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ABSTRACT

Segmentation of cells in time-lapse bright-field microscopic images is crucial in understanding cell behaviours
for oncological research. However, the complex nature of the cells makes it difficult to segment cells accurately.
Furthermore, poor contrast, broken cell boundaries and the halo artifact pose additional challenges to this
problem. Standard segmentation techniques such as edged-based methods, watershed, or active contours result
in poor segmentation. Other existing methods for bright-field images cannot provide good results without
localized segmentation steps. In this paper, we present two robust mathematical models to segment bright-field
cells automatically for the entire image. These models treat cell image segmentation as a background subtraction
problem, which can be formulated as a Principal Component Pursuit (PCP) problem. Our first segmentation
model is formulated as a PCP with nonnegative constraints. We exploit the sparse component of the PCP
solution for identifying the cell pixels. However, there is no control on the quality of the sparse component and
the nonzero entries can scatter all over the image, resulting in a noisy segmentation. The second model is an
improvement of the first model by combining PCP with spectral clustering. Seemingly unrelated approaches,
we combine the two techniques by incorporating normalized-cut in the PCP as a measure for the quality of the
segmentation. These two models have been applied to a set of C2C12 cells obtained from bright-field microscopy.
Experimental results demonstrate that the proposed models are effective in segmenting cells from bright-field
images.
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1. INTRODUCTION

Monitoring cell activities is a crucial step in oncological study. Biologists use the time-lapse microscopies taken
in a restricted time interval to observe the different cell behaviors under different drug treatments. An accurate
segmentation is, therefore, needed for the analysis of cell numbers, cell shapes, and cell movements. This task
can be performed easily in human vision system. However, the massive amount of images from laboratories
necessitates the use of computer to facilitate the segmentation.

In order to capture the cell cycle progress, biologists have adopted different types of microscopy. Fluores-
cent and bright-field microscopy are two most common techniques. Fluorescent images typically show distinct
appearance of the cells, but they often only capture the nuclei.! Moreover the gene introduced in the cells may
have undesirable effects on the cell behaviors. Bright-field microscopy, on the other hand, is much less invasive
and can show both the nucleus and cytoplasm.? However, the low cell-to-background contrast, and the broken
cell boundaries resulted from the artifacts (halo) of the light microscopy make the segmentation of bright-field
images much harder than that of fluorescent images. Classical image segmentation methods such as edge-based
methods, watershed methods, and active contour methods usually can only capture the halo around the cells.?
Spectral clustering based methods have been applied to the bright-field cell segmentation but mostly for images
with a single cell.* Some local-global methods, which segment single cells individually and then combine every
piece of segmented cells together, were proposed to address the issue.> However, these methods can be hard to
implement, and create overheads in application. In this paper, we develop two robust mathematical models to
segment bright-field cell images without localized segmentation steps.

For further information, please contact Yuehuan Chen: y225chen@uwaterloo.ca, or Justin W.L. Wan:
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2. METHODOLOGY

Bright-field segmentation can be considered as a problem of identifying the moving cells over time. We will
propose two cell segmentation approaches based on this idea. In the first approach, segmentation is formulated
as a PCP problem, where the sparse component from the PCP is considered as indicator vector to classify cell
pixels and background pixels. In the second approach, we improve the first model by combining the PCP with
spectral clustering.

2.1 Cell segmentation as a PCP problem

PCP was introduced by Candes et al. (2009)° as a method for background subtraction in video analysis. Frames
in a video surveillance system form the columns of a data matrix M. PCP seeks a decomposition of M such
that M = L + S, where columns of L correspond to the static background, and the columns of S correspond to
the moving objects. In our case, each microscopic image taken at consecutive time is stored as a column of an
m x n data matrix M, where m is the product of the image dimensions and n is the number of cell images. The
PCP problem is formulated as a convex optimization problem which minimizes the sum of the nuclear norm of
the low-rank component L and the /1 norm of the sparse component S subject to linear constraints:

min L]« + AllSh

(1)
subject to L+S5=M.

Here, L recovers the static background, and S recovers the cells. However, due to noise, the pixel intensities
of the dark background fluctuate. As a result, the recovered sparse component S is noisy with some of the entries
being negative and small magnitude in order to force L to be low-rank in the decomposition. As S is supposed
to represent the cell objects in an image, it is not desirable to have negative entries. Thus, we propose modifying
the problem with extra non-negative constraints:

. LIl
min L]l + AllS T
subject to L+S=M, (2)

L=1L+, S= 5+,
L+>0, S+ >0.

Two auxiliary variables, S+ and L+, are introduced so that we can solve (2) by the alternating direction
method of multipliers (ADMM) similar to Candes et al. (2009). The augmented Lagrangian of (2) is

L(L,S,L+,5+,Y,Z,Q) =
Il + AlIS I + (Y, M = L= 8) + £11M = L = S|+ 3)

(Z, L= L+) +(Q.S = S+) + S IL = L+ 5+ 2115 = S + I3

The strategy is to minimize (3) one variable at a time. Since the non-negative constraints are applied to L+
and S+ only, the updates of L and S are similar to those of the regular PCP in Candes et al. (2009). The
dual variable Y, Z, and @ are updated using gradient descent. For the updates of L+ and S+, we consider the
following problems:

. B 2 B 2
min (Z, L L+>+2||L L+ %

subject to L+ >0,
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and

. g
min Q.5 =S+)+ 515 =S +1IF

subject to S+ > 0.

The above problems are non-negative quadratic programmings. We follow similar approaches as Sun (2014)7
to update L+ and S+:

L+ =max(L +~712,0),
S+ = max(S+~712,0).

The columns of the sparse component S will be used as indicator vectors for the n images such that the
zero entries indicate the background and the nonzero entries indicate the cells. However, while S is a sparse
matrix with non-negative entries, it may have nonzero entries distributed everywhere. In fact we have observed
that there are some zero entries inside the cell bodies, and some nonzero entries in the background. These are
the misclassified points in our case. Some post processing is needed to clean up the results, and to remove
the scattered noise in the background. In the second model, we propose a more robust variation such that the
post processing is not required. The principal steps involved in solving a PCP with non-negative constraints is
outlined in Table 1.

Table 1: Non-negative Robust Principal Component Analysis for image segmentation.

Algorithm 1

1. Initialize S=L=S+=L+=Y=Z=Q =0and pu, A,y >0

2. while not converge do

) L=D 1l +7) "M = p(p+7) 'L+ (p+y) 7Y +y(p+ 7)) = (p+ 7)1 2)
i) S =8Ny (W +7) M = p(p )T L+ ()Y A (e ) THSH) = () T'Q)
iii) L+ =max(L+~y71Z,0)

iv) S+ =max(S+~717,0)

v) Y=Y+uM-L-2S5)

vi) Z=Z+~(L-L+)

Vi) Q=Q+7(Q—Q+)

end while

4. output S

©w

2.2 Cell segmentation as a PCP problem with normalized-cut penalization

The idea is to incorporate spectral clustering in the PCP model. Notice that both spectral clustering and PCP
can be formulated as minimization problems. Spectral clustering minimizes the graph-cut which imposes penalty
on the “goodness” of an image segmentation. Let L(%) be the graph Laplacian matrix corresponding the jth
cell image, and X; be the indicator vector whose zero-crossing indicates the segmentation. The normalized-cut,
XJ-TL(SJ’)X j, is proportional to the edge weights between different segments, so the correct segmentation can be
founded by the minimizer of the normalized-cut. Since the jth column of the sparse component from the PCP
also determines the segmentation of the jth cell image, we propose solving the following problem:

n m

. 2 Tr(S;
i (1L +>\1\S||1+ ZX L X+;;A

*The symbol Dy denotes the singular value thresholding operator Dx(X) = US\(X)V™, where X = UXV™.
"The symbol Sy denotes the shrinkage operator Sx(z) = sign(z) max(|z| — X, 0).
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subject to L+S=M,
A=1- Xsign(|S| —e),
4
17X, =0,j=1,...,n, )
X/X;=1j=1,..n,

where AT is the positive part of A and ¢ is a small parameter. The jth column of A is an auxiliary variable
to measure the discrepancy between the segmentation defined by X; and the segmentation defined by S;. The
constraint on A links the sparse component S from the PCP with the indicator matrix X from the normalized-cut.
The last two constraints are similar to those in spectral clustering.

As in above, we solve this optimization problem by ADMM. Four dual variables (Y, Z, o, ) and a parameter
w are introduced in the augmented Lagrangian L(L, S, X, A,Y, Z, «, 8). The dual variables are updated using a
gradient descent method. The updates of L and S are similar to (2) except that we need to solve a nonlinear
equation (due to the constraints given by A) instead of a linear equation to update S. While keeping the other
unknowns in L fixed, the solution of
A;j = argmin L,
A

is given by S 1 (1 — X;sign(|S;| —€) + %), where Sy () for some parameters A and ~ as defined in Proposition

mp

1 of Ye, Chen, Xie (2011).8
Let b; =1 — Aj, and D; = Diag(sign(|S;j| —€)). We can write the unconstrained problem

X, = argmin L (5)
X
as a constrained problem?

A
min %XjTL(SﬂXj - ngTDjTDij — (2] Dj +b;D;)X;

Xj,j=1...n

subject to 1TXj =0,7=1,...,n,

: (6)
XjTXj =1,5=1,...,n.

We can reformulate (6) by introducing an auxiliary variable Q; = —(Z]T D; + b;‘-FDj)Xj and a sufficiently
large constant v so that (vI — 22 L(%9) — £ DT D;) is positive definite:

A

T 27(8) _ P pr

X2t XJ (vl = LS — SDD))X;

subject to 17X, =0,j=1,..,n, .

X/X;=1j=1,..n,
—(Z]Dj +bI Dj)X; = Q;.

The solution of (7) is approximated by the solution of an Affinely Constrained Rayleigh Quotients (ACRQ)
problem which can be solved efficiently by the algorithm proposed in Cour, Srinivasan, Shi (2007).° After the
optimization problem is solved, we can use X; as an indicator vector to obtain the segmentation of the jth image.
We summarize this method in Table 2.

*Problem (5) and (6) are not equivalent, but the constrained problem (6) gives a better approximation to (4).
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Table 2: Robust Principal Component Analysis with normalized-cut penalization for image seg-
mentation.

Algorithm 2

1. Initialize L=S=X=Y=A=Z=G=0and pu,A1,\2 >0
2. while not converge do

i) L=D,(M—-S+uY)

ii) Solve L' (S) = 0, where L is the augmented Lagrangian
i) Y=Y+uM-L-25)

iV) bj§ =1- Aj,Dj = DZCLg(H’](Sj))

v) Solve (7) as described in Cour, Srinivasan, Shi (2007)
vi) Q=3 —S = (2D, +b,"D))X,

vil) G =G +u(Q; — (Z;"D; +b,"D;)X;)

vill) A =S (14 2 - X;H(S)))

ix)  Zj=Zj+p(l - X;H(S;) — Aj)

end while

4. output X

e

3. NUMERICAL RESULTS

We present the segmentation results on a set of C2C12 cell images from the Genomic Laboratory at McGill
University. The algorithms were implemented using MATLAB. Due to computational time limitation, the original
input images were down-sampled to 300 x 300 for the experiments. We apply the two models on a 90000 x 120
data matrix M using A = ﬁ, p = 0.25mean(M;;) for Model 1, and A\; = Xy = \/—%, p = 0.25mean(M;;) for
Model 2.

Figure 1 shows the segmentation results obtained from Model 1 and Model 2. The columns are four frames
of a cell image sequence corresponding to the beginning, middle stage, and after of a cell division. The images
in the first row are the input images. The second row shows the indicator matrices obtained from Model 1.
Morphological operations are performed to obtain the compact segmentation results shown in the third row.
The fourth row shows the indicator matrices obtained from Model 2. No post-processing is required in this
model. The fifth row shows the segmentation results by Model 2. These two models both can capture most of
the cells in the images, but Model 2 gives more precise segmentation results. For instance, consider the group of
cells near the center of the image. Model 1 can locate most parts of the cells, but the resulting cell boundaries
tend to over segment. Model 2, on the other hand, gives a smoother boundary that fits better with the cells.

We also present some validation results of the proposed models. The ground truth of ten image frames
are obtained by manual segmentation. Figure 2 shows the true positive, true negative, false positive, and false
negative rates given by the two models. On the average, the corresponding rates are 0.84, 0.94, 0.055, and 0.16
respectively for Model 1, and 0.87, 0.95, 0.047, 0.13 for Model 2. They both show good accuracy with Model 2
slightly better than Model 1.

4. CONCLUSION

In this work, we proposed two image segmentation models based on PCP. The first model treats the segmentation
problem as a PCP with non-negative constraints, where the sparse component is used for the segmentation. The
second model combines the PCP with spectral clustering in a minimization framework. The output vectors from
the corresponding ACRQ problems are used for the segmentation. These two models can capture the boundaries
of all cells in a microscopic image, but the second model is more robust and no post processing is required to
obtain good segmentation results.

$The number j denotes the column index.
TThe function H is a smooth approximation of sign(|S;| — ), e.g., tanh(|S;| — €).
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Figure 1: Segmentation results of the cell image frame (first row) given by Model 1 (third row) and
Model 2 (fifth row).
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Figure 2: (Left) True positive rates (Model 1: dashed red, Model 2: dotted blue) and true negative
rates (Model 1: dashdot magenta, Model 2: solid green), (right) false positive rates (Model 1:
dashed red, Model 2: dotted blue) and false negative rates (Model 1: dashdot magenta, Model 2:
solid green).
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