allows the patch
template to grow into the “C” target, with the upside of “C” filled by the dilation
of the patch. Eventually, the image pair is matched completely.

Figure 2. Deformation progress from the patch template to the
“C” target.

We note that the deformation of this example is uncommonly large compared
to most image registrations in practice. It is mainly for illustration only. Usually,
a rigid registration is performed before applying nonrigid registration. Hence, one
seldom needs register images with excessive large deformation.

4.2. Example 2. We compare the fluid and particle models by registering an image
of a square to an image of a circle, as shown in Fig. 3. Both images are of size
128× 128, with a three-layer nested region at the center. The lengths of the inner,
middle, and outer squares are 32, 52, and 72 pixels, while the diameters of the inner,
middle, and outer circles are 40, 60, and 80 pixels.

Fig. 4 shows the registration results given by the particle model. The deformed
template (left) is a visual assessment of the registration accuracy. It matches exactly
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Figure 3. (Left) template image of a square, (right) target image
of a circle.

with the nested shape of the circle target. The difference image between the tem-
plate and the target (middle) is an estimation of variability before registration. The
intensity differences of the two images are normalized to the range [−1, 1] such that
positive differences are indicated by while, negative differences by black, and zero
differences by grey. Since the difference image between the deformed template and
the target (right) is totally grey (no differences), the deformed template matches
completely with the target. The registration results given by the fluid model in this
case are similar and we do not provide them here.

Figure 4. Registration results given by the particle model. (Left)
deformed template, (middle) difference image between template
and target, (right) difference image between deformed template and
target.

While both the particle and fluid models are able to deform the template into
the target, the way to deform the image is very different. Fig. 5 compares the
displacement fields given by the particle and fluid transformations. The particle
transformation mainly takes place at the corner and mid-side regions. These are
also the locations where the template and target differ. Naturally, one would de-
form such regions to match the template and target while leaving the other regions
unchanged. The particle transformation does exactly this. Moreover, there is essen-
tially no displacement in the background where no motion occurs. In contrast, the
displacements given by the fluid transformation are nonzero everywhere. Since the
background has constant intensity 0, the nonzero displacements would not affect
the final outcome of the deformed template. Nevertheless, it is counterintuitive that
the background shows nonzero movements.

In the inviscid particle model, the pixels or particles are driven by the force
vector b as defined in (17). The magnitude of this driving force is proportional to
the difference of the transformed image and the target image. For most pixels in the
background, they are the same (black) on both template and target images. Thus,
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the driving force is zero and hence the particles do not move. For the other pixels of
the template, they are moved towards the pixels of the target. The kinetic energy
regularization term then stops the moving particles when they approach the target
image. In the fluid model, the driving force is defined similarly. The template is
also driven towards the target. The registration process is similar to fluid flow and
the motion will eventually be slowed down by the “internal friction” modeled by
the viscosity term in the fluid registration equation. However, due to the viscosity
term, there is a diffusion effect on the displacements. More precisely, if there is
nonzero displacement at one pixel, the neighboring pixels will also have nonzero
displacements. It explains the phantom motion in the background.
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Figure 5. Displacement fields produced by (left) the particle
model, and (right) fluid model.

4.3. Example 3. In this example, we apply the particle and fluid models to register
images with topological changes. Fig. 6 shows a template of a white connected
region with two squares connected by a line. (One could also view it as a black
region with one hole.) The target has two disconnected white squares. (The black
region now has two holes.) The registration results are shown in Fig. 7. The
particle model is able to register the images by allowing topological changes. By
examining the displacement field, it “removes” the white line by covering it with
the black background. The fluid model, on the other hand, leaves a thin white line
connecting the two squares.

Figure 6. (Left) template, (right) target showing a splitting white region.

4.4. Example 4. This experiment is to demonstrate that the inviscid model will
lead to fewer blurring artifacts compared with the fluid model. The template (left)
and the target (right), as shown in Fig. 8, are 256 × 256, 8-bit, grey-level images
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Figure 7. Results of registering images with topological changes
by (left) particle registration and (right) fluid registration: (top)
deformed templates, (bottom) displacement fields.

of segmented brains1. The skull part has been stripped and the image pair shows
the brain region only. Since these images are slices through different subjects, they
exhibit obvious variation from each other in limbic system and internal structures.
Hence nonrigid deformation is required to register the image pair.

Figure 8. (Left) template, (right) target images of segmented brains.

Fig. 9 compares the results given by the particle registration (top) and the fluid
registration (bottom). Three sets of images are presented for each registration: the
deformed templates (left), the difference images between deformed templates and
target (middle), and the displacement fields (right). By inspecting the deformed

1These images were provided by the courtesy of H. Farid, Computer Science Department, the
Dartmouth College.
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templates of the two registrations, we find that the fluid approach leads to a de-
formed template with blurring in grey cerebral cortex and smearing on the white
corpus callosum, while the particle approach allows different structures to move
separately and hence avoids such problems. Moreover, the difference image given
by the particle model shows less structures of the brain, indicating more accurate
overall registration. Also, notice the large displacement field of the background
produced by the fluid model due to registering the lower left portion of the brain
image.
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Figure 9. Registration results of segmented brains given by (top)
the particle model, and (bottom) the fluid model. (Left) deformed
templates, (middle) difference images between deformed templates
and target, (right) displacement fields.

To better demonstrate that the particle approach yields a deformed template with
sharper edges and clearer texture than the fluid approach, we apply a Sobel edge
detector [14] on the target and the two deformed templates. As shown in Fig. 10,
the edge maps contain intensity values within the interval [0, 1] with sharper edges
indicated by higher brightness. The edge map of the particle deformed template is
generally brighter than that of the fluid deformed template. Moreover, the small
circle features inside the cortical region are preserved by the particle registration,
whereas the fluid registration smears the texture and blurs the edges.

4.5. Example 5. We show that the proposed model can be extended to accom-
modate 3D deformations. The MR volumes used here are stacks of segmented
coronals through different subjects which are randomly chosen from IBSR2. The
skull parts have been stripped and the volumes show the brain region only. The
template and target are 8-bit, grey-level volumes with a dimension of 256×256×63

2Internet Brain Segmentation Repository. http://www.cma.mgh.harvard.edu/ibsr/
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Figure 10. Edge maps of (left) target, (middle) particle deformed
template, and (right) fluid deformed template.

at 1mm × 1mm × 3mm. They are symmetrically padded by zeros to produce
256 × 256 × 80 full resolution so that Dirichlet boundary conditions can be used.
Since the borders of the x− y planes are mostly black, registration is performed in
the central square region only, and the final grid size is chosen to be 160×160×80.

A coarse-to-fine multiresolution scheme is used to speed up computation. We
first focus on the global motion pattern at a coarse level of the image. The fine
target and template images are downsampled to coarse images. Thus, each pixel
of the coarse image is formed by agglomerating 2× 2 pixels of the fine image. The
coarse intensity is given by the average of the corresponding fine intensities. The
particle registration is then performed on the downsampled images. Afterwards,
the coarse deformed template and the coarse displacement field are upsampled to
the fine level by linear interpolation. They are used as an initial guess for the fine
level registration. Then we refine the results with the details obtained from the
finer image. The entire procedure can be repeated for multiple levels. However, in
this experiment, a two-level multiresolution is found to be sufficient. Thus the two
3D volumes are downsampled to the coarse level of 80× 80× 40.

Fig. 11 shows the 3D registration results. Each row corresponds to a specific
coronal slice in the volume (from top to bottom slices 22, 36, 39, 54, and 60,
respectively). The columns from left to right correspond to the template, the coarse
deformed template, the fine deformed template, and the target, respectively.

4.6. Example 6. This example shows a multi-modality image registration using
the particle model combined with the mutual information measure. As shown in
Fig. 12, the template and target (top) are 200× 200, 8-bit, grey-level brain images
from MR-TIP3. The template (left) is T1-weighted, while the target (right) is T2-
weighted. Since they are imaged using different parameters, the intensities are
different for corresponding brain structures. The registration results are shown in
Fig. 12 (bottom). We can see that particle model successfully deforms the template
to the target. For instance, the ventricle has a similar shape as the target. We
also show the deformation grid generated by the displacement field. Very minimal
deformation is required for aligning the brain structures using the particle model,
and there is no deformation in the background.

4.7. Example 7. Here, we demonstrate the results of the particle registration and
the method based on mass transport, which also does not impose explicitly any

3MR Technology Information Portal. http://www.mr-tip.com/
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Figure 11. 3D registration results given by particle registration.
(Left) template, (middle-left) coarse deformed template, (middle-
right) fine deformed template, (right) target.

smoothness constraint in the model. We register a pair of 2D Brain MRI images
before and during surgery which are used in an example in [30, Fig 6 & 7]. We
note that the target and template images used here are not the original images
used in [30]; they are frames extracted from an avi file obtained from the authors’
website4. Thus degradation in image quality may have occurred. The registration
results are shown in Fig. 13 (bottom). As in the other examples, the background
has very minimal displacement. Compared to the image results in [30], the particle
registration result shows slightly more deformation inside the brain, but much less
deformation near the top boundary of the brain. Moreover, the the particle model

4http://www.bme.gatech.edu/groups/minerva/publications/papers/zhu-extra-index.html
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Figure 12. Multi-modality image registration results. (Top-
left) template, (top-right) target, (bottom-left) deformed template,
(bottom-right) deformation grid.

also shows better contrast in the deformed template, especially at the regions of the
ventricles and the top left part of the brain.

4.8. Quantitative Measures. We show the mean of squared differences (MSD)
for the mono-modalilty registration experiments and list them in Table 1. We
have also calculated the mean of absolute differences (MAD) and the correlation
coefficients (CC). Since the results are qualitatively the same, we do not report
them here. For the multi-modality registration experiment (last row), we show the
mutual information (MI) values instead. Note that the fluid registration results for
the 3D experiment are not provided because the iteration takes too long to converge.

Example No Particle Fast Fluid
Registration Registration Registration

1: Patch to “C” 0.103760 0.000045 0.000083
2: Square to Circle 0.010309 0.000002 0.000015
4: Segmented Brain 0.054380 0.001784 0.002936
5: 3D 0.015820 0.000417 —
6: Multi-model 0.786763 1.218577 1.178070

Table 1. Mean of squared differences for examples 1, 2, 4, 5 and
mutual information values for example 6.
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Figure 13. Image registration results of a 2D Brain MRI. (Top-
left) template, (top-right) target, (bottom-left) deformed template,
(bottom-right) deformation grid.

We can see that the MSD after the particle registration are close to zero. We
observe the same results for the MAD. (The CC are almost one for all the exam-
ples.) It shows that the particle deformed template is quite similar to the target.
Comparing with the fluid registration, the particle registration has smaller MSD,
(also smaller MAD and bigger CC) which indicates a better registration quality.
For the multi-modalilty example 6, the particle registration has larger final mutual
information value than the fluid registration does, again showing better registration
quality. We do not have a formal proof of why the particle registration performs
better in these examples. However, an explanation is that due to the inviscid na-
ture of the particle registration, the smearing artifact is minimal. Thus it is able to
produce a transformed template closer to the target, leading to smaller registration
errors.

Example Size Particle Fast Fluid
Registration Registration

1: Patch to “C” 64× 64 211 0.6s 192 1.2s
2: Square to Circle 128× 128 119 1.2s 41 0.84s
4: Segmented Brain 256× 256 98 5.3s 159 21.4s
5: 3D 160× 160× 80 121 16.6m — —
6: Multi-modal 200× 200 179 1.1m 217 3.0m

Table 2. Number of iterations and execution times for each experiment

The number of iterations and the execution times for each experiment are sum-
marized in Table 2. We note that each fluid iteration involves much more work
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than the particle iteration since the Navier-Lame equations requires solving a linear
system in each time step but the Euler’s equations do not. Other than example 2,
the particle registration generally needs a smaller number of operations and takes
less execution times.

5. Conclusion. In this paper we present a novel registration technique expressed
in a particle framework. This model is an inviscid model designed for nonrigid
registration problems. The key features of the proposed model include (1) both
small and large deformations can be accommodated, (2) the blurring effect of fluid
models is eliminated and deformed images are obtained with sharper edges and
clearer texture at less computational cost, and (3) implementation is simple and
fast to execute. We have demonstrated the performance of the proposed model on
a variety of images including 2D and 3D, mono-modal and multi-modal images.
Future effort will be directed towards extension of the model for localized and
specialized registration.
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