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Abstract. We propose a geometric multigrid method for solving linear systems arising from
irregular boundary problems involving multiple interfaces in two and three dimensions. In this
method, we adopt a matrix-free approach; i.e., we do not form the fine grid matrix explicitly and we
never form nor store the coarse grid matrices, as many other robust multigrid methods do. The main
idea is to construct an accurate interpolation which captures the correct boundary conditions at the
interfaces via a level set function. Numerical results are given to compare our multigrid method with
black box and algebraic multigrid methods.
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1. Introduction. In many applications and simulations—for instance, in the
simulation of epitaxial thin film growth using the island dynamics model [7, 9, 14] or
water simulation modeled as incompressible two-phase flow [26]—one needs to solve
second order elliptic partial differential equations (PDEs) of the form

−∇a(x)∇u = f on Ω,(1.1)

where Ω = ∪m
i=1Ωi and {Ωi} are disjoint subsets. Let Γi = ∂Ωi be the (internal)

interface. The model problem is to solve the PDE subject to boundary conditions
on ∂Ω and coupling conditions on Γi, i = 1, 2, . . . ,m. We say the model problem
is of Dirichlet type if a Dirichlet boundary condition is used on Γi, and of interface
type if jump conditions are used instead. For instance, the epitaxial thin film growth
simulation can be modeled as an irregular boundary problem of Dirichlet type, and
water simulation modeled as interface type. We shall make these more precise in
sections 2 and 3.

The challenge in solving irregular problems is that the shapes of the interfaces can
be very complex and do not, in general, align with any Cartesian grid. One approach
is to use finite element or finite volume discretizations together with unstructured
triangulated grids [13, 18], which can easily adapt to complex geometries. However,
the interfaces often move in each time step in a time-dependent calculation, e.g., water
surfaces. In such a case, one needs to do regridding in every time step, which can be
expensive.

An alternative approach is to use the level set formulation [22] to represent com-
plex interfaces on an Eulerian grid, typically a Cartesian grid. No regridding is neces-
sary. Instead, the level set function is updated, or evolved, in each time step according
to the level set equation. In this paper, we adopt this approach for representing in-
terfaces.
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Discretization methods have been proposed to solve elliptic PDEs with an inter-
face; see, for instance, [19] (see also the references therein for other methods). Re-
gardless of which method is used, one needs to solve a linear system arising from the
discretization, which is the most time-consuming part, in a time-dependent calcula-
tion. For example, in [19], preconditioned conjugate gradient (PCG) with incomplete
Cholesky factorization as preconditioner is used to solve the linear system. Although
PCG is more efficient than classical relaxation methods, as pointed out in [19], the
rate of convergence still depends on the mesh size h. In practice, the convergence rate
is often observed to be O(h−1). Moreover, the complexity constant depends on PDE
coefficients and geometry. Thus, for large problems and nonsmooth PDE coefficients
on complex domains, many PCG iterations are required to obtain accurate solutions.
Another preconditioner based on deflation can be found in [12], which shows improved
results for discontinuous coefficient problems.

In this paper, we are interested in efficient iterative methods for solving linear sys-
tems arising from irregular boundary problems involving multiple (possibly moving)
interfaces in two and three dimensions. In addition to the issue of mesh size depen-
dence of convergence rate, memory storage for the fine grid matrix addresses another
issue since the problem size in real applications can be in the order of millions, despite
whether the fine grid matrix is sparse. In the following sections, we propose a geomet-
ric multigrid method which employs a matrix-free approach; i.e., we do not form the
fine grid matrix explicitly. Specifically, we just need the discretization stencil at each
grid point. Also, we never form nor store the coarse grid matrices, which is a com-
mon practice in many robust multigrid methods. What is necessary is the geometric
information of the interface which is given implicitly through the level set functions.
The main idea of our approach is to construct an interpolation which captures the
correct boundary conditions at the interface. Thus, we allow jump discontinuity at
the interface as well as multiple interfaces. To the best of our knowledge, the issue of
multiple interfaces has not been addressed much in the multigrid literature.

Multigrid has been proved numerically and theoretically to be an efficient method
for solving elliptic PDEs with smooth coefficients on simple geometries such as rect-
angular grids [5, 15, 28, 31]. The convergence rate is often independent of the mesh
size, and typically is around 0.1 to 0.2—textbook multigrid efficiency. However, when
the coefficients are not smooth—for instance, they have jump discontinuities of order
103 or higher—the convergence rate of standard multigrid can be very slow. Such
problems often arise in practice; for instance, in water simulation modeled by incom-
pressible two phase flow, the density ratio 1000:1 of water to air leads to a jump
discontinuity of order 103.

Algebraic multigrid (AMG) [25] uses purely algebraic techniques to select coarse
grid points based on the notion of strong connections and to define the interpolation
operator based on algebraic smoothness. Because of its algebraic nature, geometry
and dimensionality are not needed in the construction. Instead, the nonsmoothness
of the PDE coefficients and the underlying geometry are exploited implicitly through
the matrix entries by the matrix-dependent interpolation. However, for problems of
Dirichlet type, we found that the AMG coarse grid matrices tend to be much denser
than for the smooth coefficient case where a factor of 1/4 and 1/8 reduction in the
number of nonzeros is usually observed on the coarse grid matrices in two and three
dimensions, respectively. Moreover, since the coarse grid operators are generated
algebraically by the Galerkin process, they have to be precomputed, and additional
storage is required. However, we note that aggressive coarsening technique has been
discussed in [28] to address the issue of denser AMG coarse grid matrices.
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Another robust approach is the black box multigrid method [10, 11] (see also [2]).
It assumes the matrix is formed by a five-point or nine-point discretization on a (log-
ically) rectangular grid. But other than this assumption, the algorithm is completely
algebraic. The coarse grid matrices are formed by the Galerkin process. To handle
the nonsmooth coefficients, operator-dependent interpolation is constructed based on
the discretization stencil information. The idea is to apply a robust one-dimensional
(1D) interpolation (cf. section 2.2) to noncoarse grid points lying on coarse grid lines
in two dimensions. To obtain a 1D three-point stencil from a two-dimensional (2D)
five-point/seven-point stencil, a lumping technique is used. However, it does not take
into account that an interface with zero boundary condition might exist, which can
lead to poor interpolation weights. We shall explain this in more details in section 2.3.
Because of the five-point or nine-point stencil structure of the fine grid matrix, all the
coarse grid matrices, in general, have the nine-point stencil sparsity pattern. Thus
the number of nonzeros of the coarse grid matrices is not influenced by the number or
the shape of the interfaces, as opposed to the AMG approach. However, due to the
use of the Galerkin process, it suffers from the same storage problem as AMG.

Other robust multigrid approaches include matrix-dependent [23, 24, 32], agglom-
eration [20, 29], and energy minimization [30]. Some of these methods are restricted
to two dimensions only, and most of them use Galerkin coarsening, and hence extra
storage is needed for the coarse grid operators. Besides, the numerical results pre-
sented are mainly for 2D problems, and PDEs involving multiple interfaces are not
discussed. Recently, Adams and Li [1] proposed a 2D immersed interface multigrid
method. Black box multigrid interpolation is used for grid points away from the in-
terface, and Taylor expansion with a need of change of coordinate is used to derive
interpolation weights for grid points near the interface. The three-dimensional (3D)
case and multiple interfaces are not discussed, in which case the calculations would
possibly be more involved. From their numerical results, the convergence of their
multigrid method slows down with increasing jump sizes. Our proposed multigrid
method maintains a more uniform convergence with respect to mesh size and the size
of the jumps (cf. section 5).

We note that a capacitance matrix preconditioning approach has been studied in
[3]. It shows a much improved convergence than PCG for one interface, i.e., m = 1.
However, it deteriorates when m increases since the associated Schur complement
problem becomes denser as more interfaces exist. Such a phenomenon commonly
happens in the thin film simulation where small islands start to appear at different
regions.

In the following, section 2 will describe the proposed multigrid for Dirichlet-
type problems. In section 3, a modified multigrid method is described for interface-
type problems. An analysis is given in section 4 to justify the better accuracy of
our interpolation. In section 5, the proposed multigrid method is compared with
PCG, AMG, and blackbox multigrid methods in several numerical examples. Finally,
concluding remarks are given in section 6.

2. Irregular boundary problem of Dirichlet type. In the simulation of the
growth of epitaxial thin films using the island dynamics model [9, 14], growth is de-
scribed by the creation and subsequent motion of island boundaries. For a continuous
adatom-density ρ(x, t), the diffusion equation is

∂ρ

∂t
= ∇ · (D∇ρ) + F − 2Dσ1ρ

2,(2.1)
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where D is the diffusion coefficient, F is the flux of atoms to the surface, and σ1

is the capture number for nucleation. The numerical boundary condition for ρ on a
square grid is periodic. For each of the islands, if irreversible aggregation or growth is
assumed, the boundary condition imposed on the island boundaries will be of Dirichlet
type:

ρ = 0.(2.2)

To track the large number of individual interfaces (island boundaries) that coalesce
or are created by nucleation, a level set formulation has been used [9, 14]. In this
formulation, the closed curves of the island boundary, Γ = ∪m

i=1Γi, are represented as
the zero level set of a function, φ(x, t), i.e.,

Γ = {x : φ(x, t) = 0}.(2.3)

The motion of the curves Γ are evolved by the level set equation

∂φ

∂t
+ vn|∇φ| = 0,(2.4)

where vn is the normal velocity on the level set which can be given by a jump condition
of ρ across island boundaries in the normal direction. To summarize, in each time
step, perform the following computations:

1. Compute an approximation to the normal velocity, vn.
2. Update φ by solving (2.4).
3. Solve the diffusion equation (2.1) for ρ, with the internal boundary condition

(2.2). The location of the boundary is implicitly given by (2.3).
The diffusion equation can be discretized by a finite difference method [9, 19], which
results in a symmetric linear system. In [9], PCG is used to solve the linear system,
and an average of 50 PCG iterations is needed in each time step. Note that for
the incomplete Cholesky factorization preconditioner, one needs extra storage for the
incomplete factor. In this paper, the proposed multigrid solver typically requires much
fewer iterations.

2.1. Boundary-capturing multigrid. Robust multigrid methods have been
proposed for solving diffusion equations, for example, [2, 10, 16, 23, 25, 27, 29, 30, 32];
see also [8] for a recent survey. However, many of these methods focus primarily on
the nonsmoothness of the PDE coefficient a(x) in (1.1). In numerical experiments,
typically only one single interface is considered and is usually aligned with the fine
grid. Moreover, the Dirichlet boundary condition on the interface is seldom discussed.
It is tempting to believe that Dirichlet boundary condition is easier to deal with since
it is essentially just a Poisson problem defined on a domain with complex boundary
shape, and classical multigrid should work well. However, since the Dirichlet boundary
condition decouples the unknowns near the interface, if one ignores this fact and
attempts to interpolate across the interface, the poor interpolation will slow down the
multigrid convergence. We shall come back to this point in section 2.3.

The discretization of (1.1) by finite difference or finite element methods will lead
to a linear system of the form

Ahuh = fh.

The multigrid algorithm consists of two basic steps: smoothing and coarse grid cor-
rection. For elliptic problems, relaxation methods—in particular, Gauss–Seidel—are
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effective smoothers. We note that in each Gauss–Seidel iteration, the ith compo-
nent of the solution is updated by using its neighboring values. Hence, the stencil
information at the ith grid point is sufficient and the entire matrix A is not needed.

In the coarse grid correction step, the fine grid error is solved approximately on
the coarse grid. The coarse grid matrix, AH , is often obtained by the Galerkin process:

AH = PTAhP,

where P is the interpolation operator. In general, AH is not a submatrix of Ah,
and hence one needs to store all the coarse grid matrices formed by the Galerkin
coarsening. Employing the matrix-free multigrid approach, we obtain the coarse grid
operators by direct discretization using an appropriate coarse grid representation of
the level set function φH . More precisely,

φH(xH
i ) = φh(xh

j ),

where the fine grid point xh
j coincides with the coarse grid point xH

i . The construction
of the interpolation operator, P , will be described in the following sections, and the
restriction operator is defined as the transpose of P . V-cycle is to be used in the
multigrid iteration.

2.2. One dimension. To obtain an efficient multigrid algorithm, we need to
define the interpolation operator P l appropriately, especially across the interfaces.
When interpolating the coarse grid solution uH , we do not want to interpolate solution
values across the interface. The idea of treating regions where the problem behaves
very differently has also been exploited in solving linear complementarity problems
using multigrid methods [4, 21].

As shown in Figure 2.1, at the noncoarse grid point xh
2i−1, if simple linear inter-

polation is used to approximate uh
2i−1 by

uh
2i−1 =

1

2
(uH

i−1 + uH
i ),

there will be a large approximation error to the fine grid solution since uH
i−1 essentially

has nothing to do with the solution values on the right of Γ. The correct linear
interpolation should use the location of Γ instead to approximate uh

2i−1:

uh
2i−1 =

xh
2i−1 − Γ

xh
2i − Γ

uH
i .(2.5)

(Note: uh(Γ) = 0 due to the Dirichlet boundary condition.)
The location of Γ of the island boundary can be easily determined by the level set

function φ(x). Recall that Γ is on the zero level set of φ, i.e., φ(Γ) = 0. Interpolating
the values of φ linearly, one obtains

Γ = xH
i−1 +

|φ(xH
i−1)|

|φ(xH
i )| + |φ(xH

i−1)|
.

We note that in multigrid literature, e.g., [15], a robust 1D matrix-dependent
interpolation can be defined as

uh
2i−1 = −

auH
i−1 + buH

i

c
,(2.6)
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2i-2xh
i-1xH =

ui-1
H

ui
H

ui-1
H ui

H+(           )
2
1

2ixh = xH
i2i-1xh

Γ

correct linear interpolation

Fig. 2.1. Linear interpolation for the Dirichlet-type problem. The solid line shows the coarse
grid solution uH . The two dashed lines show the linear interpolations applied at different points.

where a, b, and c are the values of the three-point discretization stencil, [a c b], at
xh

2i−1. This interpolation formula can be interpreted as solving a local PDE, energy
minimization, preserving flux continuity, or Gaussian elimination; see a recent survey
in [8]. If the null space of the underlying PDE consists of constant functions, then
c = −(a+ b). In the case of constant coefficient PDE, i.e., a = b, then (2.6) will result
in linear interpolation, which is well known to be optimal for multigrid. If constants
are not in the null space, an alternative formula could be used,

uh
2i−1 =

auH
i−1 + buH

i

a + b
,(2.7)

so that linear interpolation can still be recovered in the constant coefficient case. Both
black box multigrid and AMG use the interpolation formula of (2.6) in one dimension
if standard coarsening were to be used.1 Near the interface, since Γ decouples uh

2i−2

and uh
2i−1, the discretization stencil at xh

2i−1 given by a finite element discretization
would be [0 1/θ + 1/h − 1/h], where θ = xh

2i−1 −Γ. The formulae of (2.6) and (2.7)
would give the interpolation value at xh

2i−1 as

uh
2i−1 =

θ

θ + h
uH
i and uh

2i−1 = uH
i ,

respectively. The interpolation given by (2.6) coincides with our geometric interpo-
lation (2.5), whereas that by (2.7) results in piecewise constant interpolation, which
violates the necessary order condition [6, 17] for multigrid. However, as we shall see
in the next section, neither of these two formulae will give the correct interpolation
in two dimensions.

2.3. Higher dimensions. The 1D geometric interpolation can be extended to
two dimensions by applying the 1D technique to each dimension. Consider a generic
2D coarse grid cell as shown in Figure 2.2(a). The values at the coarse grid point uH

i ,
i = 1, 3, 7, 9, are given by the coarse grid correction process. For noncoarse grid points
lying on the coarse grid lines (grid points 2, 4, 6, 8), we apply the 1D interpolation.
For instance,

uh
2 =

xh
2 − Γ

xh
3 − Γ

uH
3 .

1In AMG algorithms, algebraic coarsenings are used instead of standard coarsening.
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Fig. 2.2. Boundary-capturing interpolation on a generic 2D coarse grid cell for the Dirichlet-
type problem. Coarse and fine grid points are denoted by 1, 3, 7, 9, and 2, 4, 5, 6, 8, respectively.
The interface is located (a) vertically towards the left, (b) horizontally towards the bottom.

For the other noncoarse grid point (grid point 5), since the values of the neighboring
grid points have been determined either by the coarse grid values or by the 1D inter-
polation, its value is obtained by solving a local PDE problem using the neighboring
values as boundary values. Since this local problem consists of a single unknown (grid
point 5) only, we need only the stencil information at this point. More precisely,
suppose the discretization stencil at xh

5 is

⎡
⎣ aNW aN aNE

aW aC aE
aSW aS aSE

⎤
⎦ .

Then the interpolation at xh
5 is given by

uh
5 = −aNWuH

7 + aNuh
8 + aNEu

H
9 + aWuh

4 + aEu
h
6 + aSWuH

1 + aSEu
H
3

aC
.(2.8)

It is in effect the same as applying one Gauss–Seidel sweep to the interior noncoarse
grid points.

Black box vs. geometric interpolation. We remark that black box multigrid,
unlike in one dimension, gives rise to a different 2D interpolation. Specifically, when
interpolating the noncoarse grid points lying on coarse grid lines, for instance, grid
point 2 in Figure 2.2(a), black box multigrid considers the five-point/nine-point stencil
defined at that coarse grid point. A 1D three-point stencil is obtained by lumping
the first and third rows of the stencil values to the center row. Then the robust
interpolation is applied to this three-point stencil. For example, consider grid point 2
in Figure 2.2(a), (b) with two different locations of the interface Γ. Considering the
fine grid, the five-point stencils are given by

⎡
⎣ 0 − 1

h2 0
0 3

h2 + 1
θ2 − 1

h2

0 − 1
h2 0

⎤
⎦ and

⎡
⎣ 0 0 0

− 1
h2

3
h2 + 1

θ2 − 1
h2

0 − 1
h2 0

⎤
⎦ ,
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respectively, where θ is as indicated in the figure. (This finite difference discretization
is used in [19].) Applying the lumping idea, the three-point stencils obtained are

[0, 1/h2 + 1/θ2, −1/h2] and [−1/h2, 2/h2 + 1/θ2, −1/h2],

respectively. Using the robust interpolation formula (2.6), the resulting 1D interpo-
lations at grid point 2 are then given by

uh
2 =

θ2

θ2 + h2
uH

3 and uh
2 =

θ2

2θ2 + h2
uH

1 +
θ2

2θ2 + h2
uH

3 ,

respectively. For the case as shown in Figure 2.2(a), where the interface is located
between coarse grid points 1 and 3, it is reasonable to interpolate grid point 2 using
the value only at grid point 3. However, we note that the interpolation weight is
different from that of our geometric interpolation (2.5). For the case as shown in
Figure 2.2(b), since the interface is not located between the coarse grid points 1 and
3, one would expect to use linear interpolation, which, unfortunately, is not the case
here. Besides it seems no reason for the interpolation weights to be affected by θ, the
vertical distance between grid point 2 and the interface. If the other 1D interpolation
formula (2.7) is used instead, the corresponding interpolations at grid point 2 are,
respectively,

uh
2 = uh

3 and uh
2 =

1

2
uh

1 +
1

2
uh

3 .

This time, the interpolation formula will give the correct linear interpolation for the
case of Figure 2.2(b), but for the case of Figure 2.2(a) the result would be the first order
piecewise constant interpolation, which violates the necessary order condition [6, 17]
for multigrid. Hence, neither methods will lead to a robust 2D interpolation if the
interface information is obtained purely algebraically via the discretization stencils.
The numerical results in section 5 verify the slower convergence rate of black box
multigrid.

Three dimensions. The extension of our interpolation operator to three dimen-
sions is similar to that of two dimensions. Figure 2.3 shows a generic coarse grid cell;
the corners of the cube represent eight coarse grid points. We first apply the 1D in-
terpolation to the noncoarse grid points lying on the coarse grid lines. Second, for the
noncoarse grid points lying on the six coarse grid planes, we solve a local 2D problem.
However, the discretization stencil at those grid points is actually a 3D seven-point
stencil. To obtain a 2D five-point stencil, we lump the stencil values above and below
the plane on which the noncoarse grid point lies to the center stencil value. We note
that the interface information has already been used in the interpolation of coarse
grid edges, and we do not find that the lumping procedure causes any deterioration
in convergence, contrary to the case of black box multigrid. Finally, the interpolation
value at the noncoarse grid point right at the center of the cube is obtained by solving
a local 3D problem as in two dimensions; see (2.8).

Remark. The restriction operator can be constructed in the same way as the
interpolation operator; i.e., the restriction is applied to either side of the interface. It
turns out that such a restriction will be different from the transpose of the interpola-
tion constructed above. However, numerical results show that the resulting multigrid
convergence is essentially the same as that using the transpose of the interpolation,
and hence it is not discussed further here.
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Fig. 2.3. Boundary-capturing interpolation on a generic 3D coarse grid cell for the Dirichlet-
type problem. The coarse grid points are located at the eight corners marked by circles and the rest
are noncoarse grid points.

2.4. Coarse representation of φ. On very coarse grids, the coarse level set
functions fail to resolve the boundaries of small islands. Thus, the interpolation
becomes less accurate on very coarse grids. One could use the level set function on
the finest grid for all the other coarse grid calculations. However, it turns out that
there is not much influence on the resulting multigrid convergence. Thus, we do not
consider this issue here for the Dirichlet-type problems. We note, however, that the
coarse representation of φ for the interface-type problems cannot be neglected.

3. Irregular boundary problem of interface type. This problem is often
simply known as the interface problem. One example is the model of two-phase
flow, such as simulations involving water [26], by the incompressible Navier–Stokes
equations:

ut + (u · ∇)u = F +
1

ρ
(−∇p + ∇ · (2µD) + σκδ(d)n),

∇ · u = 0,

where u is the fluid velocity, ρ is the fluid density, µ is the fluid viscosity, D is the
viscous stress tensor, and F is a body force. The surface tension is given by the
last term where σ is the surface tension, κ is the curvature of the interface, d is
the normal distance to the interface, δ is the Dirac delta function, and n is the unit
outward normal. The pressure p satisfies the Poisson equation

−∇ · 1

ρ
∇p = f,

where the density ratio of water and air is 1 to 1000; i.e.,

ρ(x) =

{
1000 if x is in the region of water,
1 if x is in the region of air.

In the general case, jump conditions are given to specify the solution behavior near
the interface, and they are usually written in the form

[u]n = α,
(3.1)

[a∇u]n = β,



BOUNDARY CONDITION–CAPTURING MULTIGRID 1991

2i−2xh
i−1xH =

ui−1
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ui−1
H ui

H+(           )
2
1
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H

2ixh = xH
i2i−1xh

Γ

linear interpolant
O(h)

2i−2xh
i−1xH =

ui−1
H

ui
H

2ixh = xH
i2i−1xh

Γ

p (x)
L

p (x)
R

(a) (b)

Fig. 3.1. The solid line denotes the coarse grid solution uH , and the dotted line the linear
interpolant. (a) O(h) approximation error results at the kink if linear interpolation is used. (b)
Jump-preserving interpolation near interface with jump conditions

where [ · ]n denotes the jump in magnitude in the normal direction, and α and β
are given functions. In contrast with the Dirichlet-type problem, in the numerical
solution of interface-type problems, all the unknowns are coupled throughout the
computational domain.

As in the previous section, we are interested in matrix-free multigrid precondi-
tioning, and hence the coarse grid operators are obtained by direct discretization. The
multigrid algorithm using V-cycle is also used here. However, the interpolation has
to be modified to capture the appropriate jump conditions on the interface.

3.1. Jump-preserving interpolation. Since the model equation is linear, we
can always consider the residual equation for the error. Without loss of generality,
we assume α = β = 0. Consequently, the solution is continuous except for its first
derivative in the normal direction. Thus, the solution typically exhibits a kink at the
interface location; see Figure 3.1(a). If linear interpolation is applied naively, an O(h)
error would result because of the kink, leading to poor coarse grid correction. Hence,
we must incorporate the jump conditions in the construction of the interpolation
operator to correctly capture the boundary effect.

We observe that away from the interface, the solution usually behaves smoothly
and so linear interpolation will be sufficient; see Figure 3.1(b). Near the interface Γ,
we let pL(x) be the linear interpolation polynomial on [xH

i−1,Γ], and we let pR(x) be
the one on [Γ, xH

i ], i.e.,

pL(x) = uH
i−1 + sL(x− xH

i−1),

pR(x) = uH
i + sR(x− xH

i ),

where sL and sR are the slopes of pL(x) and pR(x), respectively. Applying the jump
conditions, we have

pL(Γ) = pR(Γ),

aLsL = aRsR,

where aL ≡ a(xH
i−1) and aR ≡ a(xH

i ) are the diffusion coefficients on either side of Γ,
respectively. With two equations and two unknowns, we can uniquely solve for sL
and sR. Then the interpolated value at the noncoarse grid point xh

2i−1 is given by

uh
2i−1 = pR(xh

2i−1)
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Fig. 3.2. Jump-preserving interpolation near interface with multiple interfaces.

if xh
2i−1 > Γ, and by

uh
2i−1 = pL(xh

2i−1)

if xh
2i−1 < Γ. Note that only the level set function defining the location of Γ and the

diffusion is needed.
We remark that the robust 1D interpolation described in the previous section

coincides with our geometric interpolation if the interface aligns with the fine grid.
The extension to higher dimensions is similar to the case of Dirichlet-type prob-

lems; we apply the 1D interpolation dimension-by-dimension, and hence it is not
repeated here.

3.2. Multiple interfaces. On finer grids, there will be at most one interface
point between two consecutive coarse grid points lying on the same coarse grid line.
However, on coarser grids, it is possible to have more than one interface point, as
shown in Figure 3.2. In the construction of the interpolation, we need to incorporate
the jump conditions across all the interfaces between two consecutive coarse grid
points.

We describe the construction of our interpolation for two interfaces; other cases
are similar. Between two interfaces, we use linear interpolation as before. Thus, we
have three linear interpolation polynomials with slopes s1, s2, and s3, i.e.,

p1(x) = u1 + s1(x− xh
2i−2),

p2(x) = u2 + s2(x− Γ1),

p3(x) = u3 + s3(x− Γ2),

where u1 = uH
i−1 and u2, u3 are to be determined. For easy exposition, we assume the

PDE coefficient is piecewise constant; i.e., a(x)=a1, a2, and a3 on [xh
2i−2,Γ1], [Γ1,Γ2],

and [Γ2, x
h
2i], respectively. Now, considering the jump conditions across the interfaces,

a1s1 = a2s2,

a2s2 = a3s3,

we have s2 = (a1/a2)s1 and s3 = (a1/a3)s1. By the continuity conditions at the
interfaces, we have

u2 = uH
i−1 + s1∆Γ1,

u3 = u2 + s2∆Γ2,

uH
i = u3 + s3∆Γ3,
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where ∆Γ1 = Γ1 − xh
2i−2, ∆Γ2 = Γ2 − Γ1, and ∆Γ3 = xh

2i − Γ2. Summing up the
equations and substituting s2 and s3 in terms of s1, we obtain an equation for s1:

uH
i = uH

i−1 +

3∑
j=1

a1s1

aj
∆Γj ,

⇒ s1 =
uH
i − uH

i−1

a1

∑3
j=1

∆Γj

aj

.

We can solve for the value of s1 and hence s2 and s3. The interpolated value can then
be given by one of the linear polynomials, depending on the location of xh

2i−1.

4. Analysis. It is well known in the multigrid literature that fast multigrid
convergence relies on accurate coarse grid correction, which in turn requires accurate
interpolation between coarse and fine grids; see, e.g., [15, 31]. In this section, we
present an analysis to show that our boundary-capturing and interface-preserving
interpolations are more accurate than the naive linear interpolation, which results in
first order accuracy only. More precisely, the proposed interpolations are both second
order accurate.

4.1. Irregular boundary problem of Dirichlet type. We first consider the
1D case. If the Dirichlet boundary condition at the interface is ignored and stan-
dard linear interpolation is applied to two consecutive coarse grid points, as shown
in Figure 2.1, the error can be very large since uH

i−1 would not provide any useful
information in approximating uh

2i−1. Specifically, we have the following result.
Lemma 4.1. Assume the interface Γ is located between xh

2i−2 and xh
2i−1, as

shown in Figure 2.1. Let ũh
2i−1 and uh

2i−1 be the approximate solution given by linear
interpolation and the fine grid solution at the noncoarse grid point xh

2i−1, respectively.
Then

ũh
2i−1 − uh

2i−1 =
u+

Γ,x − u−
Γ,x

2
νh + O(h2),

where νh = Γ − xh
2i−2, and u+

Γ,x and u−
Γ,x are the first derivatives of the fine grid

solution uh at Γ from the right and from the left, respectively.
Proof. Taylor expanding uH

i−1, u
H
i , and uh

2i−1 at Γ, we have

uH
i−1 = uΓ − νhu−

Γ,x + O(h2),

uH
i = uΓ + (2 − ν)hu+

Γ,x + O(h2),

uH
2i−1 = uΓ + (1 − ν)hu+

Γ,x + O(h2),

where uΓ is the value of uh at Γ. (Note: With the Dirichlet boundary condition,
uΓ = 0. But the result turns out to be independent of the value of uΓ.) Then the
error of linear interpolation is

1

2
(uH

i−1 + uH
i ) − uh

2i−1 = uΓ − ν

2
hu−

Γ,x +
2 − ν

2
hu+

Γ,x − uΓ − (1 − ν)hu+
Γ,x + O(h2)

=
u+

Γ,x − u−
Γ,x

2
νh + O(h2).

We remark that only first order accuracy results, even if linear interpolation is
used. Moreover, the constant of the first order term can be arbitrarily large, depending
on the values of the first derivatives of uh on both sides of Γ.
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For the boundary-capturing interpolation, since we identify the location of Γ and
then apply linear interpolation accordingly, we readily have the second order accuracy
result by the standard Taylor expansion analysis.

Lemma 4.2. Let ũh
2i−1 be the approximate solution given by the boundary-cap-

turing interpolation (2.5). Then

ũh
2i−1 − uh

2i−1 = O(h2).

The boundary-capturing interpolation in higher dimensions is extended from one
dimension. Thus, the analysis for higher-dimensional interpolations is essentially the
same as that for the 1D case, and hence they are omitted here.

4.2. Irregular boundary problem of interface type. The analysis for in-
terface problems is not as straightforward as it is for Dirichlet problems since we do
not know the value of uh at the interface, and we also have to take into account the
jump conditions.

Consider Figure 3.1 in one dimension. We first show that linear interpolation is
only first order accurate.

Lemma 4.3. Assume the PDE coefficient a(x) in (1.1) is piecewise constant,

a(x) =

{
aL if x < Γ,
aR if x > Γ.

Let ũh
2i−1 be the approximate solution given by linear interpolation. Then

ũh
2i−1 − uh

2i−1 =
νh

2

(
1 − aR

aL

)
u+

Γ,x + O(h2),

where νh = Γ − xh
2i−2.

Proof. By a similar calculation as in Lemma 4.1, we have

1

2
(uH

i−1 + uH
i ) − uh

2i−1 =
νh

2
(u+

Γ,x − u−
Γ,x) + O(h2).

Using the jump condition

aLu
−
Γ,x = aRu

+
Γ,x,(4.1)

the error formula becomes

1

2
(uH

i−1 + uH
i ) − uh

2i−1 =
νh

2

(
1 − aR

aL

)
u+

Γ,x + O(h2).

Hence, if aR/aL �= 1, only first order accuracy results. Also, the error becomes
bigger for a large jump in the coefficient.

The large error that occurred in linear interpolation is essentially due to not
using the jump conditions. In the jump-preserving interpolation, we try to preserve
the jump conditions, and as a result, second order accuracy can be restored.

Lemma 4.4. Let ũh
2i−1 be the approximate solution given by the jump-preserving

interpolation. Then

ũh
2i−1 − uh

2i−1 = O(h2).
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Proof. By the construction of the jump-preserving interpolation described in
section 3.1, it is straightforward to compute the formula for ũh

2i−1:

ũh
2i−1 = uH

i − aL
µaL + νaR

(uH
i − uH

i−1),

where µ = 2 − ν. Applying Taylor expansion on uH
i − uH

i−1 and using the jump
condition (4.1), we obtain

ũh
2i−1 = uH

i − aL
µaL + νaR

(µhu+
Γ,x + νhu−

Γ,x) + O(h2)

= uH
i − 1

µaL + νaR
(µhaLu

+
Γ,x + νhaRu

+
Γ,x) + O(h2)

= uH
i − hu+

Γ,x + O(h2).

Now, using the Taylor expansions of uH
i and uh

2i−1,

ũh
2i−1 = uΓ + µhu+

Γ,x − hu+
Γ,x + O(h2)

= uh
2i−1 − (µ− 1)hu+

Γ,x + µhu+
Γ,x − hu+

Γ,x + O(h2)

= uh
2i−1 + O(h2).

The analysis for two and three dimensions is similar. So, we just present the
2D analysis for easy exposition. Consider the generic coarse grid cell, as shown in
Figure 2.2. Since the analysis for the two interface locations (and other possible cases)
is almost identical, we focus on the one on the left where the interface goes between
grid points 1 and 2, 4 and 5, and 7 and 8.

Theorem 4.5. Assume the PDE coefficient a(x) in (1.1) is piecewise constant,

a(x) =

{
aL if x is on the left of Γ,
aR if x is on the right of Γ.

Let ũh
j and uh

j , j = 2, 4, 5, 6, 8 (cf. Figure 2.2), be the approximate solution given by
jump-preserving interpolation and the fine grid solution values, respectively. Then

ũh
j − uh

j = O(h2).

Proof. Since the construction of the 2D jump-preserving interpolation is derived
from the 1D interpolation, it is straightforward to show that the errors of approxi-
mation at the noncoarse grid points 2, 4, 6, and 8 are second order (cf. Lemma 4.4).
Now, consider the interior noncoarse grid point 5. Using the ghost fluid method [19],
the discretization stencil at grid point 5 is given by⎡

⎣ 0 −aR

h2 0
− a

h2
3aR

h2 + a
h2 −aR

h2

0 −aR

h2 0

⎤
⎦ ,

where a is the harmonic average:

a =
aLaR

aRν + aL(1 − ν)
.(4.2)
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Hence, the jump-preserving interpolation at grid point 5 (cf. (2.8)) leads to the ap-
proximation formula

ũh
5 =

1
3aR

h2 + a
h2

(aR
h2

ũh
8 +

aR
h2

ũh
6 +

aR
h2

ũh
2 +

a

h2
ũh

4

)

=
1

3aR + a
(aRũ

h
8 + aRũ

h
6 + aRũ

h
2 + aũh

4 ).

The error of the approximation is then given by

ũh
5 − uh

5 =
1

3aR + a
(aRũ

h
8 + aRũ

h
6 + aRũ

h
2 + aũh

4 − 3aRu
h
5 − auh

5 )(4.3)

=
1

3aR + a
[aR(ũh

8 − uh
5 ) + aR(ũh

6 − uh
5 ) + aR(ũh

2 − uh
5 )

+ a(ũh
4 − uh

5 )].

Note that ũh
8 − uh

5 can be written as

ũh
8 − uh

5 = (ũh
8 − uh

8 ) + (uh
8 − uΓ) − (uh

5 − uΓ)(4.4)

= (uh
8 − uΓ) − (uh

5 − uΓ) + O(h2),

since the jump-preserving interpolation of ũh
8 is second order accurate. Similar ex-

pressions hold for ũh
6 − uh

5 , etc. Now, consider the Taylor expansions of uh
8 , uh

2 , uh
6 ,

uh
4 , and uh

5 at uΓ, where uΓ is the value of the fine grid solution uh at the intersection
of the interface and the grid line between grid point 4 and grid point 5:

uh
8 = uΓ + (1 − ν)hu+

Γ,x + huΓ,y + O(h2),(4.5)

uh
2 = uΓ + (1 − ν)hu+

Γ,x − huΓ,y + O(h2),

uh
6 = uΓ + (2 − ν)hu+

Γ,x + O(h2),

uh
4 = uΓ − νhu−

Γ,x + O(h2),

uh
5 = uΓ + (1 − ν)hu+

Γ,x + O(h2),

where νh = distance between grid point 4 and the interface. Substituting (4.4) and
(4.5) into (4.3) and using (4.2), we have

ũh
5 − uh

5

=
1

3aR + a
[aR((1 − ν)hu+

Γ,x + huΓ,y) + aR(2 − ν)hu+
Γ,x + aR((1 − ν)hu+

Γ,x − huΓ,y)

+ a(−νhu−
Γ,x) − (3aR + a)((1 − ν)hu+

Γ,x)] + O(h2)

=
1

3aR + a
[aRhu

+
Γ,x − a(νhu−

Γ,x + (1 − ν)hu+
Γ,x)] + O(h2)

=
1

3aR + a

[
aRhu

+
Γ,x −

νhaRaLu
−
Γ,x

arν + aL(1 − ν)
−

(1 − ν)haLaRu
+
Γ,x

arν + aL(1 − ν)

]
+ O(h2).

With the ghost fluid discretization [19, p. 163], the fine grid solution satisfies the
following jump condition at the interface:

aLu
−
Γ,x = aRu

+
Γ,x.
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As a result, the approximation error of ũh
5 becomes

ũh
5 − uh

5 =
1

3aR + a

[
aRhu

+
Γ,x −

νha2
Ru

+
Γ,x

arν + aL(1 − ν)
−

(1 − ν)haLaRu
+
Γ,x

arν + aL(1 − ν)

]
+ O(h2)

= O(h2).

5. Numerical results. In the following, we compare the convergence results
of our geometric multigrid methods with PCG, AMG, and black box multigrid2 for
different irregular boundary problems. We remark that the purpose of the comparison
is to demonstrate the effectiveness of the proposed method. Both AMG and black
box multigrid are designed for problems in which geometric multigrid approach does
not apply, for instance, problems with complex geometries and lack of geometric
information. For all the multigrid methods, two pre- and two post-Gauss–Seidel
smoothings are used. The multigrid iterations are stopped when the relative residual
norm is less than 10−6. The multigrid V-cycle is used.

We note that the AMG coarsening in general is different from the standard coars-
ening. Thus the number of coarse grid points as well as the number of nonzero entries
in the coarse grid matrices can be quite different from the black box and our multigrid
methods. To fairly compare the three methods, we report the work units used by the
multigrid methods in place of the number of multigrid cycles. Here, one work unit is
equal to the total amount of floating point operations involved in one V-cycle with
standard coarsening and coarse grid matrices obtained from direct discretization. In
other words, one V-cycle of the geometric multigrid is one work unit. The work unit
of PCG is normalized by equating one Gauss–Seidel smoothing to one matrix vector
multiplication. The work for one incomplete Cholesky preconditioning step is also
considered as one matrix vector multiplication. The work unit of AMG is obtained
from comparing the total number of nonzeros in all the coarse grid matrices with that
from the geometric multigrid.

Example 1. We first compare the iterative methods by a 2D irregular boundary
problem of Dirichlet type. The PDE coefficient a(x) = 1, and the source term is
f(x) = 1. The interfaces are circles and hence do not align with any coarse grids (as
well as the finest grid). The interfaces and sample solutions are shown in Figure 5.1.

Table 5.1 shows the convergence results of different methods. As noted in sec-
tion 1, the convergence rate of PCG deteriorates with decreasing mesh size; the num-
ber of work units indeed doubles as h is reduced by half. Among the multigrid
methods, black box multigrid (BMG) requires more work units to obtain convergence
since the interpolation for the noncoarse grid points lying on coarse grid lines does
not correctly capture the Dirichlet boundary condition, as explained in section 2.3.
Our geometric multigrid (GMG) and AMG show about the same efficiency. However,
we note that our geometric multigrid does not require the storage of the coarse grid
matrices, whereas AMG has to store all the coarse grid matrices. We shall address
the memory issue in the next example.

For all the multigrid methods, the convergence deteriorates slightly when the mesh
size h decreases, but it improves when the number of interfaces increases. This is due
to the Dirichlet boundary condition; each interface defines an independent problem,
and hence Gauss–Seidel smoothing becomes more like a direct solver.

Example 2. We next compare the multigrid methods to a 3D irregular boundary
problem of Dirichlet type. The interfaces are arrays of spheres; see Figure 5.2. The

2The AMG and black box multigrid codes are obtained from MGNet (www.mgnet.org).
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Fig. 5.1. Circle interfaces (left) and their corresponding solutions (right) to the irregular bound-
ary problem of Dirichlet type.

Table 5.1

Comparison by work units of our geometric multigrid method with other methods for a 2D
problem of Dirichlet type. The interfaces are different arrays of circles. The numbers in parentheses
are iteration counts.

h Circle array PCG GMG AMG BMG
1/16 1 × 1 4 (14) 7 (7) 7 (5) 11 (9)
1/32 1 × 1 8 (22) 8 (8) 8 (5) 15 (13)

2 × 2 7 (18) 7 (7) 8 (5) 14 (12)
1/64 1 × 1 15 (41) 10 (10) 10 (6) 18 (15)

2 × 2 13 (33) 8 (8) 8 (5) 19 (16)
4 × 4 8 (20) 7 (7) 8 (5) 15 (13)

1/128 1 × 1 31 (81) 11 (11) 10 (6) 20 (17)
2 × 2 24 (63) 10 (10) 10 (6) 20 (17)
4 × 4 14 (37) 8 (8) 8 (5) 20 (17)
6 × 6 10 (26) 8 (8) 8 (5) 18 (15)

convergence results are shown in Table 5.2. For 3D problems, our geometric multigrid
is much more efficient than PCG and AMG. The convergence results for black box
multigrid are not available since the code at MGNet is for two dimensions only. PCG
shows a similar convergence behavior to that in two dimensions.

It is interesting to note that the iteration counts for AMG are often less than 10,
and yet the work units are usually more than three times higher. This is because
the number of nonzero entries in the coarse grid matrices is much greater than those
obtained from standard coarsening, especially in three dimensions. As a result, more
work is needed to perform Gauss–Seidel smoothing on each coarse grid. To illustrate
the point, we report typical numbers of nonzeros in the coarse grid matrices obtained
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Fig. 5.2. Sphere interfaces (left) and their corresponding solutions (right, a contour plot) to
the irregular problem of Dirichlet type.

Table 5.2

Comparison by work units of our geometric multigrid method with other methods for a 3D
problem of Dirichlet type. The interfaces are different arrays of spheres. Numbers in parentheses
are iteration counts.

h Sphere array PCG GMG AMG

1/8 1 × 1 × 1 4 (10) 7 (7) 9 (5)

1/16 1 × 1 × 1 8 (19) 7 (7) 14 (5)
2 × 2 × 2 6 (14) 9 (9) 16 (5)

1/32 1 × 1 × 1 16 (36) 8 (8) 23 (7)
2 × 2 × 2 11 (26) 8 (8) 17 (5)
4 × 4 × 4 8 (17) 9 (9) 18 (5)

1/64 1 × 1 × 1 > 100 10 (10) 40 (12)
2 × 2 × 2 93 (209) 8 (8) 23 (7)
4 × 4 × 4 30 (67) 8 (8) 15 (5)

from AMG coarsening3 and standard coarsening as shown in Table 5.3. For our
geometric multigrid, a reduction of a factor of 8 results since direct discretization is
used. For AMG, the reduction factor is less than 2; in fact, the number of nonzeros
even increases when it goes from the finest to the first coarse grids. Moreover, the
total number of nonzeros increases with the number of interfaces. Apart from taking
more flops, AMG also needs to store all the coarse grid matrices, which amounts to
almost four times that of the fine grid matrix. Note that our geometric multigrid

3In [28, p. 487], an operator complexity is used which is a ratio of the total number of nonzeros
in all the coarse and fine grid matrices to the number of nonzeros in the fine grid matrix.
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Table 5.3

Number of nonzero entries (thousands) in the coarse grid matrices on different coarse grids (1
to 4 for the geometric multigrid method and 1 to 6 for AMG), h = 1/32.

GMG AMG
Sphere array 1 2 3 4 1 2 3 4 5 6

1 × 1 × 1 226 28 3 0.4 226 303 118 85 70 34

2 × 2 × 2 223 27 3 0.4 223 295 126 89 75 39

3 × 3 × 3 219 26 3 0.4 219 286 133 102 85 47

4 × 4 × 4 213 25 3 0.4 213 284 134 121 87 46
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Fig. 5.3. Solutions to the irregular boundary problem of interface type in (left) two dimensions
and (right) three dimensions (a contour plot).

method does not store any of the coarse grid matrices. We remark that an aggressive
coarsening strategy [28, Appendix A] for AMG has recently been proposed to address
the memory issue.

Example 3. We now compare the multigrid methods to a 2D irregular problem of
interface type. A similar example is also used in [1] (with only one circle interface).
Here, the interfaces are arrays of circles, and the jump conditions are as in (3.1),
where α = β = 0, and

a(x) =

{
a− if φ(x) < 0,
a+ if φ(x) > 0.

In the numerical experiments, we fix a− = 1 and vary a+ from 1 to 106. A solution
where there are 4 circle interfaces are shown in Figure 5.3. The convergence results are
given in Table 5.4. The first row indicates the values of a+ chosen. This time, black
box multigrid is more efficient than Dirichlet-type problems since no unknowns are
decoupled. Its convergence is comparable to our geometric multigrid and insensitive
to jump size but deteriorates when the mesh size decreases or when the number of
interfaces increases. AMG requires more work than the other two methods, which is
again due to denser coarse grid matrices. Also, the convergence of AMG deteriorates
with the number of interfaces. PCG requires a lot more work units for interface
problems, and convergence is slowed down by the mesh size, the size of the jump, and
the number of interfaces.

Example 4. Finally, we compare the multigrid methods to a 3D irregular bound-
ary problem of interface type. The interfaces are arrays of spheres, and the jump
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Table 5.4

Comparison by work units of our geometric multigrid method with other methods for a 2D
problem of interface type. The interfaces are different arrays of circles. a+ = 1, 103, 106.

Circle PCG GMG AMG BMG

h array 1 103 106 1 103 106 1 103 106 1 103 106

1/16 1 × 1 6 7 9 5 6 7 7 11 9 4 6 6

2 × 2 6 10 13 5 9 9 7 9 9 4 7 7

1/32 1 × 1 10 12 14 5 6 7 7 9 8 5 6 6

2 × 2 10 16 21 5 6 6 7 14 14 5 7 7

1/64 1 × 1 16 22 27 5 6 7 7 9 9 5 7 6

2 × 2 16 30 41 5 7 7 7 13 13 5 9 9

1/128 1 × 1 33 44 52 5 6 8 7 9 10 5 10 7

2 × 2 33 56 80 5 6 8 7 12 12 5 11 12

Table 5.5

Comparison by work units of our geometric multigrid method with other methods for a 3D
problem of interface type. The interfaces are different arrays of spheres. a+ = 102, 104, 106.

Sphere PCG GMG AMG

h array 102 104 106 102 104 106 102 104 106

1/8 1 × 1 × 1 5 6 7 8 8 8 12 16 17

2 × 2 × 2 7 9 12 6 6 6 12 15 15

1/16 1 × 1 × 1 9 10 12 9 10 10 18 21 21

2 × 2 × 2 12 17 22 8 8 8 40 32 32

1/32 1 × 1 × 1 16 20 24 10 11 11 20 24 >100

2 × 2 × 2 24 32 42 9 9 9 77 42 42

1/64 1 × 1 × 1 30 38 42 8 10 11 19 29 26

2 × 2 × 2 46 67 84 10 12 12 31 45 > 100

4 × 4 × 4 58 89 98 9 11 11 > 100 > 100 > 100

conditions are as in Example 3. A solution where there are 4 sphere interfaces is
shown in Figure 5.3. Table 5.5 shows the convergence results of PCG, the geometric
multigrid method, and AMG. As in Example 3, our geometric multigrid is relatively
insensitive to the mesh size and the size of the jump. The convergence of AMG and
PCG, on the other hand, deteriorates with the number of interfaces and decreasing
mesh size.

6. Conclusions. We have proposed an efficient geometric multigrid method for
solving irregular boundary problems in two and three dimensions. The (fine and)
coarse grid matrices are obtained from direct discretization, and hence no extra mem-
ory storage is needed, as opposed to the Galerkin approach used by AMG and black
box multigrid. It is assumed that the interface location is captured by a level set
function. As such, we have defined a second order accurate interpolation by captur-
ing the appropriate boundary conditions at the interfaces. Theoretical analysis has
been presented to justify the accuracy of our interpolation. Numerical results for
problems with multiple interfaces in multiple dimensions have been given to compare
our multigrid method with AMG and black box multigrid, which have been shown
in the literature to be efficient multigrid solvers for interface problems with a single
interface. We have shown that even without extra storage for coarse grid matrices,
the convergence of our multigrid method is insensitive to the mesh size, the size of
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the jump, and the number of interfaces, whereas the convergence of the other two
multigrid methods shows a poorer convergence in some cases.
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