Real-Time Intensity-Based Rigid 2D-3D Medical Image Registration
Using RapidMind Multi-Core Development Platform

Lin Xu and Justin W.L. Wan

Abstract—1In this paper, we present an efficient intensity-
based rigid 2D-3D image registration method. We implement
the algorithm using the RapidMind Multi-core Development
Platform' to exploit the highly parallel multi-core architecture
of graphics processing units (GPUs). We use a ray casting
algorithm to generate the digitally reconstructed radiographs
(DRRs) on GPUs and efficiently reduce the complexity of DRR
construction. The registration optimization problem is solved
by the Gauss-Newton method. To fully exploit the multi-core
parallelism, we implement almost the entire registration process
in parallel by RapidMind. We also discuss the RapidMind
implementation of the major computation steps. Numerical
results are presented to demonstrate the efficiency of our
method.

I. INTRODUCTION

In image-guided procedures such as radiation therapies
[1] and computer-assisted surgeries [2], intensity-based rigid
2D-3D medical image registration is often used. Although
aims are different depending on different applications, the
2D-3D registration processes are similar. For instance, 3D
datasets (e.g. CT Volume) are often collected for pre-
operative planning. During surgeries, 2D portal image slices
(e.g. X-Ray image) are collected in real time and aligned
with DRRs generated from the pre-acquired 3D datasets. By
registering the 3D volume with the 2D portal slice, more
useful information can be obtained.

Although acquiring 2D portal images can be efficient,
DRR generation and optimization processes are very com-
putationally intensive and still require significant amount
of time. In this paper, we employ multi-core processing to
accelerate the entire registration process in order to achieve
real-time performance.

Hardware acceleration methods using hundreds or even
thousands of processors have been studied and employed for
image registration (e.g. [3]). Though it has been reported
with success in many cases, the physical size of large parallel
computers limits their use in clinical applications. Multi-
core processing has become an attractive alternative in the
past few years. The multi-core architectures exploit hardware
parallelism on the chipsets while maintaining small form
factor. Ohara et al. [4] implement mutual information-based
multiresolution algorithms on the Cell Broadband Engines.

This work was supported by Natural Sciences and Engineering Research
Council of Canada.

Lin Xu is with David R. Cheriton School of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada 1 8xu@uwaterloo.ca

Justin W.L. Wan is with David R. Cheriton School of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada
jwlwan@uwaterloo.ca

Thttp://www.rapidmind.com

However, it is only for 3D-3D registration, and random
sampling strategy is used due to the memory limit of Cell
Broadband Engines. Chisu [5] investigates both GPU and
CPU acceleration techniques for 2D-3D rigid image regis-
tration, applies GPU for solving the optimization registration
problem, but still uses CPU for the DRR computation. Based
on our experiments, the CPU time for DRR computation
is a significant part in the registration process; see Section
IV. Hence, an efficient GPU computation for DRR becomes
crucial for optimal real-time performance.

The contribution of this paper is to develop a real-time
rigid image registration by using the RapidMind Multi-Core
Development Platform (RapidMind) on GPUs. In contrast
with the previous work [4], [5], our real-time image regis-
tration performs almost the entire 2D-3D registration process
using GPUs to fully exploit the multi-core parallel efficiency.

The paper is structured as follows. In Section II, we
give an overview of 2D-3D medical image registration,
and then discuss how the DRRs are constructed and how
the optimization problem of image registration is solved.
In Section III, we explain how the registration method is
implemented using RapidMind for efficient processing on
GPUs. Numerical results as well as comparisons between
RapidMind and regular C++ code are presented in Section
IV. Finally, concluding remarks are given in Section V.

II. INTENSITY-BASED RIGID 2D-3D REGISTRATION

3D CT Volume

DRR generation

Orientation

2D DRR Image X-Ray Portal Image

Optimization Based on
Similarity Measures

No

New Rotation

2
Registerd and Shift Values

Fig. 1. Iteration scheme of 2D-3D medical image registration

Fig. 1 shows a schematic of 2D-3D medical image reg-
istration procedure. The goal is to rotate and translate the
3D image volume so that its projection to a 2D plane will
be the same (or very close) to the given portal image. More
precisely, let s = (0,,0,,0,,7.,7,,7.)" be the parameters

of the 3D rigid body motion where 0, 0,, and 0, are the
rotation angles in the three axes, and 7, 7y, and 7, are the
translations in the z-, y-, and z- directions, respectively. The
rotated and translated 3D volume is projected onto a plane
to obtain a 2D image f = (f; ;), where the subscript (¢, j)
denotes the pixel location. This 2D image is usually known
as the DRR. In general, f = f(s) depends on the rigid body
motion s of the 3D volume. Let g = (g; ;) be the given
portal image. Then the 2D-3D registration problem can be
formulated as an optimization problem:

msin Z (f(8)ij — 9ij)° ey
4,

Hence, we want to match the DRR with the portal image by
appropriately rotating and translating the 3D volume. Besides
sum of squared differences similarity measure, other com-
mon choices include sum of absolute differences, correlation
coefficients, and mutual information [6].

There are two major steps in the process: 1) the con-
struction of DRR and 2) the solution of the optimization
problem, which also needs step 1) in this procedure. They
are described in the following sections.

A. Digitally Reconstructed Radiographs

The DRR is obtained from perspective projecting the 3D
image volume onto a given plane relative to a ray source;
see Fig. 2. In all of our experiments, the 3D image volume,
the image plane, and the X-Ray source are aligned in the
z-direction for simplicity. Moreover, we assume the image
plane is perpendicular to z-direction, and the center of the
3D volume data set is located in the origin. The positions
of the ray source and the projection plane are chosen to be
2.5 x L, and 1.5 x L,, respectively, where L, is the length
of the 3D image volume in the z direction. These positions
can be changed by the users.

X-Ray

3D CT Volume Date

2D Image Plate

.
.
. /
X-Ray Source

Fig. 2. Projection of the 3D image volume onto a 2D plane

Volume rendering techniques such as ray casting [7] and
shear warp factorization [8] have been used. However, shear
warp factorization normally makes artifacts in the resulting
DRRs and thus is not suitable for accurate image registration.
In comparison, ray casting is simple and amenable to highly
parallel architecture of GPUs. Hence, we choose a ray casting
method for volume rendering.

In ray casting as shown in Fig. 3, a light ray is passing
from the source through one of the pixels on the DRR
image. This ray will eventually hit the 3D image volume.

In principle, if we neglect the effect of attenuation for
simplicity, the pixel value on the DRR image should be
given by the accumulated intensities of the 3D image volume
along the ray. However, this would be quite expensive to
determine the length of the ray segment inside each voxel.
Instead, we only select m sample points on the ray where
m is chosen proportional to the size of the 3D volume data;
eg. m = 3 x L, seems to work well for relatively small
rotations and translations. The locations of the m samples
are the intercepts of the ray with m concentric spheres with
different radii covering the 3D volume; see Fig. 3. The same
spheres are used for all the rays. Thus, the sample points
are more or less uniformly distributed inside the 3D volume.
The intensity values at the sample points are computed by
tri-linear interpolation. Finally, the pixel values on the DRR
are the sum of the m intensity values along each ray.

Fig. 3. The volume rendering is based on rays from the source through
the pixels of the 2D image. The samples along each ray are determined by
concentric spheres of different radii covering the 3D volume.

The DRR construction is very straightforward and is com-
pletely parallel for each ray. We remark that, by computing
the sum recursively, we can further reduce the complexity
from O(m) to O(logm).

B. Solving the registration optimization problem

We use the Gauss-Newton method to solve the nonlinear
least squares problem (1). Let s™ be the previously computed
3D rigid body motion and s"*! = s™ + As be the current
approximation. We want to determine the update As so that
the resulting rigid body motion s™*! will lead to a better
DRR image. By Taylor series expansion,

f(sn+1)z‘,j _ f(S")z',j + Vf(S”)Zj CASH -,

where V f(s"); ; = (afgs(;;)i’j» 8f(§é;)""ja af(ase;;)i’j, 87 Nsa,

0Ty
8f§:)i’j, 6f§:)i’j)T is the gradient of f(s™); ;. Then, the
optimization problem (1) can be approximated by

Hiisn Z(f(s")m —Gijt Vf(s”)z?:j - As)2.
i

This is a linear least squares problem which can be rewritten
in the matrix form as:

min || Ax — b)|Z, (2

where A = Vf(s") = N? x 6 matrix, x = As, b = g —
f(s™) = N2 x 1 vector, assuming the resolution of the DRR

is N x N. The linear least squares problem is solved by the
normal equations
ATAx = ATb

using Gaussian elimination on the 6 x 6 linear system. Once
x = As is determined, it can be used to update the position
of the 3D volume. The procedure is repeated until {s™} have
converged to an accurate solution. In our experience, Gauss-
Newton method is quite effective, and usually converges in
around 10 iterations. More importantly, the entire process
can be easily parallelized.

III. RAPIDMIND DEVELOPMENT PLATFORM

The computation of the 2D-3D registration in general
is very intensive. We exploit the high parallelism of the
multi-core architecture of GPUs for efficient computation
of image registration. The cell processor used in [4] has
9 cores, but a GPU can have as many as over 100 cores.
General programming on multi-core architectures, however,
can be quite challenging. For instance, sophisticated caching
schemes are developed in [4] for fast computations. On the
other hand, to take full advantages of the GPU cores would
often require substantial knowledge of GPU architectures
such as vertex shader, rasterizer, texture maps, etc. A number
of software tools have been developed for general GPU
programming, such as OpenGL [9], Brook for GPUs [10]
and Cg [11]. We have implemented our 2D-3D registration
algorithm using RapidMind. RapidMind provides a software
layer between the multi-core hardware and the application.
Thus, it abstracts the hardware complexity from the users
and makes GPU programming quite easy. The basic data
structures are arrays. Parallel processing is achieved by
performing operations on all the elements in the arrays at the
same time (SIMD model). Our implementation essentially
converts the registration computations into array operations.

The RapidMind implementation of the construction of
DRR is as follows. The interpolation of the intensity values
at the sample points is done in parallel on the 3D array of
the sample points. The sum of the m intensities along each
ray is also done in parallel.

For the optimization problem (2), in each iteration, the
gradient vector at each pixel (¢,) is approximated by finite
difference. For example,

f(s")i; ~ f(s" + Asg)iy — f(s")i;
00, A0, ’

where Asy, = (A0,,0,0,0,0,0)T. f(s"+Asy,) is obtained
from DRR by changing the rotation angle 67 to 0" + A#,
but keeping the other parameters fixed. The parallel DRR
construction has been explained above. Afterwards, subtrac-
tion and division can be computed easily in parallel. Other
derivatives are computed similarly. At the end, we have
six 2D arrays of 6%, cee aanz which correspond to the
six columns of A. To compute an entry of AT A in the
normal equations, we take two derivative arrays, multiply the
corresponding elements in parallel, and then use a reduction

operation to compute the global sum. The right-hand side b

is just the subtraction of the two arrays f and g. However,
solving the normal equations using Gaussian elimination in
parallel is not that obvious. Since it is only a small 6 x 6
linear system, we transfer the data and computation from
GPU to CPU, and the computational time is typically very
minimal. This is the only part in the registration procedure
that parallel algorithms on the GPU are not used.

IV. NUMERICAL RESULTS

We demonstrate the efficiency of the proposed RapidMind
2D-3D image registration algorithm by two experiments. Par-
ticularly, we compare the CPU times using regular C++ and
RapidMind. All computations are performed on a standard
PC running with Ubuntu 7.04 Linux operating system, Intel
processor with 3GHz, 1GB memory, and NVIDIA GeForce
8800 GTX.

The first experiment is an artificial example where the
3D image volume is a white cube. An advantage of using
an artificial data set is that we can generate image volume
with different resolutions without affecting the image quality.
We synthesize an X-ray 2D portal image by using the DRR
obtained from rotating and translating the 3D image volume
with known parameters. For consistency, we scale the size
of the cube to [0, 1] x [0, 1] x [0, 1] for all the resolutions. As
an example, Fig. 4 (left) shows the projected 2D image with
no rotation and translation. Fig. 4 (right) shows the projected
2D image with rotations of (5°,5°,5°) along each axis and
translations of (0.1,0.1,0.1) in the x-, y-, and z- directions.

Fig. 4. The 2D projected images with (left) no rotation and translation
and (right) rotations of (5°,5°,5°) along each axis and translations of
(0.1,0.1,0.1) pixels in the x-, y-, and z- directions.

We use the 3D volume data and the simulated X-Ray
portal image as the raw data for registration. We implement
our registration algorithm using both regular C++ and Rapid-
Mind. The regular C++ code is to test the CPU efficiency,
and the RapidMind code is to test the GPU efficiency.

Table I shows the times with different resolutions. The
3D volume resolution varies from 16 x 16 x 16 to 128 x
128 x 128. Each total CPU time is subdivided into 2
CPU times corresponding to the time for DRR computation
(DRR), which is included in both DRR construction and
linearized optimization problem, and the time for other non-
DRR computation (Non-DRR). Note that the times are per
iteration. The stopping criteria are ||As|2 < 0.1. The total
numbers of iterations are also shown.

The portal images are synthesized by changing the orien-
tation of the 3D volume with the rotations of (5°,5°,5°) and
the translations of (0.1,0.1,0.1) for all resolution datasets.
Meanwhile, we use the angles of (0°,0°,0°) and the trans-
lations of (0,0,0) to construct the initial DRRs. We have

TABLE I
AVERAGE CPU TIMES FOR EACH ITERATION OF THE IMAGE

REGISTRATION PROCESS.

Resolution Time (sec) | Regurlar C++ | RapidMind
DRR 0.012 0.029
16 x 16 x 16 Non-DRR 0.003 0.109
Total 0.015 0.138
Iteration 6 6
Resolution Time (sec) | Regular C++ | RapidMind
DRR 0.140 0.047
32 x 32 x 32 Non-DRR 0.060 0.139
Total 0.200 0.186
Iteration 5 5
Resolution Time (sec) | Regular C++ | RapidMind
DRR 3.990 0.091
64 x 64 x 64 Non-DRR 1.318 0.171
Total 5.308 0.262
Iteration 5 5
Resolution Time (sec) | Regular C++ | RapidMind
DRR 40.331 0.152
128 x 128 x 128 | Non-DRR 16.388 0.248
Total 56.720 0.400
Tteration 6 6

TABLE I

ToTAL CPU TIMES FOR THE ENTIRE IMAGE REGISTRATION PROCESS.

Portal image parameters | Time (sec) | Regular C++ | RapidMind
Rotations: DRR 123.27 0.62
(2°,2°,2°) Non-DRR 44.89 1.13
Translations: Total 168.16 1.75
(2mm, 2mm, 2mm) Iteration 5 5
Portal image parameters | Time (sec) | Regular C++ | RapidMind
Rotations: DRR 191.94 0.98
(4°,4°,4°) Non-DRR 71.36 1.72
Translations: Total 263.30 2.70
(dmm, 4mm, 4mm,) Iteration 8 8
Portal image parameters | Time (sec) | Regular C++ | RapidMind
Rotations: DRR 267.96 1.32
(6°,6°,6°) Non-DRR 103.43 2.33
Translations: Total 371.39 3.65
(6mm, 6mm, 6mm,) Iteration 11 11

process by a factor of over 100 for the medical images.

V. CONCLUSIONS

also tried other parameters for constructing portal images
and initial DRRs.

As the 3D resolution increases, the CPU time for the
regular C++ code increases with a factor of around 10. While
the per iteration time is less than 1 second for small dataset, it
increases rapidly to over 50 seconds for the higher resolution
dataset. The CPU time for the RapidMind code increases
much slower; the per iteration time is less than 1 second
for all datasets. For the large dataset (128 x 128 x 128), the
total registration time for RapidMind is around 2 seconds,
whereas for regular C++, it is almost 6 minutes.

By comparing the DRR time and non-DRR time in the
column of regular C++, we note that the former is around 2-4
times longer than the latter. Since DRR computing dominates
the CPU time in the entire registration process, it is important
to use efficient parallel algorithms for DRR computation to
achieve real-time performance. Also, it is easy to implement
the algorithms using RapidMind on GPUs.

In the second experiment, we use a real 3D CT vol-
ume data, which shows a tripod fracture of a skull®. The
resolution of the image is 256 x 256 x 203. Each voxel
dimension is 0.7mm X 0.7mm X 2mm. This 3D volume
is quite large, so we only use the central chuck in the first
100 slices. The resulting resolution is 128 x 128 x 100
for our numerical experiment. The 2D portal images are
also synthesized similar to the first experiment, but we use
different parameters, which are shown in the first column of
Table II. The parameters are still O for constructing the initial
DRR. Table II shows the CPU times for the entire image
registration process. The stopping criteria is ||As||z < 0.8
in this case. The resulting relative errors are less than 0.012
for all of our experiments. Similar to the previous example,
the RapidMind implementation accelerates the registration

Zhttp://www.radiology.uiowa.edu/downloads/

We have developed an efficient 2D-3D rigid registration
method which is amenable for GPU processing. We have
implemented the algorithm using RapidMind to exploit the
highly parallelism of GPUs. Numerical results show that
our method is much faster than regular CPU processing.
Moreover, for real image datasets, it only takes around 3
seconds for performing 2D-3D image registration.

REFERENCES

[1] W. Wein, “Intensity based rigid 2D-3D registration algorithms for radi-
ation therapy (http://campar.in.tum.de/twiki/pub/Main/WolfgangWein
/thesis.pdf),” Master’s thesis, Technische Universitit Miinchen,
Fakultit fiir Informatik, Miinchen, 2003.

[2] R. Smolikova, M. P. Wachowiak, and M. Drangova, “Registration of
fast cine cardiac MR slices to 3D preprocedural images: Toward real
time registration for MRI-guided procedures,” in Medical Imaging
2004: Image Processing, J. Fitzpatrick and M. Sonka, Eds. SPIE,
2004, pp. 1195-1205.

[3] N. Chrisochoides, A. Fedorov, A. Kot, N. Archip, P. Black, O. Clatz,
A. Golby, R. Kikinis, and S. K. Warfield, “Toward real-time im-
age guided neurosurgery using distributed and grid computing,” in
ACM/IEEE SC 2006 Conference, 2006, p. 37.

[4] M. Ohara, H. Yeo, F. Savino, G. Iyengar, L. Gong, H. Inoue, H. Ko-
matsu, V. Sheinin, S. Daijavad, and B. Erickson, “Real-time mutual-
information-based linear registration on the cell broadband engine
processor,” in 4th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, 2007, pp. 33-36.

[5] R. Chisu, “Techniques for accelerating intensity-based rigid image reg-
istration (http://campar.in.tum.de/twiki/pub/Main/WolfgangWein/DA-
Chisu.pdf),” Master’s thesis, Technische Universitit Miinchen, Fakultit
fiir Informatik, Miinchen, 2005.

[6] J. P. W. Pluim, J. A. Maintz, and M. A. Viergever, “Mutual-
information-based registration of medical images: A survey,” IEEE
Transactions on Medical Imaging, vol. 22, pp. 986—-1004, 2003.

[71 H. Ray, H. Pfister, D. Silver, and T. Cook, “Ray casting architectures
for volume visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 5, pp. 210-223, 1999.

[8] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-
warp factorization of the viewing transformation,” Computer Graphics,
vol. 28, pp. 451458, 1994.

[9] R.Rost, J. Kessenich, and B. Lichtenbelt, OpenGL Shading Language.
Boston: Addison-Wesley, 2004.

[10] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream computing on graphics
hardware,” ACM Trans. on Graphics, vol. 23, pp. 777-786, 2004.

[11] NVIDIA Corporation, “Cg toolkit release notes,” 2003.

