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A Continuous Method for Reducing Interpolation
Artifacts in Mutual Information-Based Rigid

Image Registration
Lin Xu, Justin W. L. Wan, and Tiantian Bian

Abstract— We propose an approach for computing mutual
information in rigid multimodality image registration. Images to
be registered are modeled as functions defined on a continuous
image domain. Analytic forms of the probability density functions
for the images and the joint probability density function are first
defined in 1D. We describe how the entropies of the images,
the joint entropy, and mutual information can be computed
accurately by a numerical method. We then extend the method
to 2D and 3D. The mutual information function generated is
smooth and does not seem to have the typical interpolation
artifacts that are commonly observed in other standard models.
The relationship between the proposed method and the partial
volume (PV) model is described. In addition, we give a theoretical
analysis to explain the nonsmoothness of the mutual information
function computed by the PV model. Numerical experiments in
2D and 3D are presented to illustrate the smoothness of the
mutual information function, which leads to robust and accurate
numerical convergence results for solving the image registration
problem.

Index Terms— Continuous model, image registration, interpo-
lation artifacts, multimodality, mutual information, rigid.

I. INTRODUCTION

MUTUAL information [1] was introduced by Viola and
Wells [2] and Collignon et al. [3] as a similarity

measure for rigid multimodality image registration, which
aligns images generated from different sensor devices; see
Fig. 1. The evaluation of mutual information requires the
computation of the probability distribution functions (PDFs)
of the image intensity values. However, since only discrete
intensity values can be acquired from raw images, PDFs
are usually estimated using discrete probability distributions.
Collignon et al. estimate the probability distributions based
on histogramming, as one of the interpolation-based models
(IM). Viola and Wells [4] apply the Parzen window method
for density estimation. Maes et al. [5] introduce the partial
volume model (PV).

However, it has been observed that the mutual infor-
mation function computed by standard methods is not
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(a) (b) (c) (d)

Fig. 1. Brain images from the retrospective image registration evaluation
(R.I.R.E.) project. (a) T1 weighted MRI. (b) T2 weighted MRI. (c) PD
weighed MRI. (d) CT.

smooth, which is generally known as interpolation arti-
facts usually in the form of local minima, local max-
ima, or “elbows” typically present in perfect (or close to)
grid alignment (see Fig. 2). These artifacts pose difficulties
to robust and accurate image registration using optimiza-
tion schemes. There have been a number of recent stud-
ies of the interpolation artifacts in the literature [6]–[17].
Chen and Varshney [7] propose a generalized partial volume
model based on higher order B-spline interpolation. Other
approaches include resizing the pixels [16], jittering or blurring
images [16], using non-uniform interpolation function as the
interpolation kernels [18], balancing the size of bins for com-
puting probability distributions [9], [19], and quasi-random
image sampling based on Halton sequences [20]. Some recent
studies [14], [21], [22] attribute the interpolation artifacts with
the non-constant variance of the interpolated image when the
image is shifted between pixels. In [14], different solutions
based on high degree B-spline interpolation, low pass filter,
and stochastic integration are discussed. Salvado et al. [21]
propose a constant variance filter for linear interpolation.
Thévenaz et al. [22] develop a family of interpolation bases
which can maintain the constant-variance property.

Dowson et al. [23] apply the nonparametric windows in
order to obtain the PDF histograms more accurately than
Parzen window. Bilinear interpolation is used to compute the
2D joint PDF, which leads to complex equations with more
than 100 terms. Half-bilinear interpolation is then introduced
to obtain a simpler implementation. Extension to 3D is not
given. Joshi et al. [24] propose a simplified computation for
probability density functions using planar interpolation for the
nonparametric windows methods in 2D and 3D. However,
there is no report on the smoothness of the resulting mutual
information function and how it performs in rigid image
registration. Rajwade et al. [25] derive analytic formulas for
continuous marginal and joint densities in 2D and 3D based
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(a) (b)

Fig. 2. (a) Mutual information computed using IM model. (b) Mutual
information computed using PV model. The target and the template are
T1-weighted MRI and CT from Fig. 1, respectively.

on geometric arguments. Regions of constant intensities are
treated by slight blurring of the image.

In this paper, we propose a new method to avoid interpo-
lation artifacts. In this approach, we will consider images as
functions defined on a continuous image domain rather than on
discrete pixels. Accordingly, we derive an analytic method for
constructing PDFs in 1D for piecewise linear image functions,
and then compute the mutual information based on continuous
random variables. We note that the use of a continuous method
has also been discussed in [10], [15], [23], [25]. We extend the
idea of 1D to higher dimensions by applying the 1D technique
to each dimension separately. We show in Section VI that our
method is more robust in terms of success rate compared to the
interpolation-based and partial volume methods when different
initial guesses are used. We compare our model with the
artifact-reducing methods nonparametric windows (NP) [23],
third order generalized partial volume (GPVE) [7], and Parzen
window (PZW) [19] on the accuracy of registering 2D images
with different initial guesses. We also compare our method
with the GPVE method [7] on 15 3D image datasets and our
method shows better accuracy in 10 of the cases.

Interpolation artifacts have also been observed in non-
rigid registration [14], [26]. A “local” mutual information
model based on image gradients is developed for deformable
registration, but the resulting similarity measure shows arti-
facts in translational misalignment [27]. In this paper, we will
primarily focus on rigid multimodality registration. Also, the
proposed method assumes that the images to be registered are
of the same size and the same resolution.

The paper is organized as follows. Section II defines the
mutual information formula and briefly describes various pop-
ular models. In Sections III and IV, we discuss the continuous
model in one, two, and three dimensions. In particular, we
explain how the PDF and joint PDF, entropies, and mutual
information are computed. The complexity of our model is also
analyzed. Section V discusses the relationship between our
method and the standard partial volume model, and an analysis
is given to explain the typical piecewise convex shape of the
mutual information function generated by the partial volume
model. In Section VI, numerical experiments are presented
to illustrate the smoothness property of our model, as well as
the robust and accurate convergence of numerical optimization
methods. Finally, concluding remarks are made in Section VII.

II. INTERPOLATION AND PARTIAL VOLUME MODELS

Given the target image G and the template image F , image
registration can be formulated as a maximization problem:

s = arg max
τ

�(G, φ(F, τ )) (1)

where φ is a transformation with parameter set τ , and � is cho-
sen to be mutual information which is one of the most widely
used measures for multimodality image registration [28].

The mutual information, M(X, Y ), of two images X and Y
is defined by

M(X, Y ) = H (X) + H (Y ) − H (X, Y )

where H (X) and H (Y ) are the entropies of X and Y , H (X, Y )
is their joint entropy, and they are defined as

H (X) = −
N X∑

i=1

pX
i log pX

i , H (Y ) = −
NY∑

i=1

pY
i log pY

i ,

H (X, Y ) = −
N X∑

i=1

NY∑

j=1

pXY
i, j log pXY

i, j . (2)

Here, {pX
i }N X

i=1 ({pY
i }NY

i=1) is the probability distribution of
the discrete random variable associated with image X (Y ),
assuming there are N X (NY ) possible observations. {pXY

i, j } is
the joint probability distribution of X and Y .

The probability distributions are typically estimated by a
histogram process which keeps a frequency count of the image
intensity values defined at the pixel locations. One standard
approach is to resample the intensity values of the transformed
template at the pixel locations of the target by interpolation
such as nearest neighbor, linear, and cubic splines [16].
However, interpolation artifacts arise in the case of perfect
(or close to) grid alignment and have many local maxima and
minima; see Fig. 2 (left).

The partial volume model [3], [5] addresses this issue by
updating the frequency counts of several histogram bins by
adding the corresponding interpolation weights. This approach
improves the smoothness but still has artifacts or kinks at
integer translation positions [13]; see Fig. 2 (right), which we
will explain in Section V.

III. CONTINUOUS METHOD: 1D

To address the interpolation artifact issue, our approach is
to consider intensity values defined not just at pixel locations
but also between pixels. We will consider image intensities
as continuous random variables and derive the corresponding
formulas for computing the PDFs, entropies, and mutual
information. We will describe the model in one dimension here
and extend the model to higher dimensions in Sections IV-B
and IV-C.

A. Probability Density Functions

Let the resolution of both the target and the template
images be N , and the 1D arrays {Gi }N−1

i=0 and {Fi }N−1
i=0 be the

intensity values of the target and template images, respectively.
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We consider the intensity values as the sample values of some
continuous image functions denoted by

F : � → R, G : � → R

where � is a continuous domain of image pixels, F(x) is
the intensity of the template image at x ∈ �, and G(x) is
the intensity of the target image. If we let {xi }N

i=0 be the
pixel locations for the discrete images, then F(xi ) = Fi and
G(xi ) = Gi . For simplicity, we assume � = [0, 1], so the
pixel size h = 1/N , and that F and G are periodic; i.e.,
F0 = FN and G0 = GN .

Given {Fi }N
i=0 and {Gi }N

i=0, we define F(x) and G(x)

to be the linear interpolants for {xi , Fi }N
i=0 and {xi , Gi }N

i=0,
respectively. Higher order interpolants can also be considered,
but we find that linear interpolation is sufficient to obtain a
smooth mutual information function. We note that images are
also treated as piecewise linear functions in [23]. However, the
construction of the probability density functions are different
as explained below.

1) Probability Density Functions of Images: We describe
how the PDF for the piecewise linear target image G(x) is
defined. Consider the subinterval [xi−1, xi ), i = 1, . . . , N . We
first assume that Gi−1 < Gi .

In standard discrete models, the PDF is defined as the
histogram of the intensity distribution; i.e., each bin contains
the normalized frequency of the pixels whose intensity values
are in the range of the bin. In our model, we define the
appropriate cumulative distribution and probability density
function in the continuous case. For any α ∈ R, the cumulative
distribution function, Ci (α), which is formally defined as the
probability of intensity value being in the interval (−∞, α],
should be equal to the proportion of the measure of the image
domain whose intensity value is in that subinterval over the
length of the subinterval [xi−1, xi ). Since the image function
G(x) is linear on the subinterval [xi−1, xi ), Ci (α) should also
be a linear function on the interval [Gi−1, Gi ). More precisely,

Ci (α) =

⎧
⎪⎨

⎪⎩

0, if α ∈ (−∞, Gi−1)
α−Gi−1

Gi −Gi−1
, if α ∈ [Gi−1, Gi )

1, if α ∈ [Gi ,+∞).

Let pG
i be the PDF corresponding to the subinterval [xi−1, xi ).

Then it is defined as the derivative of the cumulative distrib-
ution function:

pG
i (α) =

⎧
⎪⎨

⎪⎩

0, if α ∈ (−∞, Gi−1)
1

Gi−Gi−1
, if α ∈ [Gi−1, Gi )

0, if α ∈ [Gi ,+∞).

(3)

In the case where Gi−1 > Gi , pG
i is defined similarly as

pG
i (α) =

⎧
⎪⎨

⎪⎩

0, if α ∈ (−∞, Gi ]
1

Gi−1−Gi
, if α ∈ (Gi , Gi−1]

0, if α ∈ (Gi−1,+∞).

(4)

A special case needed to be considered is when Gi−1 = Gi .
By the analysis above, it is clear that pG

i (α) = 0 for any α �=

Gi . On the other hand, since pG
i is a PDF,

∫ +∞
−∞ pG

i (α)dα = 1.
Consequently, pG

i should be a Dirac delta function in this case:

pG
i (α) = δ(α − Gi ). (5)

Now, define the index sets J G = { j | G j−1 < G j }, KG =
{k | Gk−1 > Gk}, and LG = {l | Gl−1 = Gl}. Then the PDF
for the target image, pG , is defined by combining the three
cases (3)–(5):

pG(α) = 1

N

N∑

i=1

pG
i (α)

= 1

N

⎛

⎝
∑

j∈J G

1[G j−1,G j)(α)

G j − G j−1
+

∑

k∈KG

1(Gk ,Gk−1](α)

Gk−1 − Gk

+
∑

l∈LG

δ(α − Gl)

⎞

⎠ (6)

where 1[G j−1,G j) denotes the characteristic function on the
interval [G j−1, G j ). We note that the first two terms resemble
the PDF defined in [23], but the last term is new here which
takes into account the contribution of constant intensities by
the use of Dirac delta functions.

Since the PDF construction above does not depend on the
pixel locations, it is independent of any translation. Thus, the
PDF for the transformed template image can be written exactly
the same way as the target image:

pF (α) = 1

N

N∑

i=1

pF
i (α)

= 1

N

⎛

⎝
∑

j∈J F

1[Fj−1,Fj)(α)

Fj − Fj−1
+

∑

k∈KF

1(Fk ,Fk−1](α)

Fk−1 − Fk

+
∑

l∈LF

δ(α − Fl )

⎞

⎠

where the index sets J F , KF and LF are defined as those
for the target image. We note that not just the intensity values
Gi−1, Gi , Fi−1, and Fi are used in the construction of the
PDF as in the discrete case, but in fact the entire intervals
between adjacent pixel nodes contribute to the probability
density function. This is a distinguishing feature between the
standard discrete model and our model.

2) Joint Probability Density Function: By construction,
the target image function G(x) is linear on the pixel inter-
val [x j−1, x j ). Suppose the template image function F(x) is
translated by τ (0 ≤ τ < h), as shown in Fig. 3(a). The
intensity values between pixels are no longer a linear function.
One approach [23] is to resample the template image at the grid
locations. The new piecewise linear function (solid line) and the
true transformed template (dashed line) are shown in Fig. 3(b).

Resampling has an advantage that the interpolated trans-
formed template and target images are both linear on the
pixel interval [x j , x j+1) which makes the computation of
the analytic PDF easier. However, the image is then altered
between pixels (Fig. 3(b)), which raises the issue of computing
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(a) (b) (c)

(d) (e) (f)
Fig. 3. (a) Transformed template images before resampling. (b) Transformed
template images after resampling. (c) Transformed template images without
resampling. (d)–(f) Target images. Circles and black dots: subintervals where
the transformed template and target are both linear.

the continuous joint PDF that requires not just the pixel values
but also the intensities between pixels. Here, we use another
approach to achieve the same goal without resampling; i.e.
the transformed template remains unchanged. The key is that
the image function is piecewise linear and hence the intensity
values are all predefined, not only at the pixel locations but
also on all over the continuous image domain. Consequently,
there is no need for interpolation.

More precisely, consider a new set of points {x̄i } such that
x̄2 j = x j and x̄2 j+1 = x j +τ , j = 0, . . . , N −1; see Fig. 3(c).
(Note that even if τ ≥ h or τ < 0, the above definition still
works by a slight modification.) Using this partition, the target
and the transformed template image functions are both linear
on [x̄i−1, x̄i ). Let the values of G(x) at x̄i−1 and x̄i be Ḡi−1
and Ḡi , respectively. Similarly, F̄i−1 and F̄i are the values of
the transformed template at the same end points.

We first consider the case where Ḡi−1 �= Ḡi or F̄i−1 �= F̄i .
Without loss of generality, assume Ḡi−1 ≤ Ḡi and F̄i−1 ≤ F̄i .
In the discrete case, the intensity pairs (Ḡi−1, F̄i−1) and
(Ḡi , F̄i ) generally contribute to the frequency counts of two
(or eight in the case of partial volume) histogram bins. In the
continuous case, the entire line segment, Ci , with end points
at (Ḡi−1, F̄i−1) and (Ḡi , F̄i ), contributes to the joint PDF. Let
pFG

i be the joint PDF associated with the image functions on
the subinterval [x̄i−1, x̄i ). We want pFG

i to be nonzero on the
line segment, it will give the marginal PDFs, which are defined
in (3) or (4), as we integrate along one direction, and its double
integral be 1. Let �Ḡi = Ḡi − Ḡi−1 and �F̄i = F̄i − F̄i−1.
We define pFG

i as

pFG
i (α, β) = δ(�Ḡi (β − F̄i−1) − �F̄i (α − Ḡi−1))

if α ∈ [Ḡi−1, Ḡi ) or β ∈ [F̄i−1, F̄i ), and pFG
i (α, β) = 0

otherwise. Then integrating pFG
i along β gives

∫ +∞

−∞
pFG

i (α, β)dβ =
∫ +∞

−∞
δ(�Ḡi (β − F̄i−1)) dβ

= 1

�Ḡi

∫ +∞

−∞
δ(β − F̄i−1) dβ

= 1

�Ḡi

where α is in the interval [Ḡi−1, Ḡi ). If α is outside of the
interval, pFG

i (α, β) = 0. Thus the integral of pFG
i yields the

marginal PDF pG
i (3) or (4). By a similar calculation, the

integral of pFG
i along α will yield the marginal PDF pF

i .
Consequently, the double integral of pFG is one.

In the case that Ḡi−1 = Ḡi and F̄i−1 = F̄i , the line segment
degenerates to a point. In this case, pFG

i is defined as

pFG
i (α, β) = δ(α − Ḡi , β − F̄i )

which is similar to (5).
Finally, the joint PDF is defined by combining all the pFG

i ’s.
Let the index sets Iline = {i | Ḡi−1 �= Ḡi or F̄i−1 �= F̄i } and
I point = {i | Ḡi−1 = Ḡi and F̄i−1 = F̄i }. The joint PDF is
then given by

pFG(α, β)

=
2N∑

i=1

ωi pFG
i (α, β)

=
∑

i∈Iline

ωiδ(�Ḡi (β − F̄i−1) − �F̄i (α − Ḡi−1))

+
∑

i∈I point

ωiδ(α − Ḡi , β − F̄i ) (7)

where ωi = x̄i − x̄i−1. By properties of pFG
i , it can be shown

that the double integral of pFG is 1, and integrating pFG in
α (β) will produce the marginal PDF for the template (target)
image, which is consistent with the property of a joint PDF.

B. Entropies of the Target and Transformed Template

In our model, the image functions and PDFs are computed
as continuous functions. Thus, the entropy of the target image
function is given by the integral:

H (G) = −
∫ +∞

−∞
pG(α) log pG(α) dα.

While the PDF for the target image, pG , can be written ana-
lytically in (6), it is in general difficult to compute the entropy
exactly. Thus, we approximate the entropy numerically. Note
that standard numerical integration methods would be compu-
tationally expensive to apply here since pG is generally not
continuous at {Gi } and the discontinuities are difficult to be
determined a priori. Other strategies need to be exploited.

Divide the range of the intensity value of the target image
into ND subintervals, or cells, {Di } of size h D . We approx-
imate pG by a constant function on each cell Di where the
constant value is computed as

qi = 1

h D

∫

Di

pG(α) dα.

There are two advantages to approximate the PDF in this
way. First, the approximate pG as well as pG log pG are both
piecewise constant and hence the computation of the entropy
integral is much simpler. Second, it is easy to verify that the
integral of the approximate PDF over the whole domain is 1,
which is consistent with the definition of a PDF.
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By (6), qi can be written as

qi = 1

Nh D

∫

Di

N∑

k=1

pG
k (α) dα = 1

Nh D

N∑

k=1

∫

Di

pG
k (α) dα. (8)

Note that
∫

Di
pG

k (α)dα is easy to compute since pG
k (α) is

either a constant function or a Dirac delta function. Finally,
we approximate the entropy of the target image by

H (G) = −
ND∑

i=1

∫

Di

pG(α) log pG(α) dα

≈ −
ND∑

i=1

∫

Di

qi log qi dα

= −h D

ND∑

i=1

qi log qi . (9)

The entropy of the transformed template image function,
H (F), can be computed similarly.

In practice, a small h D (e.g. h D = 1/16) is sufficient to
yield smooth mutual information; see Section VI. In general,
we do not have a formula for choosing h D . One possibility is
based on the image gradient which will be a topic for future
work. We also remark that the formula (9) resembles the stan-
dard discrete entropy formula (2). However, the computation
of qi is derived from the analytical form of the PDF pG , which
is different from the usual pi derived from histogramming.
Also, the h D factor is there to account for the size of the
interval Di for the continuous entropy.

C. Joint Entropy and Mutual Information

The joint entropy in the continuous model is given by the
double integral:

H (F, G) = −
∫∫

R2
pFG(α, β) log pFG(α, β) dα dβ.

It can be computed using a similar idea as above. Divide the
two-dimensional domain of the joint PDF into cells {Di, j } =
Di × D j (see Section III-B). Similar to the 1D case, on each
cell, we approximate the joint PDF by a constant function
where the constant value is

qi, j = 1

h2
D

∫∫

Di, j

pFG(α, β) dα dβ. (10)

Since the joint PDF is composed of Dirac delta functions, the
double integral is easy to compute. Finally the joint entropy
is approximated as

H (F, G) = −
ND∑

i, j=1

∫∫

Di, j

pFG(α, β) log pFG(α, β) dα dβ

≈ −
ND∑

i, j=1

∫∫

Di, j

qi, j log qi, j dα dβ

= −h2
D

ND∑

i, j=1

qi, j log qi, j . (11)

We note again that although the joint entropy formula (11)
appears similar to the standard discrete joint entropy for-
mula (2), the way to compute qi, j is fundamentally different.
Finally, the mutual information can easily be calculated as

M(F, G) = H (F) + H (G) − H (F, G).

Notice that M(F, G) is a function of the translation parame-
ter τ since the joint PDF pFG and hence the joint entropy
H (F, G) depend on τ . The entropies of the transformed
template image, H (F), and the target image, H (G), are
independent of τ as the images are assumed periodic (thus
F and G completely overlap) and of the same size.

IV. CONTINUOUS METHOD: 2D AND 3D

We first generalize the 1D model to two dimensions. Let
the 2D arrays {Gi, j } and {Fi, j } be the intensity values of the
target and template images, respectively, and the resolution of
the images be Nx × Ny with pixel size h = hx × hy . Denote
the image functions defined on a continuous domain by

F(x, y) : � → R, G(x, y) : � → R

where � is a continuous domain of image pixels, F(x, y) is
the intensity of the template image at (x, y) ∈ �, and G(x, y)
the target image. If {(xi , y j )} are the pixel locations of the
discrete images, then F(xi , y j ) = Fi, j and G(xi , y j ) = Gi, j .
As in 1D, F(x, y) and G(x, y) are the bilinear interpolants
of the transformed template and target images, and they are
assumed to be periodic.

In principle, analytic PDFs for 2D image functions can
be constructed similarly as in 1D. However, the construction
and resulting PDF formulas can be very complex. As shown
in [23], the computation of the 2D marginal PDFs requires
separate implementation for 6 special cases. For joint PDFs,
the numerous geometric configurations lead to a final equation
containing more than 100 terms. The authors simplify the
method by half-bilinear interpolation which involves standard
triangle rendering techniques from computer graphics.

Instead of computing the PDFs analytically, our approach
is to extend the 1D method to higher dimensions by piecewise
continuous approximation, which preserves the advantages of
the continuous construction. Specifically, we solve the image
registration problem (1) in 2D and 3D by searching the optimal
solution in one dimension each time. Thus, we reduce the
registration problem for 2D and 3D images to a problem for
1D images. In this way, we only need to compute mutual
information sufficiently accurately for the corresponding 1D
problem without constructing the full 2D or 3D analytic PDFs.

A. Optimization Scheme

Our approach is to optimize the translation parameters in
the direction parallel to each axis separately. More precisely,
the mutual information function is first maximized in the
x-direction, using a standard optimization scheme such as
Powell’s [3] (i.e. Brent’s method in 1D) or Nelder-Mead [29]
methods. Then, taking the local optimal translation in x , the
transformed template image is resampled on the image grid.
We note that this resampling procedure is not part of the
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Fig. 4. Each subdomain Ei, j is divided into stripes with equal width.

PDF calculation and hence it has no effect on the smoothness
of mutual information. The maximization is then carried out
in the y-direction, followed by a similar procedure in the
z-direction. Afterwards, the 3 rotation angles are optimized
at once. One sweep in each direction and 3 rotations would
not normally have obtained the final result. The procedure
is repeated iteratively until it converges. We note that the
1D optimizations in the x , y, z direction is similar to the
coordinate optimization methods [30]. Instead of using the
search directions picked by a line search method such as
Powell, we fix the search directions to be in the x , y, z
directions. The step of optimizing the 3 rotation angles is not
exactly a line search, but one can view it as a block coordinate.

We observe that the mutual information function has only
one maximum and it appears concave near the maximum
using our method; see Fig. 7–10. The maximization in each
principal direction would only improve the solution. Thus, the
iteration will eventually converge to the exact solution. In our
experience, it typically converges in less than 10 iterations
(each iteration consists of three 1D optimization problems and
one 3D optimization problem).

There are two major advantages of this approach. One is that
only a 1D optimization is solved in each translation direction
(3D optimization for rotations). In our experiments, it usually
converges in a few number of iterations. But more importantly,
the other advantage is that the translation is optimized in one
direction each time. As such, we can relax the accuracy of the
PDF computation in the other directions without compromis-
ing the smoothness of the mutual information function.

B. Piecewise Continuous Approximation of 2D Images

Without loss of generality, we only discuss the case of
spatial translation in horizontal direction. Suppose the template
image has been translated by τx . As in the construction of the
joint PDF in 1D, we consider the nodal points {x̄i } derived
from the translation τx , and {y j }. The set of nodal points
{(x̄i , y j )} divides the image domain into subdomains:

Ei, j = {
(x, y)|x ∈ [x̄i−1, x̄i ), y ∈ [y j−1, y j )

}
.

We then divide each Ei, j into several stripes with equal width
as shown in Fig. 4. Let

yk
j = y j−1 + k hS k = 0, . . . , NS

Fig. 5. Bilinear target image function G(x, y) is approximated by function
which is linear in x and constant in y on stripe Sk

i, j .

where NS is the number of stripes and hS is the thickness of
the stripe. Each stripe Sk

i, j , k = 1, . . . , NS , is defined as

Sk
i, j =

{
(x, y) | x ∈ [x̄i−1, x̄i ), y ∈ [yk−1

j , yk
j )

}
.

When hS is small, then the image functions on each stripe can
be approximated as functions which are linear horizontally and
constant vertically; see Fig. 5. For instance, the target image
on the stripe Sk

i, j can be approximated by

G(x, y) ≈ x̄i − x

x̄i − x̄i−1
G(x̄i−1, ȳk

j ) + x − x̄i−1

x̄i − x̄i−1
G(x̄i , ȳk

j )

where ȳk
j = (yk−1

j + yk
j )/2. Since the approximate image on

Sk
i, j is constant in y and linear in x , its corresponding PDF,

pG,k
i, j , can be defined as in the 1D case; see Section III-A.

The PDF for the subdomain Ei, j is defined by combining the
approximate PDFs on each stripe,

pG
i, j ≈ 1

NS

NS∑

k=1

pG,k
i, j . (12)

Finally the PDF for the target image is approximated by com-
bining the PDFs for each subdomain with weight proportional
to the subdomain area,

pG = (x̄i − x̄i−1)(y j − y j−1)

Nx hx Nyhy

2Nx∑

i=1

2Ny∑

j=1

pG
i, j . (13)

Hence, we can compute the 2D PDF by computing a sequence
of 1D PDFs defined on the stripes.

The PDF for the transformed template image can be com-
puted similarly as pG . Following a similar procedure, the 2D
joint PDF comes down to computing the joint PDF on each
stripe for which we again apply the 1D construction. Once the
PDFs are defined, the entropies and mutual information can
be computed as in the 1D case, and the details are omitted.

When the 2D template image is translated horizontally,
it is similar to the translation of 1D images where mutual
information can be computed accurately by the 1D method.
Since there is no change in the vertical direction, there is
no need of resampling and hence no danger of interpolation
artifacts. Ideally, a large NS should be used for accuracy, but
it will also result in high computational costs. In practice,
we find that small NS (e.g. NS = 1) is sufficient to obtain
a smooth mutual information function; see Section VI-A.



XU et al.: CONTINUOUS METHOD FOR REDUCING INTERPOLATION ARTIFACTS 3001

Fig. 6. Each 3D subdomain is divided into slabs, which are considered as
2D planes. Each plane is further divided into stripes.

(a) (b)

(c)

Fig. 7. (a) Trace plots of mutual information computed by interpolation-based
method and our method (CM) as x translation parameter (in pixel) is varied
for T1-CT image pair. (b) Magnified plot near ground truth. (c) Trace plots
of mutual information computed by PV method and our method for T1-CT
and T2-PD image pairs. Zero to four points are inserted between pixels.

Compared to computing the PDFs analytically, our approach
is much simpler and yet no interpolation artifacts occur.

In 2D, the transformation parameters also include rotation
in addition to translations. In our experience, MI as a function
of rotation behaves smooth locally when the rotation angle
is away from 0◦ and less than 90◦. Similar observations
have also been reported in the literature (e.g. [14], [16]). To
simplify the algorithm, we separate the optimization of the
translation and rotation parameters. For translation, we apply
the method described above. For rotation, we apply a standard
interpolation-based method. Although nonsmoothness of MI
may occur near 0◦, it does not seem to affect the convergence
of our optimization methods.

C. Piecewise Continuous Approximation of 3D Images

The extension to 3D is as follows. Consider translation in
the x-direction by τx . As in the construction of the joint PDFs
in 1D and 2D, we consider the nodal points {x̄i } derived from
the translations τx , {y j }, and {zk}. The set of nodal points
{(x̄i , y j , zk)} divides the image domain into subdomains.

As in 2D, we divide a subdomain into slabs (stripes in 2D)
along the y direction and approximate the image functions as
piecewise constant functions in that direction. These slabs can

Fig. 8. Trace plots of mutual information as x translation parameter (in
pixel) is varied for different image pairs with different numbers of stripes.

Fig. 9. Trace plots of mutual information as x translation parameter (in
pixel) is varied with different number of bins (or cells) (first row) and image
resolutions (second row) for IM, PV, and CM.

(a) (b)

(c) (d)

Fig. 10. Trace plots of mutual information computed by different models
as x and y translations (in pixel) are varied. (a) CM. (b) NP. (c) GPVE.
(d) PZW.
be considered as 2D planes and hence the problem is now
reduced to the 2D case. On each plane, we further divide it
into stripes along the z direction, as shown in Fig. 6. Thus,
a subdomain is divided into planes of stripes and on each
stripe, the image function is approximated by a function which
is linear in x and constant in y and z. We may again apply
the 1D formulas for computing the PDFs on each stripe. The
final PDFs are computed by adding all the stripes together as
in (12) and (13). Finally, the entropies and mutual information
are computed as in 1D, and the details are omitted.

The accuracy in the y and z directions depends on the
number of slabs and stripes used. Since in each optimization,
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only one translation is considered, there is no translations in
the other directions. We found that a small number of slabs
and stripes (1 is used for all our tests) are sufficient to yield
a smooth mutual information function; see Fig. 8.

D. Complexity

We first consider the 1D case. The PDF for a target image
is approximated by {qi } which are computed using (8). Note
that we do not actually compute each qi one by one. Instead,
we go through each of the pG

k ’s and assign the appropriate
portion

∫
Di

pG
k (α) dα to the qi ’s. Each pG

k is obtained from a
pixel subinterval. Thus, one sweep of all the pixel intervals
will give all the {qi }. The resulting complexity is O(cN)
where c denotes the average number of cells where pG

k is
nonzero. Typically, c = 2 or 3 if the image is not too noisy.
Then by (9), the complexity of computing H (G) is O(ND).
ND is usually chosen to be 8, which is much smaller than N .
Thus the total complexity for computing the target (as well as
template) image entropy is O(cN).

By a similar argument, the complexity of computing {qi, j }
for the joint entropy is O(cN). To compute the sum for
H (F, G) takes O(N2

D) work. Considering that N2
D 
 N ,

the complexity for computing the joint entropy and hence the
mutual function is also O(cN).

Now in 3D (and also similarly in 2D), we compute the
PDF of an image by combining the PDFs on all the stripes.
Since we maximize the mutual information function in one
of the directions at a time, the subdomain is generally
divided into two in our approach. Hence, the complexity
is O(2cN2

S Nx Ny Nz ), where NS is the number of slabs as
well as the number of stripes, and Nx , Ny , and Nz are the
resolutions in different dimensions of the 3D image. NS is
usually a small number; see Figure 8. In our experiments, we
used NS = 1. The computation of the entropies and mutual
information will require a further complexity of O(N3

D). Since
N3

D 
 Nx Ny Nz , the total complexity is O(2cNx Ny Nz).
As for comparison, the complexity for the interpolation and

partial volume models is O(8Nx Ny Nz + N3
B ), where NB is

the number of bins in each dimension. The factor 8 originates
from either the interpolation of the transformed template image
or the weighted updates in the joint probability distribution.
Considering that Nx Ny Nz ∼ N3

B in practice, the complexity
of the proposed method is comparable to the standard models.

In the partial volume model, the weights for updat-
ing the probabilities is determined by the linear kernel.
Chen et al. [7] generalize the linear kernel to higher order
B-spline kernels. Although the smoothness of the final mutual
information function has been improved, the complexities get
higher: O(27Nx Ny Nz + N3

B ) for the second order B-spline
and O(64Nx Ny Nz + N3

B ) for the third order B-spline.

V. RELATIONSHIP WITH PARTIAL VOLUME MODEL

The partial volume model can be viewed as a modified ver-
sion of the continuous method in which the nearest-neighbor
interpolation is used to construct a piecewise constant image
function. The constant value on each pixel (voxel) cell will
then lead to a Dirac delta function in the PDF; see (5),

and it contributes the same weight as the constant functions
on the other pixel (voxel) cells. This is equivalent to the
case in the partial volume model where each pixel (voxel)
contributes to a bin with equal weight when the probability
distribution is constructed. By a similar argument, the joint
PDF computed using the piecewise constant function gives
equivalent computation as in the partial volume model.

Now, consider qi in (8) for computing the entropies of the
images. Since pG

k are all Dirac delta functions, the integral
on the right-hand side is either 0 or 1, depending on whether
the point where the delta function is nonzero is located inside
Di . Thus, if we choose Di to be the bins in the histogram
used by the partial volume model, then the summation on the
right-hand side essentially counts the number of pixel/voxel
intensity values in bin Di . Hence, qi is exactly the same as pi

in the standard formula (2), except for a constant factor 1/h D .
More precisely, h Dqi = pi . This constant factor accounts
for the fact that {qi } are constant values of a continuous
PDF and {pi} are values of a discrete probability distribution.
Similarly, qi, j in (10) is also the same as pi, j in (2), except
for a constant factor 1/h2

D . Thus, the modified version of
the continuous method with the piecewise constant image
functions would give rise to piecewise constant marginal and
joint PDFs whose values are equal to (modulo a constant
scaling factor) the marginal and joint probability distributions
of the partial volume model.

A. Analysis

We analyze the special shape of the mutual information
function as shown in Fig. 2(b). Suppose a translation τ changes
from τ0 = n0h to τ1 = (n0 + 1)h for some integer n0. By (2),
the joint entropy can be written as

H (F, G) = −
∑

i, j

γ
(

pFG
i, j (τ )

)

where γ (α) = α log α. By construction of the partial volume
model, it can be shown that pFG

i, j (τ ) is a linear function in τ

(we omit the details here). Let p0
i, j = pFG

i, j (τ0) and p1
i, j =

pFG
i, j (τ1). Then pFG

i, j (τ ) can be written as

pFG
i, j (τ ) = τ1 − τ

h
p0

i, j + τ − τ0

h
p1

i, j τ ∈ [τ0, τ1].
The first derivative of γ (pFG

i, j (τ )) with respect to τ is

dγ (pFG
i, j (τ ))

dτ
= 1

h

(
log pFG

i, j (τ ) + 1

ln 2

)
(p1

i, j − p0
i, j ).

Hence, the first derivative of H (F, G) is

d H (F, G)

dτ
= − 1

h

∑

i, j

(
log pFG

i, j (τ ) + 1

ln 2

)
(p1

i, j − p0
i, j ).

Let τ2 = (n0 + 2)h and p2
i, j = pFG

i, j (τ2). We have

lim
τ→τ−

1

d H (F, G)

dτ
= − 1

h

∑

i, j

(
log p1

i, j + 1

ln 2

)
(p1

i, j − p0
i, j )

lim
τ→τ+

1

d H (F, G)

dτ
= − 1

h

∑

i, j

(
log p1

i, j + 1

ln 2

)
(p2

i, j − p1
i, j ).
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In general, p1
i, j − p0

i, j �= p2
i, j − p1

i, j and hence

lim
τ→τ−

1

d H (F, G)(τ )

dτ
�= lim

τ→τ+
1

d H (F, G)(τ )

dτ
.

Thus, we have shown that H (F, G) is not smooth at τ = τ1.
We further examine the second derivative of γ (pFG

i, j ) on the
interval (τ0, τ1). Suppose p0

i, j �= 0 or p1
i, j �= 0. Then

pFG
i, j (τ ) �= 0 ∀τ ∈ (τ0, τ1).

We have

d2γ (pFG
i, j (τ ))

dτ 2 = 1

ln 2
· (p1

i, j − p0
i, j )

2

h2 pFG
i, j (τ )

≥ 0.

Hence, γ (pFG
i, j ) is a convex function. If p0

i, j = p1
i, j = 0,

then pFG
i, j (τ ) = 0. Thus, γ (pFG

i, j (τ )) ≡ 0, which is clearly a
convex function. Therefore, γ (pFG

i, j (τ )) is a convex function
on (τ0, τ1). As a result,

γ (pFG
i, j (τ )) = γ

(
τ1 − τ

h
p0

i, j + τ − τ0

h
p1

i, j

)

≤ τ1 − τ

h
γ (p0

i, j ) + τ − τ0

h
γ (p1

i, j )

for any τ ∈ [τ0, τ1]. Consequently,

H (F, G)(τ )

= −
∑

i, j

γ (pFG
i, j (τ ))

≥ τ1 − τ

h

⎛

⎝−
∑

i, j

γ (p0
i, j )

⎞

⎠ + τ − τ0

h

⎛

⎝−
∑

i, j

γ (p1
i, j )

⎞

⎠

= τ1 − τ

h
H (F, G)(τ0) + τ − τ0

h
H (F, G)(τ1).

Thus the joint entropy is a concave function on the interval
(τ0, τ1). As a result, the mutual information function is piece-
wise convex and it has kinks when the pixel grids of the two
images coincide.

VI. NUMERICAL RESULTS

Numerical experiments are performed to show the smooth-
ness of mutual information using different models and with
different parameters. We also compare the robustness and
accuracy of our continuous model with other standard and
artifact-reducing models in 2D and 3D. The implementation
of nonparametric windows (NP) [23], third order generalized
partial volume (GPVE) [7], and Parzen window (PZW) [19]
are given by the publicly available code.1

The images for the 2D experiments are CT and MRI
brain images from R.I.R.E. project.2 The images for the 3D
experiments are MRI images obtained from Brainweb3 as well
as from the R.I.R.E project. The images are initially aligned,
thus the “ground truth” is zero unless it is otherwise specified.
The voxel size for R.I.R.E. images is 1.25 × 1.25 × 4 mm
and BrainWeb images is 1.00 × 1.00 × 1.00 mm. The pixel

1Available at URL http://www.ict.csiro.au/staff/nicholas.dowson/
2Available at URL http://insight-journal.org/rire/
3Available at URL http://www.bic.mni.mcgill.ca/brainweb/

resolutions are 256 ×256 for 2D and 3D experiments with 64
slices for BrainWeb images and 20 to 26 slices for R.I.R.E
images.

A. Smoothness

In this section, we illustrate the smoothness of the mutual
information computed by the proposed continuous method.
The continuous method differs from the interpolation-based
model in that we use the intensity values at all subpixel
locations when computing PDFs whereas the interpolation-
based model only uses the intensity values at pixel locations.
One may improve the interpolation-based model by using
more intensity values. For instance, sample multiple points
between two pixel locations. When a large number of sampling
points are used, one would expect to obtain smoother mutual
information [15]. Fig. 7(a) shows plots of mutual information
for the T1-CT image pair when 0 to 4 samples points are used
as well as by our method (CM). Mutual information becomes
smoother as the number of sample points per pixel increases.
However, we should point out that as the number of sample
points goes to infinity, the computed mutual information will
actually converge to the one given by [23], not the mutual
information by our method; see Fig. 3.

A drawback of this multiple sampling approach is high com-
putational cost. As shown by the magnified plot in Fig. 7(b),
even with 4 sample points, the mutual information function
is still not as smooth as our method. If we increase the
inserted points, we also increase the complexity. In general,
the complexity increases quadratically in 2D and cubically in
3D with the number of sample points.

Fig. 7(c) shows the mutual information functions computed
by the partial volume model using multiple sample points. As
we insert more points between pixels, it results in more local
maxima and minima. Although the amplitudes tend to become
smaller, the many kinks are still there.

We next illustrate the effect of number of stripes on mutual
information. Fig. 8 shows the mutual information as a function
of horizontal translation (vertical translation is similar). The
number of stripes varies from 1 to 4 and we test it on 2 sets
of images. To the limit, when an infinite number of stripes are
used, it will converge to the analytical PDF for 2D images.
As we can see, the mutual information functions are almost
identical using 1, 2 or 4 stripes, showing that approximating
the analytical PDF using only 1 stripe is already very accurate.
In all of our experiments, 1 stripe is used.

We then consider the effect of number of bins. For the
T1-CT image pair, Fig. 9 shows the mutual information of
translation computed by the interpolation-based (IM), partial
volume (PV) and our methods (CM). In the top row, the
number of bins varies from 16 to 128. We also test the results
using different image resolutions as shown in the bottom row.
Note that no bin is used in our method since we compute PDFs
rather than discrete probabilities. We instead consider the
effect of the number of cells in the computation of entropies
(cf. Section III-B). Both the interpolation and partial volume
models introduce more and more interpolation artifacts when
the number of bins increases or the image resolution decreases.
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TABLE I

CONVERGENCE OF POWELL’S AND NELDER-MEAD METHODS FOR

IM, PV, AND CM IN 2D IMAGE REGISTRATION. INITIAL GUESS

RANGES ARE 0–10 mm FOR TEST 1, 10–20 mm FOR TEST 2,

AND 20–30 mm FOR TEST 3

Test 1 Powell’s Method Nelder-Mead Method
Model 256 × 256 128 × 128 256 × 256 128 × 128

IM 95% 90% 80% 70%
PV 100% 100% 90% 60%
CM 100% 100% 100% 100%

Test 2 Powell’s Method Nelder-Mead Method
Model 256 × 256 128 × 128 256 × 256 128 × 128

IM 95% 90% 85% 35%
PV 100% 95% 75% 30%
CM 100% 100% 100% 100%

Test 3 Powell’s Method Nelder-Mead Method
Model 256 × 256 128 × 128 256 × 256 128 × 128

IM 90% 80% 50% 15%
PV 95% 85% 70% 35%
CM 100% 100% 100% 100%

On the other hand, the continuous method gives smooth mutual
information, regardless of the number of cells and image
resolutions.

Finally, Fig. 10(a) shows a trace plot of the mutual informa-
tion function of the translations in both horizontal and vertical
directions using our continuous model. It is the function
being maximized by the optimization scheme described in
Section IV-A. Similar to the 1D plots, there are no interpo-
lation artifacts. The mutual information is smooth and shows
only one (global) maximum. Similar plots generated by non-
parametric windows [23], GPVE [7], and Parzen window [19]
are also given in Fig. 10 for comparison.

B. 2D Image Registration

To illustrate the benefit of the smoothness of the mutual
information using the continuous method, two commonly
used optimization methods, the Powell’s method [31] and the
Nelder-Mead method [29], are considered. For the interpo-
lation and partial volume models, we just apply the standard
Nelder-Mead or Powell’s methods. For the continuous method,
we use the optimization scheme in Section IV-A. For the
optimization in each principal axis and rotation, we apply
Powell’s method (i.e. Brent’s method in 1D) or the Nelder-
Mead method. The images in this section are from R.I.R.E.

In our test data, the original target and template images
are aligned; i.e. the optimal translations are (0, 0), and the
optimal rotation is 0◦. We test the convergence of different
models using different initial guesses. We randomly gener-
ate 20 initial guesses where the x and y coordinates are
in the ranges of 0 to 10 mm, 10 to 20 mm, and 20 to
30 mm, respectively. The means of these initial guesses are
(4.68, 5.31) mm, (15.08, 14.91) mm and (24.83, 25.12) mm,
respectively. Meanwhile we also impose a random initial
rotation between −6◦ and 6◦. The number of bins for the
interpolation and partial volume models is 16. In practice,
rigid registration often needs to recover around 20 mm mis-
alignment. Thus the performance of the optimization methods

TABLE II

REGISTRATION RESULTS (PIXELS) OF NELDER-MEAD AND TRUST

REGION METHODS FOR DIFFERENT MODELS WITH INITIAL GUESSES

(10, 12) FOR TEST 1,

(8.3, −10.2) FOR TEST 2, AND (−7.3, −5.8) FOR TEST 3

Test 1 Nelder-Mead Trust Region
Model Iter Computed Solution Iter Computed Solution

IM 44 (10.38, 0.26) 10 (9.63, 11.36)
PV 32 (10, 12) 3 (10, 12)
CM 50 (0.19, −0.019) 17 (0.19, −0.022)

Test 2 Nelder-Mead Trust Region
Model Iter Computed Solution Iter Computed Solution

IM 49 (0.26, 0.22) 3 (8.30, −10.20)
PV 48 (0.00, 0.00) 7 (7.99, −9.98)
CM 49 (0.19, −0.019) 18 (0.19, −0.021)

Test 3 Nelder-Mead Trust Region
Model Iter Computed Solution Iter Computed Solution

IM 32 (0.67, −6.57) 5 (−7.30, −5.76)
PV 35 (−7.00, −6.00) 5 (−6.99, −5.99)
CM 56 (0.19, −0.019) 18 (0.19, −0.022)

in the second and third ranges are of particular importance.
A test is deemed a failure if the distance between the optimal
translation and the calculated translation exceeds 2 mm. The
convergence results of the Powell’s and Nelder-Mead methods
are shown in Table I. The second to fifth columns show the rate
of successfully recovered alignments out of 20 experiments
with different image resolutions, obtained by the interpolation
model (IM), partial volume model (PV), and the continuous
method (CM). We note that the success rates for IM and
PV are consistent with the results reported in the literature,
e.g. [23]. For the continuous method, since the computed
mutual information function is smooth and has no artifacts,
the optimization methods always converge to the optimal
solutions.

Table II shows some sample convergence results of different
registration models. In this experiment, the ground truth is
at pixel location (0.2,−0.02). The iteration stops when the
difference between successive iterates is less than 0.01 pixel.
Columns 2 and 4 show the iteration numbers using the Nelder-
Mead method and a trust region method [32], respectively. For
the CM model, it is the total number of iterations from all
optimizations in x , y, and rotation. The trust region method is
gradient based method which is used to show the effect of the
use of gradient on the convergence of the registration methods.
We remark that more computation is needed per iteration for
the trust region than the Nelder-Mead method. Columns 3
and 5 shows the computed solutions. Due to interpolation
artifacts, both the IM and PV models tend to converge to
wrong solutions. The mutual information function is piecewise
convex computed by the PV model with local maxima at
integer pixel locations. Other than a few cases such as Test
2 (using the Nelder-Mead method), the PV model tends to
converge close to an integer pixel location near the initial
guess, and in Test 1, it actually stays as the initial guess.
The CM model converges to the ground truth successfully
in all cases. In general, Nelder-Mead takes more iterations
than the trust region method. However, the trust region method
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TABLE III

MEAN REGISTRATION RESULTS (PIXELS) OF DIFFERENT MODELS FOR

IMAGE PAIRS CT-T1, T2-PD, AND T1-T2. NUMBERS IN SQUARE

BRACKETS ARE STANDARD DEVIATIONS

Model CT-T1 T2-PD T1-T2
NP (0.38, 0.39) (0.39, 0.25) (−0.55, −0.31)

[(0.040, 0.043)] [(0.056, 0.11)] [(0.19, 0.11)]
GPVE (0.21, 0.38) (0.19, 0.067) (−0.73, −0.21)

[(0.056, 0.045)] [(0.051, 0.032)] [(0.064, 0.038)]
PZW (0.35, 0.35) (0.32, 0.20) (−0.48, −0.30)

[(0.024, 0.020)] [(0.12, 0.16)] [(0.11, 0.031)]
CM (0.42, 0.047) (0.16, −0.033) (−0.39, −0.15)

[(0.018, 0.015)] [(0.0027, 0.0032)] [(0.0051, 0.0030)]

usually converges quickly to the local maxima near the initial
guess, probably due to the use of local derivative information.
Nelder-Mead, on the other hand, does not use any derivative
information. It has more capability to skip the artifacts and
computes a solution closer to the global maximum.

We compare our continuous model (CM) with three other
models: nonparametric windows (NP) [23], third order gen-
eralized partial volume (GPVE) [7], and Parzen window
(PZW) [19], which are different approaches for reducing
interpolation artifacts. The tested images are from the R.I.R.E.
training data (see Fig. 1), slice 11, aligned by the gold standard
provided. Since the images are registered in 3D, it is assumed
that the 2D slices are also registered with ground truth close
to (0, 0). Similar to Table I, we randomly generate 60 initial
guesses with 20 from each of the ranges: 0 to 8 pixels,
8 to 16 pixels, and 16 to 24 pixels. For simplicity, we do not
include rotation in this case. Nelder-Mead is used for the NP,
GPVE, and PZW models. We use the optimization scheme in
Section IV-A with each 1D problem solved by Nelder-Mead
for our model. The registration results are shown in Table III
for the image pairs CT-T1, T2-PD, and T1-T2. Columns
2-4 show the mean computed solutions in x and y, and the
standard deviations. All models converge to a solution close to
(0, 0) with the solutions given by the CM model are slightly
closer to the origin. The standard deviations are typically
small, showing the models consistently converge to a similar
solution, regardless of locations of the initial guesses.

C. 3D Image Registration

We apply the continuous mutual information registration
method to 3D image pairs (from Brainweb). Similar to 2D,
we also randomly generate 20 initial guesses in the ranges of
0 to 10 mm, 10 to 20 mm, and 20 to 30 mm for image pairs
with different image resolutions. The means of these initial
guesses are (4.2, 4.7, 4.8) mm, (15.0, 14.6, 15.6) mm, and
(25.6, 26.4, 24.2) mm, respectively. We also impose random
initial rotations about x-, y- and z-axis between -6° and 6°. The
number of bins for interpolation and partial volume models
is 32. A test is deemed a failure if the distance between
the optimal translation and the calculated translation exceeds
2 mm. The convergence results of the Powell’s method and
Nelder-Mead method are shown in Table IV. Similar to 2D, the
success rates of the interpolation and partial volume models
deteriorate as the initial guesses get farther away from the

TABLE IV

CONVERGENCE OF POWELL’S AND NELDER-MEAD METHODS FOR

DIFFERENT MODELS IN 3D IMAGE REGISTRATION. INITIAL GUESS

RANGES ARE 0–10 mm FOR TEST 1, 10–20 mm FOR TEST 2,

AND 20–30 mm FOR TEST 3

Test 1 Powell’s Method Nelder-Mead Method
Model 256×256×64 128×128×32 256×256×64 128×128×32

IM 100% 100% 85% 80%
PV 100% 100% 80% 65%
CM 100% 100% 100% 100%

Test 2 Powell’s Method Nelder-Mead Method
Model 256×256×64 128×128×32 256×256×64 128×128×32

IM 100% 95% 75% 65%
PV 100% 100% 60% 55%
CM 100% 100% 100% 100%

Test 3 Powell’s Method Nelder-Mead Method
Model 256×256×64 128×128×32 256×256×64 128×128×32

IM 50% 65% 45% 40%
PV 55% 60% 55% 55%
CM 100% 100% 100% 100%

TABLE V

MEAN REGISTRATION ERRORS (MM) OF FIRST, SECOND, THIRD ORDERS

GENERALIZED PV MODELS AND OUR CONTINUOUS MODEL FOR

CT-PD, CT-T1, AND CT-T2 IMAGE DATASETS

CT-PD 1st GPVE 2nd GPVE 3rd GPVE CM
Patient001 1.9977 1.9228 1.9153 1.7066
Patient002 1.2299 1.2432 1.2937 0.8784
Patient003 2.0026 1.8938 1.7069 1.6509
Patient004 3.6220 2.9257 2.8353 3.2663
Patient005 1.8771 1.9415 2.0097 1.5921

CT-T1 1st GPVE 2nd GPVE 3rd GPVE CM
Patient001 1.7707 1.2560 1.2345 1.0885
Patient002 1.2745 0.8215 0.8475 0.6259
Patient003 1.2328 1.3193 1.3035 0.7297
Patient004 2.9410 1.7740 1.8078 2.3266
Patient005 1.3967 1.2782 1.3057 0.9580

CT-T2 1st GPVE 2nd GPVE 3rd GPVE CM
Patient001 2.1906 2.7672 2.8046 2.4859
Patient002 1.5538 1.7799 1.8891 1.1927
Patient003 1.3920 1.2336 1.2265 2.4316
Patient004 2.7021 2.6294 2.7959 2.8869
Patient005 1.7265 1.9959 1.9801 2.0896

ground truth due to the interpolation artifacts of the mutual
information function. The continuous method is much more
robust and it is able to converge for all cases.

We now show an example to compare the continuous
method (CM) with the generalized partial volume method
(GPVE) [7] on a set of testing datasets from R.I.R.E. The
ground truth transforms were obtained from a prospective
marker-based technique and they do not have perfect grid
alignment in general. Registration results can be compared
with the ground truth through an online interface which returns
the errors of the registrations [28].

The database includes 3D CT, T1, T2, and PD weighted MR
image volumes for a number of patients. Here, we perform
image registrations for 3 pairs of images: CT-PD, CT-T1,
and CT-T2. Table V shows the mean registration errors of
our continuous model (last column) obtained from the online
database interface for the first five patients. The results for the
other patients are similar. The continuous model successfully
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finds the correct transformation parameters for all the testing
cases. As a comparison, we also include the registration results
(columns 2 to 4) reported in [7] where they applied the
GPVE model to alleviate the interpolation artifacts on the same
datasets. Their main idea is to generalize the partial volume
model (first order) by using higher order splines (second
and third orders). Table V shows that the continuous model
produces better results than the GPVE model in 10 cases and
worse results in the other 5 cases. We remark that the purpose
of this example is to illustrate how the GPVE and our methods
perform. There are likely other methods which are able to
obtain more accurate registration results on these datasets.

VII. CONCLUSION

We have proposed a method for computing mutual informa-
tion to address the issue of interpolation artifacts. Images are
modeled as functions defined on a continuous image domain.
We have described a construction for the probability and
joint probability density functions of the image functions.
We have also presented a numerical scheme to compute
the entropies and joint entropies of the images. We have
generalized the idea from 1D to 2D and 3D by optimizing
each translation parameter separately. The mutual information
function computed seems to be smooth. Numerical results
show that the continuous model always yields convergence
in solving the registration problem. We have demonstrated
the robustness and accuracy of the continuous model by the
2D and 3D images obtained from the public domain databases.
In addition, an analysis is presented to explain the special
piecewise convex shape of the mutual information obtained
from the partial volume model.
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