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Abstract

We develop an implicit discretization method for pricing European and American options
when the underlying asset is driven by an infinite activity Lévy process. For processes of
finite variation, quadratic convergence is obtained as the mesh and time step are refined. For
infinite variation processes, better than first order accuracy is achieved. The jump component
in the neighborhood of log jump size zero is specially treated by using a Taylor expansion
approximation and the drift term is dealt with using a semi-Lagrangian scheme. The resulting
Partial Integro-Differential Equation (PIDE) is then solved using a preconditioned BiCGSTAB
method coupled with a fast Fourier transform. Proofs of fully implicit timestepping stability
and monotonicity are provided. The convergence properties of the BiCGSTAB scheme are
discussed and compared with a fixed point iteration. Numerical tests showing the convergence
and performance of this method for European and American options under processes of finite
and infinite variation are presented.
Keywords: CGMY, semi-Lagrangian, implicit timestepping

1 Introduction

It is well known that the standard Geometric Brownian Motion model for asset price returns is
inconsistent with market prices. Models with jump processes are thought to be more representative
of actual market behavior [1]. Recently, Lévy process models have become popular in the financial
literature [1, 2, 3, 4, 5, 6, 7]. Option pricing, under exponential Lévy process with finite activity
[5, 8, 9, 10, 11, 12] and infinite activity [13, 14, 15, 16, 17] has been extensively studied. In these
papers, various numerical methods were proposed for solving the option pricing Partial Integro-
Differential Equation (PIDE).

In this paper, we are specifically concerned with numerical methods for the infinite activity
case. In the variance gamma case, a partially implicit method was suggested in[11], with the jump
integral part split into a local and a non-local part. In [14], the jump integral part was also split
into local and nonlocal parts with the local term computed using implicit timestepping and the
nonlocal term computed using explicit timestepping. This method produced first order accuracy for
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the variance gamma case, but accuracy degrades for other processes. In [13, 18], an integration by
parts technique was used to transform the integral part into a weakly singular Volterra equation. A
collocation method was then used to achieve second order accuracy under a CGMY (Carr-Geman-
Madan-Yor) process [2] with infinite activity and finite variation.

In this paper, we propose an efficient numerical scheme for pricing European and American
options under the CGMY process [2] with not only finite variation but also infinite variation. The
infinite variation case is more numerically challenging as the Lévy measure becomes more singular,
compared with the variance gamma case. By using an implicit timestepping method for both
local and nonlocal terms of the integral part, we can achieve second order accuracy under a finite
variation process and better than a first order convergence rate for an infinite variation process.

In [16], a Wavelet-Galerkin finite element approach is used to price options under an infinite
activity process. Compared with [16], our approach can be easily implemented in existing option
pricing software. We use only finite difference discretization methods and standard sparse matrix
solvers. As well, our techniques can be easily generalized to handle American early exercise, and
other path-dependent contract features.

Moreover, our fully implicit discretization leads to a monotone scheme. Monotonicity is an
important property of a discretization method [19], which can be used to guarantee convergence to
the viscosity solution. Although we do not exploit this property of our scheme in this paper, we
anticipate that this property will prove to be useful for handling nonlinear pricing problems, such
as optimal control, under an infinite activity jump process.

Since we use an implicit timestepping method, a straightforward approach would require a dense
matrix solve at each time step due to the jump integral term. We avoid this problem by using either
a fixed point iteration [12] or a BiCGSTAB [20] method for solving the discretized equations. This
technique requires only a matrix-vector multiply, which can be conveniently carried out using an
FFT [13, 14, 12, 21].

The outline of this paper is as follows. Section 2 gives the specification of the option pricing
PIDE and boundary conditions. In section 3 we first transform the original PIDE by applying a
Taylor expansion. The singular and nonsingular parts of the jump integral term are treated sepa-
rately. In the case of a pure jump process, there is no diffusion term in the original PIDE. To avoid
poor convergence due to first order upstream methods, we use a semi-Lagrangian discretization
scheme.

In section 4 we extend our numerical scheme to price American options using a penalty method.
In section 5 we provide stability and monotonicity analysis for fully implicit timestepping. A
convergence comparison between a fixed point iteration and a preconditioned BiCGSTAB method is
also presented. For the special case of the PIDE written in a logS coordinates, we can show stability
of Crank-Nicolson timestepping using a Von Neumann analysis (See Appendix B). In section 6, a
series of the numerical tests are carried out showing the convergence and the performance of pricing
European and American options under CGMY, for both infinite and finite variation processes.

2 Mathematical Model

In this section, we give the mathematical model for pricing European options when the underlying
asset price is modelled by a CGMY process.
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2.1 The PIDE for Option Pricing

Let S denote the underlying risky asset price. We model the evolution of S driven by a Lévy
process whose Lévy measure ν satisfies∫

|y|<1
y2ν(dy) <∞,

∫
|y|≥1

ν(dy) <∞. (2.1)

Under the CGMY model, ν is defined as follows

ν(y) =
Ce−My

y1+Y
1y>0 +

Ce−G|y|

|y|1+Y
1y<0, (2.2)

where

1y>0 =

{
1, if y > 0
0, otherwise,

1y<0 =

{
1, if y < 0
0, otherwise,

are the indicator variables; C > 0 is the measure of the overall level of activity; G ≥ 0 and M ≥ 0
control the rate of exponential decay on the left and right of the Lévy density; and Y < 2 describes
the behavior of the Lévy density in the neighborhood of zero where the density tends to infinity.

If Y < 0, the measure ν integrates to a finite value yielding a process of finite activity. If
Y ∈ [0, 1], the process displays infinite activity but finite variation since

∫
|y|<1 yν(dy) < ∞. If

Y ∈ (1, 2), the process is said to have infinite activity and infinite variation.
Define τ = T − t, where T is the expiry time, and t is the forward time. Let V (S, τ) be the

option price with the underlying stock price S. Following standard methods [1], we can derive the
following PIDE for the value of a contingent claim V (S, τ):

Vτ =
σ2

2
S2VSS + (r − q)SVS − rV +

∫ ∞
−∞

ν(y)[V (Sey, τ)− V (S, τ)− S(ey − 1)VS ]dy, (2.3)

where r and q are the risk-free interest rate and the continuous dividend yield respectively. The
parameter σ is the volatility associated with the continuous component of Lévy process.

2.2 Boundary Conditions

As S → 0, equation (2.3) reduces to
Vτ = −rV.

As S →∞, we make the common assumption that VSS ' 0, which means that

V ' A(τ)S +B(τ), S →∞. (2.4)

Assuming equation (2.4) holds, then equation (2.3) reduces to the PDE:

Vτ =
σ2

2
S2VSS + (r − q)SVS − rV, S →∞,

in which we retain the VSS term for numerical stability purposes. In the numerical computation,
the original infinite domain, S ∈ [0,∞), is truncated to a finite computational domain, [0, Smax].
Note that at S = Smax, we impose the Dirichlet boundary condition:

V (Smax, τ) = specified.
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In this work, we will simply use the payoff of the option as the Dirichlet condition.
To summarize, we solve the following problem on [0, Smax]

Vτ =


−rV, if S = 0
σ2

2 S
2VSS + (r − q)SVS − rV +

∫ y∗(S)
−∞ ν(y)[V (Sey)− V (S)− S(ey − 1)VS ]dy, if S ∈ (0, S∗)

σ2

2 S
2VSS + (r − q)SVS − rV, if S ∈ [S∗, Smax]

with the initial condition,

V (S, τ = 0) = Payoff.

We choose S∗ sufficiently large so that equation (2.4) is valid in [S∗, Smax], and

y∗(S) = log
(Smax

S

)
.

Here Smax is chosen such that ∣∣∣∣ν(log
(
Smax

S∗

))
Smax

∣∣∣∣ < ε, (2.5)

where ε is selected so that the error in approximating the integral is small [12]. If an unequally
spaced grid is used, it is inexpensive to select large values for Smax, S

∗.

3 Discretization Methods

In this section, we first provide the details of discretizing the integral term. The application of a
semi-Lagrangian discretization method on the transformed PIDE is then discussed, coupled with a
fully implicit or a Crank-Nicolson timestepping scheme. The resulting linear system is then solved
by the appropriate iterative method.

3.1 Discretization of Jump Component

The discretization of the jump integral term in (2.3),

I(V ) =
∫ y∗(S)

−∞
ν(y)[V (Sey, τ)− V (S, τ)− S(ey − 1)VS ]dy, (3.1)

is carried out on a finite computational domain. To be specific, we approximate I(V ) by

IA(V ) =
∫ ymax

ymin

ν(y)[V (Sey, τ)− V (S, τ)− S(ey − 1)VS ]dy. (3.2)

We divide the interval [ymin, ymax] into subintervals [yj−∆y/2, yj +∆y/2], j = 0, 1, . . . , N−1, with

yj = ymin + (2j + 1)
∆y
2
, and ∆y =

ymax − ymin

N
,

where ymax and ymin are selected such that the error in approximating I(V ) by IA(V ) can be made
arbitrarily small.
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The properties of the Lévy measure (2.1) indicate that ν(y) goes to infinity in the neighborhood
of y = 0 and is only second moment integrable for all |y| < 1. Accordingly, we define

Ω0 =
{
y
∣∣−∆y

2
≤ y ≤ ∆y

2

}
, Ω1 =

{
y
∣∣∆y

2
< |y| < 1

}
, (3.3)

and Ω2 =
{
y
∣∣ymin ≤ y ≤ −1 or 1 ≤ y ≤ ymax

}
,

where Ω0 refers to the infinite density region, i.e. ν(y) → ∞ when y → 0; Ω1 corresponds to the
singular part of the Lévy measure excluding Ω0; and Ω2 refers to the smooth integrable part of
ν(y). Note that the choice of |y| = 1 as the boundary defining Ω2 is somewhat arbitrary. Other
choices are possible, but numerically this choice works well. In the following, we will treat the
integral differently according to the region over which the integral is computed.

For the integral over Ω0, we use a similar approach as in [14] in approximating the integral of
ν(y) by a finite process with an effective diffusion coefficient. Note that Sey is the asset price after
a jump, i.e. Sey = S + δS. We can apply a Taylor expansion to V (Sey) so that∫ ∆y

2

−∆y
2

ν(y)[V (Sey, τ)− V (S, τ)− S(ey − 1)VS ]dy

=
∫ ∆y

2

−∆y
2

ν(y)[V (S, τ) + VS(S, τ)δS + VSS(S, τ)
(δS)2

2
− V (S, τ)− δSVS +O((δS)3)]dy

=
∫ ∆y

2

−∆y
2

ν(y)[VSS(S, τ)
S2(ey − 1)2

2
+O((δS)3)]dy. (3.4)

Note that if we carry out the Taylor expansion on ey in the term, δS = S(ey − 1), we can see
that δS behaves as O(|y|) when the value of |y| is small. The definition of the Lévy density (2.2)
indicates that ν(y) behaves as O

(
1

|y|1+Y

)
in the neighborhood of zero. Thus equation (3.4) can be

rewritten as∫ ∆y
2

−∆y
2

ν(y)[VSS(S, t)
S2(ey − 1)2

2
+O(|y|3)]dy =

S2

2
VSS

∫ ∆y
2

−∆y
2

ν(y)(ey − 1)2dy +O((∆y)3−Y ). (3.5)

The error term, O((∆y)3−Y ), implies that we can anticipate quadratic convergence if Y ≤ 1, but
when 1 < Y < 2 the best achievable convergence rate is between first and second order, using the
approximation (3.5).

Let σ̄ denote the effective diffusion component in (3.5),

σ̄(∆y) =
∫ ∆y

2

−∆y
2

ν(y)(ey − 1)2dy.

The jump integral term IA(V ) (3.2) thus becomes

IA(V ) =
σ̄

2
S2VSS +

∑
j:yj∈Ω1∪Ω2

∫ yj+
∆y
2

yj−∆y
2

ν(y)[V (Sey)− V (S)− S(ey − 1)VS ]dy +O((∆y)3−Y )

=
σ̄

2
S2VSS +

∑
j:yj∈Ω1

∫ yj+
∆y
2

yj−∆y
2

ν(y)F (y)dy +
∑

j:yj∈Ω2

∫ yj+
∆y
2

yj−∆y
2

ν(y)F (y)dy +O((∆y)3−Y ),

(3.6)
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where we define
F (y) ≡ V (Sey)− V (S)− S(ey − 1)VS .

Note that by Taylor expansion, F (y) = O(y2) as y → 0 (assuming V (S) is a smooth function).
Next we consider the integrals over Ω1 and Ω2 respectively. For y ∈ Ω2, the Lévy density

ν(y) is a smooth function. As a result, we can carry out a Taylor expansion on F (y) near yj for
y ∈ [yj −∆y/2, yj + ∆y/2], so that the integral term over Ω2 can be computed using a trapezoidal
rule. ∑

j:yj∈Ω2

∫ yj+∆y/2

yj−∆y/2
ν(y)[V (Sey)− V (S)− S(ey − 1)VS ]dy

=
∑

j:yj∈Ω2

V (Seyj )γ(yj)− V (S)
∑

j:yj∈Ω2

γ(yj)− SVS
∑

j:yj∈Ω2

(eyj − 1)γ(yj) +O((∆y)2),

where

γ(yj) =
∫ yj+∆y/2

yj−∆y/2
ν(y)dy, yj ∈ Ω2.

For y ∈ Ω1, the Lévy measure ν(y) is a singular function. We can not directly carry out a Taylor
expansion on the integrand as for the case of y ∈ Ω2. By noting that F (y) = O(y2), y → 0, we
define F (y) = F (y)/y2 which remains a smooth bounded function as y → 0. Thus we can rewrite
the integrand as ν(y)F (y) = ν(y)y2F (y). We further define

ν(y) = ν(y)y2,

which is integrable over Ω1. Then we apply Taylor expansion on F (y) in the transformed integrand:∫ yj+∆y/2

yj−∆y/2
F (y)ν(y)dy =

∫ yj+∆y/2

yj−∆y/2
F (yj)ν(y)dy + Ej , (3.7)

where the error term is

Ej =
∫ yj+∆y/2

yj−∆y/2
[F ′(yj)(y − yj) +

F ′′(ξj(y))
2

(y − yj)2]ν(y)dy

in which ξj(y) ∈ (yj −∆y/2, yj + ∆y/2). It can be shown that (see Appendix A):

EΩ1 ≡
∑
j

Ej = O((∆y)min(2−ε,3−Y )),

where ε is an arbitrarily small positive constant. The integral over Ω1 is thus computed by

∑
j:yj∈Ω1

∫ yj+∆y/2

yj−∆y/2
ν(y)

(
V (Sey)− V (S)− S(ey − 1)VS

y2

)
dy

=
∑

j:yj∈Ω1

V (Seyj )γ(yj)− V (S)
∑

j:yj∈Ω1

γ(yj)− SVS
∑

j:yj∈Ω1

(eyj − 1)γ(yj) +O((∆y)min(2−ε,3−Y )),

where

γ(yj) =
1
y2
j

∫ yj+∆y/2

yj−∆y/2
y2ν(y)dy, ∀yj ∈ Ω1.
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Putting all this together, the integral over Ω1 ∪ Ω2 in (3.6) is approximated by

∑
j:yj∈Ω1∪Ω2

∫ yj+
∆y
2

yj−∆y
2

ν(y)F (y)dy =

N−1∑
j=0

V (Seyj )γ(yj)− V
N−1∑
j=0

γ(yj)− SVS
N−1∑
j=0

(eyj − 1)γ(yj) +O((∆y)min(2−ε,3−Y )),

where

γ(yj) =


1
y2
j

∫ yj+∆y/2

yj−∆y/2 y
2ν(y)dy; if yj ∈ Ω1∫ yj+∆y/2

yj−∆y/2 ν(y)dy; if yj ∈ Ω2

0; if yj ∈ Ω0.

(3.8)

A quadrature rule is used for computing γ(yj) with accuracy (see Appendix B),

γ(yj) =

{
γ̂(yj) +O

( (∆y)4

(yj)2

)
if yj ∈ Ω1

γ̂(yj) +O((∆y)3) if yj ∈ Ω2

(3.9)

In summary, we obtain the final approximation for IA(V ):

IA(V ) =
σ̄

2
S2VSS − κSVS − λV +

N−1∑
j=0

V (Seyj )γ̂(yj) +O((∆y)min(2−ε,3−Y )), (3.10)

where

λ =
N−1∑
j=0

γ̂(yj), κ =
N−1∑
j=0

(eyj − 1)γ̂(yj). (3.11)

Note that equation (3.10) has the same form as we would obtain for a finite activity Lévy process.
As we shall see, this is very convenient, since we can use many of the techniques developed for finite
activity processes.

3.2 Semi-Lagrangian Discretization

After the discretization of the jump integral part, the PIDE (2.3) is approximated by

Vτ =
σ2 + σ̄

2
S2VSS + (r − q − κ)SVS − (r + λ)V +

N−1∑
j=0

V (Seyj )γ̂(yj). (3.12)

In order to be able to handle the case of a pure jump process σ = 0, we use a semi-Lagrangian
method [22, 23] to discretize the first order term to avoid problems with a drift dominated equation.

First we rewrite the PIDE (3.12) as

Vτ − (r − q − κ)SVS = LV +QV, (3.13)

where

LV =
σ2 + σ̄

2
S2VSS − (r + λ)V, QV =

N−1∑
j=0

V (Seyj )γ̂(yj).
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The Lagrangian derivative, along the trajectory S(τ), is

DV

Dτ
=
∂V

∂τ
+
dS

dτ

∂V

∂S
.

Then along the trajectory
dS

dτ
= −(r − q − κ)S, (3.14)

we can rewrite equation (3.13) as
DV

Dτ
= LV +QV. (3.15)

Define discrete asset nodes [S1, . . . , Simax ] and a set of discrete times τn. Let V n
i ≈ V (Si, τn)

be the approximate value of the claim at (Si, τn). Let S = S(Si, τn+1, τ) be a trajectory satisfying
equation (3.14), which passes through the discrete Si node at τ = τn+1. If we trace along the
trajectory back to time τ = τn, the departure point of this trajectory, denoted by Si(n+1), will not
necessarily coincide with a grid node Sj . In order to determine Si(n+1), we need to solve (3.14)
from τn+1 to τn. The exact solution of (3.14) is

Si(n+1) = Sie
(r−q−κ)∆τ ,

where ∆τ = τn+1 − τn. Note that in general, if the coefficients of the first order term are non-
constant, then we would have to integrate (3.14) numerically [24].

Let V n
i(n+1) denote the option value at Si(n+1) at time τn. The value of V n

i(n+1) can be determined
by using an interpolation scheme. In order to achieve second order accuracy we use an upwind
quadratic interpolation method [22]. Suppose that we need to estimate Si(n+1) located between
two S grid nodes, i.e., Sk ≤ Sni(n+1) ≤ Sk+1 for some k. For quadratic interpolation we need three
points. If the coefficient −(r− q−κ) in (3.14) is positive, we use {Sk−1, Sk, Sk+1}; if the coefficient
−(r − q − κ) is negative, we use {Sk, Sk+1, Sk+2}. The interpolation reduces to linear at the grid
boundaries.

Let Φn+1 be the upwind quadratic interpolation operator such that

(Φn+1V n
i ) = V (Si(n+1), τ

n) + interpolation error. (3.16)

Discretizing equation (3.15) along the characteristic trajectory for different timestepping schemes
gives, a fully implicit:

V n+1
i − (Φn+1V n

i )
∆τ

= (LV n+1)i + (QV n+1)i, (3.17)

and a Crank-Nicolson scheme:

V n+1
i − (Φn+1V n

i )
∆τ

=
1
2

[(LV n+1)i + (QV n+1)i] +
1
2

[(Φn+1LV n
i ) + (Φn+1QV n

i )]. (3.18)

In order to compute (QV n+1)i as in

(QV n+1)i =
N−1∑
j=0

V (Sieyj , τn+1)γ̂(yj), (3.19)

we define
V (xj , τn+1) = V (exj , τn+1),
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where {xj} is a set of equally spaced nodes in logS space, and where we determine V by a linear
interpolation operator, T , of the discrete vector V n+1, i.e. V n+1 = TV n+1. We can write (3.19) as

(QV n+1)i = (T−1In+1)i + interpolation error,

where

(In+1)k =
∑
j

V k+j γ̂(yj)

=
∑
j

(TV n+1)k+j γ̂(yj).

Note that
∑
V k+j γ̂(yj) is a discrete correlation, hence can be computed using an FFT (see [12] for

the details). Now define the operator B such that

(BV n+1)i = (T−1In+1)i,

then equation (3.19) can be further rewritten as

(QV n+1)i = (BV n+1)i + interpolation error,

where the interpolation error is second order. Finally, the discretization of fully implicit timestep-
ping, (3.17), can be rewritten as

V n+1
i [1 + (αi + βi + r + λ)∆τ ]−∆τβiV n+1

i+1 −∆ταiV n+1
i−1 = (Φn+1V n

i ) + ∆τ(BV n+1)i, (3.20)

where αi and βi are given by applying second order central finite differencing to the spatial deriva-
tives,

αi =
(σ2 + σ̄)S2

i

(Si − Si−1)(Si+1 − Si−1)
, βi =

(σ2 + σ̄)S2
i

(Si+1 − Si)(Si+1 − Si−1)
, (3.21)

for i = 2, . . . , imax − 1. When i = 1, we set αi = βi = 0 at S1 = 0; and when i = imax, we set
V n+1
imax

equal to the relevant Dirichlet condition. Note that αi and βi are non-negative, which is an
important property we will exploit in our analysis in later sections.

Similarly the discretization of Crank-Nicolson timestepping (3.18) can be written as

V n+1
i [1 + (αi + βi + r + λ)

∆τ
2

]− ∆τ
2
βiV

n+1
i+1 −

∆τ
2
αiV

n+1
i−1

=(Φn+1V n
i )[1− (αi + βi + r + λ)

∆τ
2

] +
∆τ
2
βi(Φn+1V n

i+1) +
∆τ
2
αi(Φn+1V n

i−1)

+
∆τ
2

(BV n+1)i +
∆τ
2

(Φn+1(BV n)i), 1 < i < imax. (3.22)

3.3 Iterative Methods

As discussed above, we can efficiently approximate the dense matrix-vector multiplication, (QV n+1),
by (BV n+1) using an FFT. However, the implicit timestepping methods (3.20 - 3.22) appear to re-
quire solution of a dense matrix at each timestep. We will avoid this difficulty by using iterative
methods to solve equations (3.20-3.22). These iterative methods will require only computation of
(BV n+1). First, we can write a compact matrix form for fully implicit timestepping and Crank-
Nicolson timestepping by introducing a constant θ as follows

[I − (1− θ)∆τL− (1− θ)∆τB]V n+1 = Φn+1[I + θ∆τL+ θ∆τB]V n, (3.23)
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where θ = 0 corresponds to the fully implicit method and θ = 1
2 refers to the Crank-Nicolson

method; I is the identity matrix; matrix L is defined such that the ith row of the product of L and
vector V at the (n+ 1)th time step is

[LV n+1]i = −(αi + βi + r + λ)V n+1
i + βiV

n+1
i+1 + αiV

n+1
i−1 , (3.24)

and matrix B is defined such that the ith row of vector BV at (n+ 1)th time step is

[BV n+1]i = (T−1In+1)i, (3.25)

where, if T is a linear interpolation operator, then matrix B has the following properties [12]∑
j

Bij = λ, 0 ≤ Bij ≤ 1, (3.26)

and B is dense. However, BV n+1 can be computed in N logN operations using an FFT.
We can rewrite the linear system (3.23) in the form of AV n+1 = b:

A = I − (1− θ)∆τL− (1− θ)∆τB,
b = Φn+1[I + θ∆τL+ θ∆τB]V n, (3.27)

where A is the coefficient matrix and vector b is a known vector at the nth time step. It is
computationally infeasible to factor a large dense matrix at each timestep. One solution to this
problem is to rewrite A as the difference of two matrices, A = M −N where

M = I − (1− θ)∆τL, (3.28)

is a tridiagonal matrix and N = (1 − θ)∆τB. Then we solve the original problem AV n+1 = b by
iteratively solving MV̂ k+1 = NV̂ k + b for V̂ k+1 until convergence, where V̂ k is the estimate to the
solution V n+1 after k iterations. This approach is known as a fixed point iteration. Algorithm 1
shows the fixed point iteration to solve equation (3.23).

Algorithm 1: Fixed point iteration for European options
1. Let (V n+1)0 = Φn+1V n

2. Let V̂ 0 = (V n+1)0

3. For k = 0, 1, 2, . . . until convergence do
4. Solve [I − (1− θ)∆τL]V̂ k+1 = Φn+1[I + θ∆τL+ θ∆τB]V n + (1− θ)∆τBV̂ k

5. if maxi
|V̂ k+1
i −V̂ ki |

max(1,|V̂ k+1
i |)

< tolerance then

6. Quit
7. end if
8. end for

The convergence rate of the fixed point iteration depends on how well the new coefficient matrix
M approximates A. If the jump diffusion term, i.e., B is small, e.g. when Y ' 0, then M should
be a good approximation [12]. However, when Y gets large, the matrix B becomes more important
and hence the convergence of the fixed point iteration can be very slow. In this situation, we will
need a better method than the simple fixed point iteration.

We propose to use preconditioned BiCGSTAB method [20] as an alternative. The primary
concern, then, is choosing an optimal preconditioner M . If we use the same M (3.28) as in the
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fixed point iteration as the preconditioner, we do not need to form matrix B explicitly. We only
need to compute matrix-vector products. The matrix-vector multiplications, BV , are computed
efficiently using an FFT and interpolation. When Y gets large, we could use a better preconditioner
M which includes the entries of the matrix B, Bij , |i − j| < c where c is a small number. In this
case, we need to explicitly form part of the matrix B to extract the diagonal and certain off-diagonal
entries. However numerical experiments using this idea did not show any improvement, in terms
of CPU time, compared to preconditioner M (3.28). Hence we will use preconditioner M (3.28) in
all subsequent numerical experiments.

4 American Options

In this section we extend our numerical scheme to handle American options. The difference between
European and American options is that the holder of the latter can exercise at any time before
the maturity to receive the payoff. Thus pricing American options under CGMY leads to a linear
complementarity problem [25]:

Vτ −
(
σ2S2

2
VSS + (r − q)SVS − rV +

∫ ∞
−∞

ν(y)[V (sey, τ)− V (S, τ)− S(ey − 1)VS ]dy
)
≥ 0

(V − V ∗) ≥ 0, (4.1)

where V ∗ denotes the payoff received upon exercise. Note that at least one of the equations (4.1)
holds with strict equality.

We use a penalty method [10, 26, 27] to convert the complementarity problem into a nonlinear
algebraic problem by adding a penalty term. Thus, equations (4.1) are combined into a single
equation,

Vτ =
σ2S2

2
VSS + (r − q)SVS − rV +

∫ ∞
−∞

ν(y)[V (Sey, τ)− V (S, τ)− S(ey − 1)VS ]dy + p(V, V ∗),

in which the penalty term p(V, V ∗) satisfies p(V, V ∗) = 0 if V ≥ V ∗; p(V, V ∗)→∞ otherwise.
Following the same approach as in the European case, we first discretize the jump integral term:

Vτ =
σ2 + σ̄2

2
S2VSS + (r − q − κ)SVS − (r + λ)V +

N−1∑
j=0

V (Seyj )γ̂(yj) + p(V, V ∗). (4.2)

Then we apply a semi-Lagrangian scheme for the first order term, coupled with fully implicit
timestepping:

V n+1
i [1 + (αi + βi + r + λ)∆τ ]−∆τβiV n+1

i+1 −∆ταiV n+1
i−1 = Φn+1V n

i + ∆τ(IV )n+1
i + pn+1

i ,

where the discrete penalty term pn+1
i = Large(V ∗i −V

n+1
i ) if V n+1

i < V ∗i ; pn+1
i = 0 otherwise. The

value of Large is chosen depending on the accuracy desired (see [26]). Similarly, Crank-Nicolson
timestepping for (4.2), after applying the semi-Lagrangian scheme, gives

V n+1
i

[
1 + (αi + βi + r + λ)

∆τ
2

]
− ∆τ

2
βiV

n+1
i+1 −

∆τ
2
αiV

n+1
i−1

=(Φn+1V n
i )
[
1− (αi + βi + r + λ)

∆τ
2

]
+

∆τ
2
βi(Φn+1V n

i+1) +
∆τ
2
αi(Φn+1V n

i−1)

+
∆τ
2

(IV )n+1
i +

∆τ
2

(Φn+1(IV )ni ) + pn+1
i .
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The matrix form of the discrete equations for the penalty method can be written as

[I−(1−θ)∆τL−(1−θ)∆τB+P (V n+1)]V n+1 = Φn+1[I+θ∆τL+θ∆τB]V n+[P (V n+1)]V ∗, (4.3)

where θ = 0 corresponds to the fully implicit method and θ = 1
2 refers to Crank-Nicolson method;

matrices L and B are defined as in (3.24) and (3.25) respectively; P is the matrix form of the
penalty term given by

P (V n+1)ii =

{
Large, if V n+1

i < V ∗i
0, otherwise;

(4.4)

P (V n+1)ij = 0, if i 6= j.

The coefficient matrix of V n+1 in (4.3) is a dense matrix due to the existence of B. As for the
European case, we can apply a fixed point iteration method,

[I − (1− θ)L+ P (V̂ k)]V̂ k+1 = Φn+1[I + θ∆τL+ θ∆τB]V n + (1− θ)∆τBV̂ k + P (V̂ k)V ∗,

with initial value of V̂ 0 = V n. The newly formed coefficient matrix

M = I − (1− θ)L+ P (V̂ k)

is a tridiagonal matrix with diagonal entries including the penalty values. The algorithm for a fixed
point iteration for American options is given in Algorithm 2.

Algorithm 2: Fixed point iteration for American options
1. Let V̂ 0 = V n

2. For k = 0, 1, 2, . . . until convergence do
3. Solve:
4. [I − (1− θ)∆τL+ P (V̂ k)]V̂ k+1 = Φn+1[I + θ∆τL+ θ∆τB]V n + (1− θ)∆τBV̂ k + P (V̂ k)V ∗

5. if maxi
|V̂ k+1
i −V̂ ki |

max(1,|V̂ k+1
i |)

< tolerance then

6. Quit
7. end if
8. end for

Similar to the European case, the preconditioned BiCGSTAB scheme can also be applied to
(4.3) except that we need to linearize the penalty term at each iterative step. To do this, at the
kth iterative step, we fix P̂ k = P (V̂ k) and thus have a linearized system, i.e., ÂkV̂ k+1 = b̂k where

Âk = I − (1− θ)∆τL− (1− θ)∆B + P (V̂ k),

b̂k = Φn+1[I + θ∆τL+ θ∆B]V n + P (V̂ k)V ∗. (4.5)

We iteratively solve the linearized system by the preconditioned BiCGSTAB with

Mk = I − (1− θ)∆τL+ P (V̂ k)

as the preconditioner until the stopping criteria is reached. Then we update the penalty term
by P̂ k+1 = P (V̂ k+1), and continue with the (k + 1)th iterative step. Our numerical experiments
indicated that it was not optimal to solve the linearized system ÂkV̂ k+1 = b̂k at each step in
Algorithm 2 to any great accuracy. In fact, all our numerical results will be reported for the case
where we carry out only a single BiCGSTAB iteration for each linearized system solve in Algorithm
2.
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5 Stability and Convergence Analysis

In this section, we provide the stability analysis for the fully implicit and Crank-Nicolson timestep-
ping schemes. Our numerical scheme can be generalized to deal with nonlinear pricing problems,
hence it is useful to include a proof of the monotonicity of fully implicit timestepping. Finally, we
discuss and explore convergence properties of the fixed point and BiCGSTAB iterative methods in
detail.

5.1 Stability and Monotonicity of Fully Implicit Discretization

As discussed in [19], stability and monotonicity are useful properties for a numerical scheme in
order to ensure convergence to the viscosity solution. A fully implicit discretization of (4.3) with a
penalty American constraint is

[I −∆τL−∆τB + P (V n+1)]V n+1 = Φn+1V n + [P (V n+1)]V ∗, (5.1)

in which we assume Φ is a linear interpolation operator. First, let’s summarize some useful results
for the implicit discretization scheme.

Lemma 5.1 The matrix L in (5.1) has the the following properties

•
∑

j Lij = −(r + λ), i = 1, . . . , imax − 1;

• Lij = 0, i = imax;

• Lij ≥ 0, i 6= j, for i, j = 1, . . . , imax − 1.

Proof . This follows directly from the definition of the matrix L (3.24), and the fact that we
impose a Dirichlet condition at i = imax and αi, βi ≥ 0 (3.21). �

Lemma 5.2 Let A = I −∆τL−∆τB. The matrix A is an M -matrix.

Proof . It follows from the properties of the matrix B (3.26) and Lemma 5.1, that∑
j

(−L−B)ij ≥ 0, ∀i,

provided that r ≥ 0, i.e. A has non-negative row sum. As well, since the off-diagonal entries of B
are non-negative (3.26) and αi, βi ≥ 0, A has non-positive off-diagonal elements. Note that since
we impose the Dirichlet condition at i = imax, A has at least one strictly positive row sum. Hence
A is an M matrix. �

Theorem 5.1 The fully implicit discretization method for American options (5.1) is uncondition-
ally l∞ stable, provided that Φ in equation (5.1) is a linear interpolation operator.

Proof . By Lemma 5.2, the properties of matrix B (3.26), and using a similar proof as in [23],
we can show that

‖ V n+1 ‖∞≤ max(‖ V n ‖∞, ‖ V ∗ ‖∞, |Dn+1|),

where Dn+1 is the Dirichlet condition imposed at i = imax. �
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Theorem 5.2 If Φ is a linear interpolation operator in equation (5.1), the fully implicit discretiza-
tion (5.1) is unconditionally monotone.

Proof . We can rewrite (5.1) at each grid node Si, i = 1, . . . , imax as follows,

Hi(V n+1
i , {V n+1

j }i, V n
i ) ≡ [Φn+1V n]i − [AV n+1]i + P (V n+1)ii(V ∗ − V n+1

i ) = 0, (5.2)

where {V n+1
j }i refers to the set of values V n+1

j such that j = 1, . . . , imax and j 6= i. By Lemma 5.2,
the definition of penalty matrix P (4.4) and using a similar proof as in [23], it is easy to show that

Hi(V n+1
i , {V n+1

j }i + ηn+1
j , V n

i + ηni ) ≥ Hi(V n+1
i , {V n+1

j }i, V n
i ),

Hi(V n+1
i + ηn+1

i , {V n+1
j }i, V n

i ) ≤ Hi(V n+1
i , {V n+1

j }i, V n
i ),

for ∀i, j 6= i, ηnj ≥ 0, ηn+1
j ≥ 0 and ηn+1

i ≥ 0. Hence the discretization (5.1) is monotone. �

5.2 Stability of Crank-Nicolson Discretization (European options)

The following result can be shown for European options.

Theorem 5.3 Suppose that the parameters, σ and r, in (2.3) are constant and upwind quadratic
interpolation is used in the semi-Lagrangian discretization. Further, assume an equally spaced
grid in logS coordinates, and periodic boundary conditions. Then Crank-Nicolson timestepping for
European options is unconditionally strictly stable in the l2 norm.

Proof . We use a similar approach as in [12, 28] by applying Von Neumann analysis (see
Appendix C). �

5.3 Convergence of Fixed Point Iteration

Theorem 5.4 The fixed point iteration is globally convergent for both European and American
cases.

Proof . Consider the European case. Let Ek = V n+1 − V̂ k be the error at kth iterative step
with V̂ k denoting the approximate value of V n+1. Then Ek satisfies (from Algorithm 1)

[I − (1− θ)∆τL]Ek+1 = (1− θ)∆τBEk.

Using a similar proof as in [12] together with Lemma 5.2 and properties of matrix B (3.26), we can
show that

‖ Ek+1 ‖∞≤‖ Ek ‖∞
(1− θ)λ∆τ

1 + (1− θ)(r + λ)∆τ
, (5.3)

where the scaler,
(1− θ)λ∆τ

[1 + (1− θ)(r + λ)∆τ ]
< 1,

is independent of the iteration number k. In the case of American options, from Lemma 5.2 and
results from [10], we have global convergence but we can not determine the rate of convergence.

�
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Let’s consider the rate of convergence in the European case. Since λ (3.11) is a function of the
density function ν(y) (2.2):

λ = O
(∫

Ω1∪Ω2

1
|y|1+Y

dy
)

=

{
O((∆y)−Y ); Y > 0
O(| ln ∆y|); Y = 0,

then we can rewrite equation (5.3) as

‖ Ek+1 ‖∞
‖ Ek ‖∞

=

O
(

(1−θ) ∆τ

(∆y)Y

1+(1−θ) ∆τ

(∆y)Y

)
; Y > 0

O
(

(1−θ)∆τ | ln ∆y|
1+(1−θ)∆τ | ln ∆y|

)
; Y = 0.

If we take the limit as ∆τ,∆y → 0, with ∆τ/∆y = const (which would normally be the case)
then, the number of iterations required for convergence to a fixed tolerance would be (Y > 1):

# itns = O

 1∣∣∣∣ln[ 1

1+
(∆y)Y−1

1−θ

]∣∣∣∣
 ∼ O ((∆y)1−Y ) , Y > 1, ∆y → 0. (5.4)

For the case of Y < 1, then the number of iterations per timestep should remain constant or
decrease as ∆y → 0 with ∆τ/∆y = const.

5.4 Convergence of the BiCGSTAB Method

Consider iterative solution of a matrix A, using a preconditioner M . If A and M are symmetric,
then it is known that the number of iterations required for a Conjugate Gradient type method is
[29]:

# itns = O

(
cond(M−1A)1/2

)
,

where cond(M−1A) is the condition number of M−1A. In the following, we give a heuristic analysis
which provides some insight into the expected behavior of BiCGSTAB for our problem.

The numerical results in [20] show that BiCGSTAB often converges considerably faster than
CG-S which is often observed as having a speed of convergence about twice as fast as for BiCG [30].
Since the convergence of BiCG is generally governed by the eigenvalues of the linear system to be
solved, we shall estimate the modulus of the largest eigenvalue, µmax, and the smallest eigenvalue,
µmin, of A (3.27) to gain some insight.

By Gerschgorin’s theorem, the eigenvalues of A are upper bounded by the maximum row sum-
mation of the absolute value of diagonal entry and the sum of the off-diagonal values, and lower
bounded by the minimum difference between them. More precisely,

|µmax| ≤ max
i

(|Aii|+
jmax∑

j=1,j 6=i
|Aij |), |µmin| ≥ min

i
(|Aii| −

jmax∑
j=1,j 6=i

|Aij |)

where jmax = imax is the number of columns of the square matrix A. From (3.27)

|Aii| = |1 + (1− θ)(αi + βi + r + λ)∆τ − (1− θ)∆τBii|
≤ 1 + (1− θ)(αi + βi + r + λ)∆τ + (1− θ)∆τBii (5.5)
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since αi, βi, Bii ≥ 0 and 0 ≤ θ ≤ 1, and the sum of the absolute values of the off-diagonal entries is

jmax∑
j=1,j 6=i

|Aij | = (1− θ)(αi + βi)∆τ + (1− θ)∆τ
jmax∑

j=1,j 6=i
Bij . (5.6)

Note that

max
i

(αi + βi) = max
i

(
(σ2 + σ̄)S2

i

[
1

(Si − Si−1)(Si+1 − Si−1)
+

1
(Si+1 − Si)(Si+1 − Si−1)

])
= max

i

(
(σ2 + σ̄)S2

i

(Si − Si−1)(Si+1 − Si)

)
=

(σ2 + σ̄)S2
imax

(∆S)2
, (5.7)

if we assume that ∆S = Si+1 − Si = const. Now combining (5.5), (5.6), (5.7) and (3.11), we have

|µmax| ≤ 1 + 2(1− θ)∆τ
(σ2 + σ̄)S2

imax

(∆S)2
+ (1− θ)∆τ(r + λ) + (1− θ)∆τ max

i

(jmax∑
j=1

Bij

)

≤ 1 + 2(1− θ)∆τ
(σ2 + σ̄)S2

imax

(∆S)2
+ (1− θ)∆τ(r + λ) + (1− θ)∆τλ

= O

(
∆τ

σ̄

(∆S)2
+ ∆τλ

)
, (5.8)

since θ, σ, Simax , r are constants. In (5.8), the first term ∆τ σ̄
(∆S)2 corresponds to diffusion and the

second term ∆τλ corresponds to the jump integral. Note that at each time step we apply the
preconditioner M (3.28) which we assume minimizes the effect of the diffusion term. Assuming the
second term dominates in (5.8) for preconditioned BiCGSTAB, we conclude that

|µmax| = O(∆τ(∆y)−Y ), Y > 0, ∆y → 0.

Similarly, we have

|µmin| ≥ min
i

(
1 + (1− θ)(αi + βi + r + λ)∆τ − (1− θ)(αi + βi)∆τ − (1− θ)∆τ

jmax∑
j=1

Bij

)
≥ min

i
(1 + (1− θ)(αi + βi + r + λ)∆τ − (1− θ)(αi + βi)∆τ − (1− θ)λ∆τ)

= O(1 + (1− θ)r∆τ)
= O(1). (5.9)

Thus, we conjecture that the number of iterations required for convergence for preconditioned
BiCGSTAB is

# itns = O

(√
|µmax|
|µmin|

)
= O(

√
∆τ(∆y)−Y ), Y > 0. (5.10)

If we take the limit as ∆τ,∆y → 0, with ∆τ/∆y = const, then, for Y > 1, we have

# itns = O

(√
(∆y)1−Y

)
, Y > 1, ∆y → 0,

which is a considerable improvement compared to equation (5.4).
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6 Numerical Results

This section presents the numerical results for pricing European and American Options under
the CGMY model. Unless stated otherwise, we apply the semi-Lagrangian discretization method
to (2.3) with Crank-Nicolson timestepping. The discrete system of the equations is solved using
preconditioned BiCGSTAB. We also include numerical results using a fixed point iteration for
comparison.

6.1 European Options

In this section, we carry out a series of convergence tests for evaluating European options. In
these tests, we are interested in studying how fast the computational results converge to the exact
solution. Let V̂ (h) denote the approximate option value, for a given ∆τ and grid spacing, and let
V̂ (h/2) denote the solution computed with the timestep reduced by a factor of two, and new nodes
inserted halfway between each node in the original grid. The convergence ratio, consequently, is
defined as

ratio =
V̂ (h2 )− V̂ (h)

V̂ (h4 )− V̂ (h2 )
. (6.1)

Suppose that the computational error is V̂ − V = O(hζ). If ratio = 2 then from (6.1) we conclude
ζ = 1, which implies a linear convergence. If ratio = 4 then ζ = 2, which indicates a quadratic
convergence.

For both BiCGSTAB and the fixed point iteration, the matrix-vector multiply is the most costly
operation in terms of flops. Since BiCGSTAB requires two matrix vector multiplies each iteration
[20], this means that each BiCGSTAB iteration is roughly twice as expensive (in terms of flops)
as a fixed point iteration. We remind the reader to take this into account when examining our
numerical results.

When Y = 0, the CGMY process is also known as Variance Gamma. Table 2 presents the
numerical results for pricing a European call option as we carry out a series of tests, where we
double the number of S grid nodes and the total number of timesteps for each test, with input
parameters given in Table 1.

S K T r q σ C G M Y

90 98 0.5 0.0 0.0 0.0 5.9311 20.2648 39.784 0.0

Table 1: The input parameters (from [31]) for evaluating a European call option under a Variance
Gamma process. Here K denotes the strike price and T the maturity time.

.

The first and second columns in Table 2 show that we are refining ∆S in the space domain and
∆τ in the time domain by half for each test. The constant number of iterations per time step for
both iterative methods indicate that under a Variance Gamma process the convergence rate of the
iterative methods is independent of the size of ∆y, as predicted in our theoretical analysis of these
two iterative methods in sections 5.3 and 5.4. The column of ratios (see equation (6.1)) in Table 2
suggests that quadratic convergence is achieved as the mesh and timestep size are reduced.

When 0 < Y < 1, the Lévy process has infinite activity but finite variation. We carry out two
experiments when Y = 0.6442 and Y = 1.0102 with the corresponding input parameters listed in
Table 3.
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Size of No. of Fixed Point BiCGSTAB
S grid time steps itns value ratio itns value ratio

129 50 6.04 0.60342750 n.a. 3.00 0.60342750 n.a.
257 100 5.02 0.61091895 n.a. 2.04 0.61091895 n.a.
513 200 5.01 0.61286313 3.8533 2.01 0.61286313 3.8533
1025 400 4.19 0.61326232 4.8703 2.00 0.61326232 4.8703
2049 800 4.00 0.61335445 4.3329 2.00 0.61335445 4.3329
4097 1600 4.00 0.61337338 4.8669 2.00 0.61337338 4.8669

Table 2: Comparison of fixed point iteration and preconditioned BiCGSTAB method for evaluating
a European call option under the Variance Gamma process. The tolerance for the stopping criteria
in both iterative methods is 10−8. “Itns” is the average number of iterations per time step. Note
that each BiCGSTAB iteration is about twice as expensive as a fixed point iteration.

S K T r q σ C G M Y

90 98 0.25 0.06 0.0 0.0 16.97 7.08 29.97 0.6442
90 98 0.25 0.06 0.0 0.0 0.42 4.37 191.2 1.0102

Table 3: The input parameters (from [2]) for evaluating European call options under CGMY when
Y = 0.6442 and Y = 1.0102 respectively. Here K denotes the strike price and T the maturity time.

.

Size of No. of Fixed Point BiCGSTAB
S grid time steps itns value ratio itns value ratio

129 25 62.44 16.640328 n.a. 12.88 16.640312 n.a.
257 50 57.78 16.327846 n.a. 10.26 16.327818 n.a.
513 100 50.93 16.242273 3.6516 8.37 16.242233 3.6513
1025 200 43.68 16.219794 3.8068 7.97 16.219744 3.8056
2049 400 36.34 16.214057 3.9183 7.41 16.213987 3.9064
4097 800 29.78 16.212605 3.9511 6.38 16.212532 3.9567

Table 4: Comparison of fixed point iteration and preconditioned BiCGSTAB method in evaluating
of a European call option under CGMY when Y = 0.6442. The tolerance for the stopping criteria
in both iterative methods is 10−8. “Itns” is the average number of iterations per time step. Note
that each BiCGSTAB iteration is about twice as expensive as a fixed point iteration.

Size of No. of Fixed Point BiCGSTAB
S grid time steps itns value ratio itns value ratio

129 25 33.04 2.2620859 n.a. 17.12 2.2620853 n.a.
257 50 34.92 2.2335988 n.a. 10.02 2.2335970 n.a.
513 100 37.04 2.2256496 3.5836 5.36 2.2256467 3.5833
1025 200 37.73 2.2235313 3.7526 4.91 2.2235255 3.7480
2049 400 37.58 2.2229885 3.9025 4.07 2.2229778 3.8729
4097 800 36.64 2.2228514 3.9592 3.09 2.2228398 3.9688

Table 5: Comparison of fixed point iteration and preconditioned BiCGSTAB method in evaluating
of a European call option under CGMY when Y = 1.0102. The tolerance for the stopping criteria
in both iterative methods is 10−8. “Itns” is the average number of iterations per time step. Note
that each BiCGSTAB iteration is about twice as expensive as a fixed point iteration.
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When Y is close to or smaller than one, the error of our discretization is bounded by O((∆y)2)
which implies that quadratic convergence is expected. Our numerical results in Table 4 and 5
confirm this conclusion. If we compare the two iterative methods with the same Y , it takes no
more than ten iterations per time step to converge for the preconditioned BiCGSTAB method
whereas the fixed point iteration needs about five to ten times more iterations. As Y gets large,
it is more advantageous to use preconditioned BiCGSTAB method over the fixed point iteration,
bearing in mind that each BiCGSTAB iteration is twice as costly as a fixed point iteration.

When 1 < Y < 2, this corresponds to a Lévy process with infinite activity and infinite variation.
Table 7 and 8 show the numerical results for pricing a European put option with Y = 1.4 and
Y = 1.8 respectively, with the input parameters listed in Table 6.

S K T r q σ C G M Y

500 500 0.25 0.4 0.0 0.2 1.0 1.4 2.5 1.4
10 10 0.25 0.1 0.0 0.0 1.0 8.8 9.2 1.8

Table 6: The input parameters for evaluating European put options under CGMY when Y > 1.
When Y = 1.4, the parameters are taken from [16], whereas the parameters for Y = 1.8 are selected
to stress our numerical algorithm.

.

As mentioned in section 3, the error of our numerical scheme for pricing option values under
an infinite variation process is bounded by O((∆y)3−Y ). Tables 7 and 8 show the expected results,
i.e. our numerical scheme can achieve better than a first order convergence rate when 1 < Y < 2,
but not a second order rate.

Size of No. of Fixed Point BiCGSTAB
S grid time steps itns value ratio itns value ratio

139 25 51.64 108.41531 n.a. 8.72 108.41532 n.a.
277 50 60.86 108.47423 n.a. 8.86 108.47425 n.a.
553 100 72.14 108.49175 3.3630 9.13 108.49180 3.3578
1105 200 85.94 108.49707 3.2932 9.39 108.49724 3.2261
2209 400 102.56 108.49865 3.3671 9.60 108.49888 3.3171
4417 800 122.28 108.49914 3.2245 10.29 108.49939 3.2157

Table 7: Comparison of fixed point iteration and BiCGSTAB method in evaluating of a European
put option under CGMY when Y = 1.4. The tolerance for the stopping criteria in both itera-
tive methods is 10−8. “Itns” is the average number of iterations per time step. Note that each
BiCGSTAB iteration is about twice as expensive as a fixed point iteration.

6.2 American Options

In this section, a number of numerical experiments are carried out to illustrate the performance
and convergence of pricing American options with our numerical scheme. First, we use a semi-
Lagrangian fully implicit discretization to compute the American put options when Y = 1.4 and
Y = 1.6 using the CGMY parameters listed in Table 9.

In Figure 1(a) the American put option is compared with its counterpart European type,
whereas in Figure 1(b) the value of an American put option is presented with varying time to
maturity.
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Size of No. of Fixed Point BiCGSTAB
S grid time steps itns value ratio itns value ratio

129 25 48.44 4.1690294 n.a. 8.68 4.1690297 n.a.
257 50 88.46 4.2859081 n.a. 12.14 4.2859097 n.a.
513 100 144.12 4.3348687 2.3872 16.94 4.3348743 2.3870
1025 200 216.52 4.3563344 2.2809 24.43 4.3563531 2.2797
2049 400 309.92 4.3667237 2.0661 30.69 4.3667826 2.0594
4097 800 415.49 4.3714972 2.1765 49.32 4.3716708 2.1336

Table 8: Comparison of fixed point iteration and BiCGSTAB method in evaluating of a European
put option under CGMY when Y = 1.8. The tolerance for the stopping criteria in both itera-
tive methods is 10−8. “Itns” is the average number of iterations per time step. Note that each
BiCGSTAB iteration is about twice as expensive as a fixed point iteration.

S K T r q σ C G M Y

500 500 0.5 0.4 0.0 0.2 1.0 1.4 2.5 1.4
10 10 0.5 0.1 0.0 0.0 1.0 8.8 9.2 1.6

Table 9: The input parameters (from [16]) for evaluating American put options under CGMY
when Y > 1. Here K denotes the strike price and T the maturity time.
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Figure 1: (a) Left: Compare American and European put options under CGMY when Y = 1.4.
The size of the S grid is 4417 and the total number of time steps is 800. (b) Right: American put
options of different maturities under CGMY with zero volatility and Y = 1.6.
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Second, we apply a semi-Lagrangian Crank-Nicolson discretization to carry out a convergence
test for computing an American put option when Y = 1.0102. The numerical results are given in
Table 10. The input parameters are the same as in Table 3, except that the option type now is an
American put. The results show that we can achieve quadratic convergence for pricing American
options when Y is close to 1.

Size of No. of Fixed Point BiCGSTAB
S grid time steps itns value ratio itns value ratio

129 25 43.12 9.2575368 n.a. 11.08 9.2575368 n.a.
257 50 44.28 9.2296024 n.a. 10.66 9.2296024 n.a.
513 100 44.74 9.2214740 3.4366 10.41 9.2214743 3.4366
1025 200 44.58 9.2192587 3.6692 10.32 9.2192594 3.6699
2049 400 43.90 9.2186758 3.8005 9.97 9.2186766 3.8005
4097 800 42.77 9.2185249 3.8628 9.49 9.2185268 3.8905

Table 10: Comparison of fixed point iteration and preconditioned BiCGSTAB method in evaluating
of an American put option under CGMY when Y = 1.0102. The tolerance for the stopping criteria
in both iterative methods is 10−8. For the fixed point method, “Itns” is the average number of
iterations per time step. For the BiCGSTAB method, “Itns” is the average total iterations per
timestep. For each linearized solution in Algorithm 2, we carry out only a single BiCGSTAB
iteration. Note that each BiCGSTAB iteration is about twice as expensive as a fixed point iteration.

Third, we use semi-Lagrangian and fully implicit discretization scheme to compute the American
call options under CGMY with zero and non-zero diffusion components. Figure 2 shows the option
values and their deltas with Y = 0 and Y = 0.6 . The input parameters are listed in Table 11.

S K T r q σ C G M Y

100 100 9.0 0.1 0.1 0.0 0.0 9.5085 5.2585 0.0
100 100 9.0 0.1 0.1 0.0 0.0 9.5085 5.2585 0.6

Table 11: The input parameters (from [9]) for evaluating American call options under CGMY
process when Y = 0.0 and Y = 0.6 respectively. Here K denotes the strike price and T the maturity
time.

.

We note that in Figure 2(b) the delta shows a discontinuous jump without a diffusion component
under a Variance Gamma process. As Y gets large, the discontinuity is smoothed out (see Figure
2(d)). The results are consistent with our intuition: as the Lévy process becomes more singular, it
behaves more like a diffusion process.

7 Conclusion

The difficulty of solving the option pricing PIDE under an infinite activity jump process can be
characterized by the nature of the singularity of the jump size density function. Let

ν(y) = O

(
1

|y|1+Y

)
; y → 0 . (7.1)

The basic method developed in this paper splits the jump integral term into two components: a
region near y = 0, and a region away from y = 0. An implicit timestepping technique is employed,
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Figure 2: (a) upper left: American call option with zero diffusion and payoff function when Y = 0;
(b) upper right: deltas of the American calls with and without diffusion terms when Y = 0; (c) lower
left: American call option and payoff with zero diffusion when Y = 0.6 (d) lower right: deltas of
the American call with and without diffusion terms when Y = 0.6. The size of S grid is 1025 and
the total number of time steps is 7200.

and an iterative method is used to avoid a dense matrix solve. The iterative method lags the
portion of the integral away from y = 0.

For the case where 0 ≤ Y ≤ 1, a simple fixed point iteration is satisfactory, and the discretization
method exhibits second order convergence as the mesh and time step are refined. In the case of
1 ≤ Y < 2, the fixed point iteration becomes inefficient. However, our numerical tests indicate that
a BiCGSTAB iteration is very effective at keeping the number of iterations per time step small. As
Y → 2, the convergence of the method as the mesh and time step are refined degenerates gracefully
to first order. This is a consequence of the method used to approximate the jump integral near
y = 0.

The technique developed here is simple to implement in existing option pricing software. Since
this method is modular, and builds on standard option pricing building blocks, we can easily
generalize this method to handle American early exercise and other path dependent features. In
addition, in the fully implicit case, where linear interpolation is used in the semi-Lagrangian step,
the discretization method is unconditionally monotone and l∞ stable. This makes this method
potentially useful for nonlinear pricing problems, e.g. optimal stochastic control, where questions

22



of convergence to the viscosity solution arise.

A Error Analysis

In this section we discuss the total error from computing the jump integral part in Ω1 (3.3). To be
more specific, the error term Ej in (3.7) is composed of the following two components:

E1
j =

∫ yj+∆y/2

yj−∆y/2
F ′(yj)(y − yj)ν(y)dy, E2

j =
∫ yj+∆y/2

yj−∆y/2
F ′′(ξ(y))(y − yj)2ν(y)dy,

with ξ(y) ∈ [yj−∆y/2, yj+∆y/2]. Let F ′′(ξ(y)) ≤ C where C denotes some finite constant number,
then from ν(y) = y2ν(y) = O(|y|1−Y ) we have∑

j:yj∈Ω1

E2
j ≤ C1(∆y)2

∫
Ω1

|y|1−Y dy

= C1(∆y)2

(
1y>0

y2−Y

2− Y

∣∣∣∣1
∆y/2

+ 1y<0
|y|2−Y

2− Y

∣∣∣∣−∆y/2

−1

)
≤ C1(∆y)2| log(∆y)| when Y → 2,

where C1 is some constant.
The error term E1

j can be rewritten as

E1
j =

∫ yj+∆y/2

yj−∆y/2
F ′(yj)ν ′(η(y))(y − yj)2dy,

for some η(y) ∈ [yj −∆y/2, yj + ∆y/2] by doing the Taylor expansion of ν(y) around yj as well.
Let F ′(yj) be bounded independent of yj , then from ν ′(y) = O(|y|−Y ) we have∑

j:yj∈Ω1

E1
j ≤ C2(∆y)2

∫
Ω1

|y|−Y dy

= C2(∆y)2

(
1y>0

y1−Y

|1− Y |

∣∣∣∣1
∆y/2

+ 1y<0
|y|1−Y

|1− Y |

∣∣∣∣−∆y/2

−1

)
≤ C2 max((∆y)2−ε, (∆y)3−Y ),

where C2 is some constant, and ε is an arbitrarily small positive number. Thus the total error from
computing the integral in Ω1 is

EΩ1 =
∑

E1
j +

∑
E2
j = O((∆y)min(2−ε,3−Y )).

B Quadrature Rules

In this section we provide the computational details for approximating the finite integral of the
Lévy measure, i.e. γ(yj) (3.8), ∀yj ∈ Ω1 ∪ Ω2. As we have discussed in Section 3.1, the Lévy
measure ν(y) over Ω2 is a smooth function, hence we can use a standard numerical integration
method, e.g. the composite Trapezoidal rule, to compute

γ(yj) =
∆y
n

[1
2
ν(z0) + ν(z1) + . . .+ ν(zn−1) +

1
2
ν(zn)

]
+

1
12

(∆y)3

n
γ′′(ξ(y)), yj ∈ Ω2

23



where z0 = yj − ∆y/2, zn = yj + ∆y/2, and ξ(y) ∈ [yj − ∆y/2, yj + ∆y/2]. If we choose n = 4
subdivisions, we have

γ̂(yj) =
∆y
4
[1
2
ν(z0) + ν(z1) + ν(z2) + ν(z3) +

1
2
ν(z4)

]
, yj ∈ Ω2

with a local error of O((∆y)3).
The approximation of γ(yj) for yj ∈ Ω1 is more subtle due to the singularity of the Lévy measure

ν(y) over Ω1. In the Trapezoidal rule, the weights on the sample locations are independent of the
integrand. A special quadrature rule, which systematically computes the weights on the evaluated
points depending on the integrated function, is more desirable for the integral of γ(yj) when yj ∈ Ω1.

The basic idea of the special quadratic rule is to choose weights w1, w2, . . . , wm on the fixed
uniform locations z1, z2, . . . , zm in the interval [a, b] to minimize the error in the approximation:∫ a

b

1
yη
f(y)dy '

m∑
i=1

wif(zi) + Error, (B.1)

where in our particular case η = −1 + Y , a = yj −∆y/2, b = yj + ∆y/2 and

f(y) = Ce−My1y>0 + Ce−G|y|1y<0.

If we apply Taylor expansion on e−My when y > 0, we have

f(y) = C(1−My +
M2

2
y2 − M3

6
y3 +O(y4)).

Similarly, f(y) can also be approximated by Taylor expansion when y < 0. Then substituting the
expansion result into (B.1), when y > 0 we have, up to the 3rd order for f(y),

C

∫ b

a

1
yη
dy − CM

∫ b

a

1
yη
ydy +

CM2

2

∫ b

a

1
yη
y2dy − CM3

6

∫ b

a

1
yη
y3dy

'C
m∑
i=1

wi − CM
m∑
i=1

wizi +
CM2

2

m∑
i=1

wiz
2
i −

CM3

6

m∑
i=1

wiz
3
i ,

with the error term in equation (B.1):

Error = O
(∫ b

a

y4

yη
dy
)
. (B.2)

In order to minimize the error terms, we must have

CM j

∫ b

a
yj−ηdy − CM j

m∑
i=1

wiz
j
i = 0, 0 ≤ j ≤ 3.

Note that ∫ b

a
yj−ηdy =

1
j + 1− η

yj+1−η
∣∣∣∣b
a

=
bj+1−η − aj+1−η

j + 1− η
.
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Similar equations can be derived when y < 0. If we preallocate m = 4 points, z1, z2, z3 and z4, we
only have four unknowns w1, w2, w3 and w4 with the following four constraint conditions

j = 0 w1 + w2 + w3 + w4 =
b1−η − a1−η

1− η
,

j = 1 w1z1 + w2z2 + w3z3 + w4z4 =
b2−η − a2−η

2− η
,

j = 2 w1z
2
1 + w2z

2
2 + w3z

2
3 + w4z

2
4 =

b3−η − a3−η

3− η
,

j = 3 w1z
3
1 + w2z

3
2 + w3z

3
3 + w4z

3
4 =

b4−η − a4−η

4− η
.

By solving the above linear system to obtain the optimal weights, we have

γ̂(yj) =
1
y2
j

4∑
i=1

wif(zi), zi = yj −
∆y
2

+ i
∆y
5
, yj ∈ Ω1.

In the worst case, as Y → 2, η = −1 + Y = 1, which makes the error term in (B.2) becomes∫ b

a

y4

y
dy =

∫ b

a
y3dy =

(b− a)4

4
= O((∆y)4),

since b− a = ∆y, hence

γ̂(yj) = γ(yj) +O

(
(∆y)4

y2
j

)
, yj ∈ Ω1 . (B.3)

C Von Neumann Stability Analysis of the Crank-Nicolson method

We assume constant coefficients in the transformed PIDE (3.12), with an evenly spaced grid along
the logS coordinate, and periodic boundary conditions. The Crank-Nicolson method is applied
after the first order term has been discretized by a semi-Lagrangian scheme with upwind quadratic
interpolation.

First, by applying the change of variables x = logS, and letting V (x, τ) = V (ex, τ), we rewrite
equation (3.12) as the following PIDE, as a function of V (x, τ),

V τ =
σ2 + σ̄

2
V xx + (r − q − κ− σ2 + σ̄

2
)V x − (r + λ)V + V ⊗ γ̂, (C.1)

where V ⊗ γ̂ is a correlation product.
Then, we use the semi-Lagrangian discretization (see Section 3.2 for details) on equation (C.1).

Let x(xi, τn+1, τ) be the trajectory satisfying

dx

dτ
= −(r − q − κ− σ2 + σ̄

2
), (C.2)

which passes through the grid point xi at time τn+1. Let xi(n+1) be the departure point of this
trajectory at time τn. Then xi(n+1) is determined by solving the ODE (C.2) starting at xi from
τn+1 to τn:

xi(n+1) = xi − (r − q − κ− σ2 + σ̄

2
)∆τ. (C.3)
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The value of function V
n
i(n+1) ≡ V (xi(n+1), τ

n) is computed by an upwind quadratic interpolation
from the original grid V

n and x.
The Crank-Nicolson discretization of equation (C.1), after applying semi-Lagrangian timestep-

ping, can be written as

V
n+1
i

[
1 + α∆τ + (r + λ)

∆τ
2

]
− ∆τ

2
αV

n+1
i+1 −

∆τ
2
αV

n+1
i−1 −

∆τ
2

(V ⊗ γ̂)n+1
i

=V n
i(n+1)

[
1− α∆τ − (r + λ)

∆τ
2

]
+

∆τ
2
αV

n
i+1(n+1) +

∆τ
2
αV

n
i−1(n+1) +

∆τ
2

(V ⊗ γ̂)ni(n+1), (C.4)

where

α =
σ2 + σ̄

2(∆x)2
.

Suppose the departure point xi(n+1) lies between the grid points xi−p and xi−p−1 for some
integer p, i.e. xi−p−1 ≤ xi(n+1) ≤ xi−p. Because the difference between xi(n+1) and xi, ∀i, in (C.3)
is constant, we can consequently locate xi−1(n+1) and xi+1(n+1) such that

xi−p−2 ≤ xi−1(n+1) ≤ xi−p−1, xi−p ≤ xi+1(n+1) ≤ xi−p+1.

By upwind quadratic interpolation, the location of the third point depends on the coefficient of
the drift term,

d ≡ −(r − q − κ− σ2 + σ̄

2
)

in (C.2). If d is positive, we choose xi−p−3, xi−p−2 and xi−p−1 as the third point to compute
V
n
i−1(n+1), V

n
i(n+1) and V i+1(n+1) respectively. If d is non-positive, we choose the third point in the

other direction. Without loss of generality, we may assume that d is positive, so that we have

V
n
i−1(n+1) = V

n
i−p−3ψi−1,i−p−3 + V

n
i−p−2ψi−1,i−p−2 + V

n
i−p−1ψi−1,i−p−1,

V
n
i(n+1) = V

n
i−p−2ψi,i−p−2 + V

n
i−p−1ψi,i−p−1 + V

n
i−pψi,i−p,

V
n
i+1(n+1) = V

n
i−p−1ψi+1,i−p−1 + V

n
i−pψi+1,i−p + V

n
i−p+1ψi+1,i−p+1, (C.5)

where ψ’s are the Lagrangian basis functions. In general, let ψh,m denote the basis function at the
grid point xm used to compute V n

h(n+1):

ψh,m(x) =
(x− xm+1)(x− xm+2)

(xm − xm+1)(xm − xm+2)
, if h−m = p+ 2,

ψh,m(x) =
(x− xm−1)(x− xm+1)

(xm − xm−1)(xm − xm+1)
, if h−m = p+ 1,

ψh,m(x) =
(x− xm−2)(x− xm−1)

(xm − xm−2)(xm − xm−1)
, if h−m = p. (C.6)

Typically, we are interested in ψh,m’s such that h = i− 1, i, i+ 1 and m = i− p− 3, . . . , i− p+ 1
as in (C.5).
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Let V n = [V n
i , . . . , V

n
imax

]′ to be the vector of discrete solution values. Substituting (C.5) into
(C.4), we obtain the following equation

V
n+1
i

[
1 + α∆τ + (r + λ)

∆τ
2

]
− ∆τ

2
αV

n+1
i+1 −

∆τ
2
αV

n+1
i−1 −

∆τ
2

(V ⊗ γ̂)n+1
i

=V n
i−p−1

[(
1− α∆τ − (r + λ)

∆τ
2

)
ψi,i−p−1 + α

∆τ
2
ψi+1,i−p−1 + α

∆τ
2
ψi−1,i−p−1

]
+

V
n
i−p−2

[(
1− α∆τ − (r + λ)

∆τ
2

)
ψi,i−p−2 + α

∆τ
2
ψi−1,i−p−2

]
+

V
n
i−p

[(
1− α∆τ − (r + λ)

∆τ
2

)
ψi,i−p + α

∆τ
2
ψi+1,i−p

]
+

V
n
i−p+1

[
α

∆τ
2
ψi+1,i−p+1

]
+ V

n
i−p−3

[
α

∆τ
2
ψi−1,i−p−3

]
+

(V ⊗ γ̂)i−p−2
∆τ
2
ψi,i−p−2 + (V ⊗ γ̂)i−p−1

∆τ
2
ψi,i−p−1 + (V ⊗ γ̂)i−p

∆τ
2
ψi,i−p. (C.7)

We apply the discrete Fourier transform to (C.7) by defining the inverse discrete Fourier trans-
form as follows

V
n
i =

1
L

N−1∑
k=0

e
2π
N
ik
√
−1Cnk , γ̂i =

1
L

N−1∑
l=0

e
2π
N
il
√
−1Gl, (C.8)

where Cnk and Gl are the discrete Fourier coefficients of V n and γ̂, L = ymax − ymin. Then the
discrete correlation can be written as

(V ⊗ γ̂)ni =
1
L

N−1∑
k=0

CnkG−ke
2π
N
ik
√
−1. (C.9)

Substituting (C.8) and (C.9) into (C.7), we obtain, for each Fourier component,

Cn+1
k

(
1 + α∆τ + (r + λ)

∆τ
2
− α∆τ

2
e

2π
N
k
√
−1 − α∆τ

2
e−

2π
N
k
√
−1 − ∆τ

2
G−k

)
= Cnk

(
e−

2π
N

(p+1)k
√
−1

[(
1− α∆τ − (r + λ−G−k)

∆τ
2
)
ψi,i−p−1 + α

∆τ
2
ψi+1,i−p−1 + α

∆τ
2
ψi−1,i−p−1

]
+ e−

2π
N

(p+2)k
√
−1

[(
1− α∆τ − (r + λ−G−k)

∆τ
2
)
ψi,i−p−2 + α

∆τ
2
ψi−1,i−p−2

]
+ e−

2π
N
pk
√
−1

[(
1− α∆τ − (r + λ−G−k)

∆τ
2
)
ψi,i−p + α

∆τ
2
ψi+1,i−p

]
+ e−

2π
N

(p−1)k
√
−1
[
α

∆τ
2
ψi+1,i−p+1

]
+ e−

2π
N

(p+3)k
√
−1
[
α

∆τ
2
ψi−1,i−p−3

])
. (C.10)

After simplification, we can rewrite the right hand side of (C.10) as

Cnk

((
1− α∆τ − (r + λ−G−k)

∆τ
2
) i−p∑
m=i−p−2

ψi,me
− 2π
N

(i−m)k
√
−1+

α
∆τ
2
[
e

2π
N
k
√
−1

i−p+1∑
m=i−p−1

ψi+1,me
− 2π
N

(i+1−m)k
√
−1 + e−

2π
N
k
√
−1

i−p−1∑
m=i−p−3

ψi−1,me
− 2π
N

(i−1−m)k
√
−1
])
.
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Since, by the definition of ψh,m in (C.6),

ψh,m = ψh+1,m+1, (C.11)

we have

i−p+1∑
m=i−p−1

ψi+1,me
− 2π
N

(i+1−m)k
√
−1 =

i−p∑
m=i−p−2

ψi,me
− 2π
N

(i−m)k
√
−1 =

i−p−1∑
m=i−p−3

ψi−1,me
− 2π
N

(i−1−m)k
√
−1.

Now we define

ρi ≡
i−p∑

m=i−p−2

ψi,me
− 2π
N

(i−m)k
√
−1,

and derive the following equation

|Cn+1
k |
|Cnk |

=

∣∣∣∣(1− α∆τ − (r + λ−G−k)∆τ
2 + α∆τ

2

(
e

2π
N
k
√
−1 + e−

2π
N
k
√
−1
))
ρi

∣∣∣∣∣∣∣∣1 + α∆τ + (r + λ−G−k)∆τ
2 − α

∆τ
2 (e

2π
N
k
√
−1 + e−

2π
N
k
√
−1)
∣∣∣∣ . (C.12)

It has been proved that for the case of constant coefficient equations with evenly spaced grid
points and periodic boundary conditions, if the quadratic interpolation scheme satisfies (C.11),
then |ρi| ≤ 1 (see [22] for details). Thus,

|Cn+1
k |2

|Cnk |2
≤
∣∣1− r∆τ

2 − (λ−G−k)∆τ
2 − α∆τ

(
1− cos

(
2π
N k
))∣∣2∣∣1 + r∆τ

2 + (λ−Gk)∆τ
2 + α∆τ

(
1− cos(2π

N k)
)∣∣2

=

[
1− r∆τ

2 − (λ−GR−k)
∆τ
2 − α∆τ

(
1− cos

(
2π
N k
)]2 +

[
∆τ
2 G

I
−k
]2[

1 + r∆τ
2 + (λ−GR−k)

∆τ
2 + α∆τ

(
1− cos(2π

N k)
)]2 +

[
∆τ
2 G

I
−k
]2 ,

where
GR−k = Re(G−k), GI−k = Im(G−k).

Note that

G−k =
L

N

N−1∑
j=0

γ̂je
2π
N
kj
√
−1.

From (3.11) we have
L

N

N−1∑
j=0

γ̂j ≤ λ,

so that |G−k| ≤ λ, and hence −λ ≤ GR−k ≤ λ. Further note that r ≥ 0 and 1 − cos(2π
N k) ≥ 0. It

then follows that, ∀k ∈ [−N/2 + 1, N/2],∣∣1 +
r∆τ

2
+

∆τ
2

(λ−GR−k) + ∆τα
(
1− cos(

2π
N
k)
)∣∣ > ∣∣1− r∆τ

2
− ∆τ

2
(λ−GR−k)−∆τα

(
1− cos(

2π
N
k)
)∣∣,

and consequently |Cn+1
k | < |Cnk |, ∀k. As a result the scheme is unconditionally strictly stable.
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319–337, Birkhäuser, Boston, 2001.

[5] D. B. Madan, P. Carr, and E. Change. The Variance Gamma process and option pricing.
European Finance Review, 2:79–105, 1998.

[6] D. Madan. Financial modeling with discontinuous price processes. In T. Mikosch O. Barndorff-
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