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Abstract In this paper, we propose monotonicity
preserving and total variation diminishing (TVD) mul-
tigrid methods for solving scalar conservation laws. We
generalize the upwind-biased residual restriction and
interpolation operators for solving linear wave equa-
tions to nonlinear conservation laws. The idea is to
define nonlinear restriction and interpolation based on
local Riemann solutions. Theoretical analyses have been
provided to analyze the monotonicity preserving and
TVD properties of the resulting multigrid time stepping
schemes. Numerical results are given to verify the theo-
retical results and demonstrate the effectiveness of the
proposed schemes. Two dimensional extension is also
discussed.

1 Introduction

Multigrid has shown to be a powerful and one of the
most efficient numerical techniques for solving elliptic
partial differential equations (PDEs) [3,13,33]; its con-
vergence rate is often independent of the mesh size. Well
established convergence theory, [2,13,35] and sophis-
ticated smoothing, [3,32–34], coarsening, [5,6,30], and
interpolation [1,4,28,29,36] techniques have been
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developed. However, the fundamental study of multigrid
for hyperbolic equations is far less well-developed. One
major difficulty is that the discretization matrices of
hyperbolic equations are in general nonsymmetric, and
hence the smoothing property of relaxation methods,
and the minimization property of Galerkin coarse grid
correction, both of which are essentially based on sym-
metry and positive definiteness, may not hold anymore
for hyperbolic equations. If the multigrid principle of
reducing the high and low frequency errors reflects the
smoothing nature of elliptic operators, then the intrinsic
wave propagation nature of hyperbolic equations must
also be reflected in the hyperbolic multigrid methods.
The objective of this paper is to study and analyze the
wave propagation property of specially designed mono-
tonicity preserving multigrid time stepping methods.

Multigrid methods for hyperbolic equations, in partic-
ular, steady Euler equations, are first proposed by Ni [27]
and Jameson [18]. In their approach, the key is to accel-
erate wave propagation on multiple grids since larger
time steps can be taken on coarse grids without violat-
ing the CFL condition. Thus, the low frequency distur-
bances are rapidly expelled through the outer boundary
whereas the high frequency errors are locally damped.
Multigrid time stepping schemes exploiting this effect
have also been proposed in [14,15]. Since then, a great
deal of progress has been made in this direction; see the
references in the survey paper by Hemker and
Johnson [16].

The fast wave propagation argument was made more
precise by Jespersen [20] who showed that, under cer-
tain assumptions, such multigrid time stepping schemes
on M-grid are consistent and first order accurate, with
effective time step, �t = ∑M

k �tk, where �tk is the time
step taken on grid k. Gustafsson and Lötstedt [12,24]
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also proved using Fourier analysis that the speed of
the smooth wave propagation is 2M − 1, assuming the
mesh size is double on each coarse grid. The results of
Jespersen addressed the issue of consistency; the analy-
sis in this paper, on the other hand, addresses the issue
of stability–monotonicity preserving and total variation
diminishing.

We note that although the main purpose is to rap-
idly expell the low frequency disturbances out of the
boundary, it turns out that numerical oscillations can
delay the propagation substantially. As an example, we
apply a three-level multigrid with Jacobi smoothing, lin-
ear interpolation, and Galerkin coarse grid correction
to solve an 1D linear wave equation. The initial con-
dition (disturbance) is a square wave. The numerical
solution in the subsequent multigrid cycles are shown
in Fig. 1. By the analysis of Gustafsson and Lötstedt,
the three-level multigrid should have converged in
128/7 ≈ 18 multigrid cycles. Instead, it requires more
than 80 cycles to convergence due to the spurious oscil-
lations generated at the tail of the square wave. Thus,
it is imperative to design nonoscillatory multigrid
algorithms.

In [17], Jameson proposed two multigrid time step-
ping schemes for the steady state solution of the one-
dimensional linear wave equation. The idea is based
on an upwind biased interpolation and residual restric-
tion operators, which capture the characteristics of the
underlying PDE, and a modified coarse grid update
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Fig. 1 The numerical solution given by a three-level multigrid
at a time step = 0, b time step = 20, c time step = 40, d time
step = 60

formula. He proved that, for two-level, these schemes
preserve monotonicity. In this paper, we extend the anal-
ysis to the multilevel case, and in addition, prove the
total variation diminishing (TVD) property. Further-
more, we propose and analyze an extension to nonlinear
conservation laws. For nonlinear equations, the addi-
tional challenge is that we also have to capture discon-
tinuities arising from shocks, and rarefactions without
violating the entropy conditions. As Riemann solutions
for nonlinear hyperbolic equations are the counterparts
of characteristics for linear equations, our key idea of
constructing nonlinear upwind interpolation is based on
solving local Riemann problems. The analysis of the lin-
ear and nonlinear multigrid time stepping schemes will
be focused on the monotonicity preserving and the TVD
properties which have never been studied in the context
of multigrid. Nevertheless, these properties are essential
to obtain nonoscillatory schemes. Using these require-
ments as design tools, it is hoped that it will bring new
insight into the design of efficient hyperbolic multigrid
methods.

Further algorithmic improvements of the fast wave
propagation on multiple grids approach have been
developed. In [21], Koren and Hemker used an upwind
prolongation, and the restriction essentially is the adjoint
of the prolongation. A similar prolongation and restric-
tion technique based on characteristics is used by
LeClercq and Stoufflet [22] for unstructured grid
computations. Grasso and Marini [11] derived another
upwind prolongation based on MUSCL reconstruction
for solving Navier-Stokes equations. Ferm and Lötstedt
[9] used a residual dependent restriction for handling
shocks when solving Burgers’ equation. Different relax-
ation smoothings are compared in [26] for solving the
one-dimensional Burgers’ equation. Mulder [25] pro-
posed the use of multiple semi-coarsening to handle
anisotropic PDE coefficients arising from the alignment
of flow with the grid. Eliasson [7] considered the use
of higher order transfer operators to maintain stability
of the coarse grid problem. Spekreijse [31] proposed a
multigrid scheme for a monotone second order discret-
ization of hyperbolic conservation laws.

In Sect. 2, we describe the multiplicative and addi-
tive schemes proposed by Jameson for solving the linear
wave equations, and in Sect. 3, our generalization to
nonlinear conservation laws. In Sect. 4, we present a
multilevel analysis on the monotonicity preserving and
TVD properties of the linear multigrid schemes, and
in Sect. 5, a two-level analysis for the proposed non-
linear multigrid scheme. Finally, numerical results are
presented in Sect. 6 to demonstrate their effectiveness
of accelerating wave propagation on multiple grids; a
two-dimensional example is also given.
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2 Linear wave equation

Since our nonlinear multigrid time stepping schemes
are built upon the linear schemes, we first describe the
linear case in details, followed by the nonlinear case. The
model linear wave equation in one dimension is:

ut + ux = 0 0 < x < 1,

u(0, t) = 0, u(x, 0) = u0(x). (1)

We are interested in the steady state solution which, in
this case, is u ≡ 0. We discretize the equation by the
standard first order upwind scheme:

un+1
j = un

j − λ
(

un
j − un

j−1

)
, (2)

where λ = �th/�xh is the CFL number. If a single grid
with N grid points is used, it will take N/λ time steps to
march to the steady state. The objective is to accelerate
propagation on multiple grids while preserving mono-
tonicity and being TVD for λ ≤ 1.

Given a fine grid {xh
j }, j = 0, 1, 2, . . . , N, the grid points

with even indices are selected as coarse grid points {xH
j },

j = 0, 2, 4, . . . , N. The superscripts h and H denote func-
tions on the fine and coarse grids, respectively, whereas
the subscript j denotes the corresponding jth grid point.
In a standard two-level algorithm (FAS-cycle for nonlin-
ear equations) [3,16], we start with the current approx-
imation un, and the update un+1 is obtained by

upwind smoothing: ūh
j = un

j − λ
(

un
j − un

j−1

)

fine grid residual: r̄h
j = 1

�xh

(
ūh

j − ūh
j−1

)

restriction of ūh: uH
2j = Ruūh

2j

coarse grid RHS: bH
2j = 1

�xH

(
uH

2j − uH
2j−2

)

− Rrr̄h
2j

coarse grid evolution: ūH
2j = uH

2j − λ
(

uH
2j − uH

2j−2

)

+ �tHbH
2j .

Here, Ru and Rr denote the solution and residual restric-
tion operators, respectively. Finally, we interpolate the
coarse grid error to the fine grid and obtain:

un+1 = ūh + P
(

ūH − Ruūh
)

, (3)

where P is the interpolation operator. As shown by the
previous example, simple choices such as linear inter-
polation may lead to poor convergence due to severe
numerical oscillations. In the next sections, we describe
an upwind restriction and interpolation, and a modified
coarse grid update formula.

2.1 Upwind restriction and interpolation

To define a conservative restriction operator, the
upwind-biased residual restriction[17] is defined as the
following averaging operator:

Rrr̄h
j = 1

2
(r̄h

j + r̄h
j−1), (4)

since the characteristics are from left to right; see Fig. 2a.
This idea is essentially the same as the upwind schemes.
Similarly, the interpolation of a coarse grid function vH

is given by:

(PvH)2i = (PvH)2i+1 = vH
2i , (5)

which predicts information to the right; see Fig. 2b. We
note that interpolations based on characteristics have
also been used in [21,22].

2.2 Higher order interpolation

It is observed that the use of linear interpolation will,
in fact, lead to oscillations. Fig. 3 shows the discrete
functions un, ūh, etc, as defined in Sect. 2. The current

2i–3 2i–2 2i–1

2i–2 2–i

2–i
fine

coarse

upwind biased restriction

2i–2 2i–1
fine

coarse

upwind biased interpolation

2i+1

2i–2 2–i

2–i

Fig. 2 a Upwind biased restriction b Upwind biased inter-
polation

Fig. 3 Oscillation caused by linear interpolation. From left to
right, top to bottom: un, ūh, uH , ūH , and un+1. The black dots
denote coarse grid points
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approximation un is defined as:

un
j =

{
1 j = 0, 1, 2.
0 j = 3, 4, . . . , 8.

The functions ūh, uH , and ūH are computed based on
the two-level algorithm with λ = 1. In the final step, we
see that overshoot occurs at un+1

3 : by (3),

un+1
3 = ūh

3 + Plinear

(
ūH − uH

)

3

= ūh
3 + ūH

2 + ūH
4

2
− uH

2 + uH
4

2
= 3

2
.

As for comparisons, if the upwind biased interpolation
is used, then

un+1
3 = ūh

3 + Pupwind

(
ūn+1 − uH

)

3

= ūh
3 + ūH

2 − uH
2 = 1.

See also Fig. 4.

2.3 Coarse grid update

It is further observed that even with the use of upwind
restriction and interpolation, oscillations can still occur.
Figure 5 shows a similar sequence of plots as in Fig. 3
with slightly different un. This time, undershoot occurs
at un+1

3 . To fix this, a new update formula [17] is used:

un+1 = ūh + P
(

ūH − Ruun
)

.

The idea is to compute the coarse grid error by the
difference of the coarse grid evolved solution ūH and
the restriction of the original function un, instead of ūh.
As shown in Fig. 6, the oscillation is eliminated.

Fig. 4 No oscillation using upwind interpolation. From left to
right, top to bottom: un, ūh, uH , ūH , and un+1

Fig. 5 Oscillation caused by standard update. From left to right,
top to bottom: un, ūh, uH , ūH , and un+1.

Fig. 6 No oscillation using the new coarse grid update formula.
From left to right, top to bottom: un, ūh, uH , ūH , and un+1

2.4 Algorithms

Before we present the algorithms, we note that the forc-
ing term on the coarse grid, bH

j , can be simplified as
follows:

bH
j ≡ 1

�xH

(
uH

j − uH
j−2

)
− 1

2

(
r̄h

j + r̄h
j−1

)

= 1
2�xh

(
ūh

j − ūh
j−2

)
− 1

2�xh

[(
ūh

j − ūh
j−1

)

+
(

ūh
j−1 − ūh

j−2

)]

= 0.

Once the two-level scheme is defined, the multilevel
scheme can be obtained from applying the two-level
algorithm recursively on the coarser grids. We denote
functions on the first grid, which is also the finest grid,
by superscript (1); the second grid by (2), and so on. The
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multilevel multigrid time stepping scheme is:

Algorithm: Linear Multiplicative Scheme

u(1) = un

Define ũ(k)=MGMult
linear(u(k)) by:

if k = L,

ũ(k)
j = u(k)

j − λ
(

u(k)
j − u(k)

j−2k−1

)

(j = 0, 2k−1, 2 · 2k−1, . . . .)
else

ū(k)
j = u(k)

j − λ
(

u(k)
j − u(k)

j−2k−1

)

(j = 0, 2k−1, 2 · 2k−1, . . . .)
u(k+1)

j = ū(k)
j

(j = 0, 2k, 2 · 2k, . . . .)
ũ(k+1)=MGMult

linear(u(k+1))
ũ(k)

j = ũ(k+1)
j

(j = 0, 2k, 2 · 2k, . . . .)
ũ(k)

j−2k−1 = ū(k)

j−2k−1 + ū(k+1)

j−2k − u(k)

j−2k

(j = 0, 2k, 2 · 2k, . . . .)
end

un+1 = MGMult
linear(u

(1))

Since on each coarse grid k, we use the most update
information ūk−1 from the finer grid, this method is
called the multiplicative scheme. If we restrict and prop-
agate un on all the coarse grids, the resulting algorithm
is called the additive scheme:

Algorithm: Linear Additive Scheme

u(1) = un

Define ũ(k)=MGAdd
linear(u(k)) by:

if k = L,

ũ(k)
j = u(k)

j − λ
(

u(k)
j − u(k)

j−2k−1

)

(j = 0, 2k−1, 2 · 2k−1, . . . .)
else

ū(k)
j = u(k)

j − λ
(

u(k)
j − u(k)

j−2k−1

)

(j = 0, 2k−1, 2 · 2k−1, . . . .)
u(k+1)

j = u(k)
j

(j = 0, 2k, 2 · 2k, . . . .)
ũ(k+1)=MGAdd

linear(u(k+1))
ũ(k)

j = ũ(k+1)
j

(j = 0, 2k, 2 · 2k, . . . .)
ũ(k)

j−2k−1 = ū(k)

j−2k−1 + ū(k+1)

j−2k − un
j−2k

(j = 0, 2k, 2 · 2k, . . . .)
end

un+1 = MGAdd
linear(u

(1))

Remark The wave propagation by the multiplicative
scheme is generally twice as fast as the additive scheme
(cf. Gauss-Seidel vs. Jacobi).

3 Nonlinear conservation laws

In this section, we generalize the methodology for linear
wave equations to nonlinear equations. We consider the
model scalar conservation law in one dimension:

ut + f (u)x = 0 0 < x < 1, (6)

with appropriate boundary and initial conditions. The
flux f (u) is assumed to be convex. Again, we are inter-
ested in obtaining the steady state solution fast.

We discretize the equations by the EO scheme [8]:

un+1
j = un

j − λ
(

FEO
(

un
j , un

j+1

)
− FEO

(
un

j−1, un
j

))
. (7)

The numerical flux FEO is defined as

FEO(uL, uR) = 1
2
(u+

L)2 + 1
2
(u−

R)2,

where u+ ≡ max(u, 0) and u− ≡ min(u, 0). We note
that the first order EO scheme is used for illustration
purpose only; other schemes such as Godunov [10] or
more sophisticated high resolution schemes [23] can be
used as well.

The basic principle of the multigrid time stepping
schemes, either multiplicative or additive, is essentially
unchanged even in the nonlinear case; we smooth or
propagate the wave on the fine grid, and accelerate the
propagation on the coarse grids. We need, however, to
make several modifications. For instance, the upwinding
smoothing (2) is now substituted by the EO smoothing
(7). The restriction and interpolation require more detail
explanations which are described in the next section.

3.1 Nonlinear upwind restriction and interpolation

In the linear case, the characteristics are constantly from
left to right at each grid point, and hence the upwind
restriction and interpolation can be determined a priori
by (4) and (5). For nonlinear conservation laws, how-
ever, the characteristics depend on the current solu-
tion, and the characteristic directions change from grid
points to grid points. Furthermore, shocks and rare-
faction waves can occur anywhere. Hence, we need to
devise a simple and yet accurate mechanism to deter-
mine whether the coarse grid point should interpolate
(restrict) to the left or to the right, and more importantly,
how to handle shocks and rarefactions. Since restriction
and interpolation are essentially based on the same prin-
ciple, we shall describe the interpolation only.
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Fig. 7 The interpolation value at the noncoarse grid point xh
j−1 is

given by the solution of a local PDE problem for the linear wave
equation, and the Riemann solution for the conservation law

Consider a two-level method. As shown in Fig. 7,
for j even, given the coarse grid values uH

j−2 and uH
j at

the coarse grid points xh
j−2 and xh

j , respectively, which

value should we select at the fine grid point xh
j−1? If both

f ′(uH
j−2

)
and f ′(uH

j

)
are positive (negative), the wave

propagates to the right (left) locally and it resembles the
linear case. Thus, we simply take uH

j−2 (uH
j ) for the value

at xh
j−1. When f ′(uH

j−2

)
is positive and f ′(uH

j

)
is nega-

tive, i.e. a shock, we have information coming from both
sides. Now, which one should we take? Either one, or the
average of them? In the opposite case, when f ′(uH

j−2

)
is

negative and f ′(uH
j

)
is positive, rarefaction occurs. This

situation seems even worse since the information is now
going away.

Our idea is motivated by the following key observa-
tion. We view the problem shown in Fig. 7 as a local
two-point boundary value problem. For the linear wave
equation (one boundary value is in fact redundant), it
can be written as:

ut + ux = 0 xH
j−2 < x < xH

j

u(xh
j−2, t) = uH

j−2, u(x, 0) = ūh.

We then define the interpolation value at xh
j−1 as the

steady state solution of the local two-point boundary
value problem. Such interpolation is precisely the
upwind biased interpolation described in Sect. 2.1. In
other words, the upwind biased interpolation can be
interpreted as solving local boundary value problems.

Generalizing this idea to conservation laws, we solve
a local Riemann problem instead:

ut + f (u)x = 0

u(x, 0) =
⎧
⎨

⎩

uH
j−2 xH

j−2 < x < xh
j−1

uH
j xh

j−1 < x < xH
j .

Then, the interpolation value uh
j−1 is given by the

Riemann solution. More precisely, if f ′(uH
j−2

)
> f ′(uH

j

)
,

a shock occurs with speed, s = (
f
(
uH

j−2

)−f
(
uH

j

))
/
(
uH

j−2−

uH
j

)
. If s ≥ 0, then uh

j−1 = uH
j−2; if s < 0, then uh

j−1 = uH
j .

If f ′(uH
j−2

)
< f ′(uH

j

)
, it is a rarefaction wave. If they are of

the same sign, then uh
j−1 = uH

j−2 if they are positive, and

uh
j−1 = uH

j if they are negative. Finally, if uH
j−2 < 0 < uH

j ,

then the rarefaction wave turns out to be zero at xh
j−1

and hence uh
j−1 = 0.

Applying the Riemann solutions to the multilevel
multiplicative scheme, the interpolation value ũ(k)

j−2k−1

is defined as:

if f ′ (ū(k)

j−2k

)
≥ 0, f ′ (ū(k)

j

)
≥ 0,

ũ(k)

j−2k−1 = ū(k)

j−2k−1 + ū(k+1)

j−2k − u(k+1)

j−2k

if f ′ (ū(k)

j−2k

)
≤ 0, f ′ (ū(k)

j

)
≤ 0,

ũ(k)

j−2k−1 = ū(k)

j−2k−1 + ū(k+1)
j − u(k+1)

j

if f ′ (ū(k)

j−2k−1

)
≥ 0 ≥ f ′ (ū(k)

j

)
,

ũ(k)

j−2k−1 =
⎧
⎨

⎩

u+ if f ′
(

ū(k)

j−2k−1

)
≥ 0

u− if f ′
(

ū(k)

j−2k−1

)
< 0

u+ = ū(k)

j−2k−1 + ū(k+1)

j−2k − u(k+1)

j−2k ,

u− = ū(k)

j−2k−1 + ū(k+1)
j − u(k+1)

j

if f ′ (ū(k)

j−2k

)
< 0 < f ′ (ū(k)

j

)
,

ũ(k)

j−2k−1 = ū(k)

j−2k−1 .

For the additive scheme, the interpolation is similar:
f ′(ū(k)

j−2k), f ′(ū(k)

j−2k−1), f ′(ū(k)
j ) are substituted by f ′(un

j−2k

)
,

f ′(un
j−2k−1

)
, f ′(un

j

)
, and u(k+1)

j−2k , u(k+1)
j by un

j−2k , un
j ,

respectively.
We remark that constructing interpolation by solving

local linear boundary value problem has been used in
multigrid methods for elliptic and convection-diffusion
equations [13,33] as well as for hypersonic flow compu-
tations [21] in which the P-variant of Osher’s approxi-
mate Riemann solver was used.

3.2 Algorithms

For the linear case, the forcing term b(k)
j ≡ 0 for all

j and k. In general, however, b(k)
j �= 0, and we need to

include it in the algorithm. Denote the nonlinear upwind
restriction and interpolation defined in Sect. 3.1 by Rnl

and Pnl, respectively. Define the residual of u(k)
j as:

r(k)
j = 1

�x(k)

(
FEO

(
u(k)

j , u(k)

j+2k−1

)
− FEO

(
u(k)

j−2k−1 , u(k)
j

))
,
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and similarly for the residual of ū(k)
j . The nonlinear mul-

tilevel multiplicative and additive algorithms are given
as follows:

Algorithm: Nonlinear Multiplicative Scheme

u(1) = un, b(1) = 0
Define ũ(k) = MGMult

nonlinear(u(k), b(k)) by:
if k = L,

ũ(k)
j = u(k)

j − �t(k) r(k)
j + �t(k) b(k)

j
(j = 0, 2k−1, 2 · 2k−1, . . . .)

else
ū(k)

j = u(k)
j − �t(k) r(k)

j + �t(k) b(k)
j

(j = 0, 2k−1, 2 · 2k−1, . . . .)
u(k+1)

j = ū(k)
j

(j = 0, 2k, 2 · 2k, . . . .)
b(k+1)

j = r(k+1)
j − Rnl r̄(k)

j
(j = 0, 2k, 2 · 2k, . . . .)

ũ(k+1) = MGMult
nonlinear(u(k+1), b(k+1))

ũ(k)
j = ũ(k+1)

j
(j = 0, 2k, 2 · 2k, . . . .)

ũ(k)

j−2k−1 = ū(k)

j−2k−1 + Pnl
(
ū(k+1) − u(k)

)
j−2k−1

(j = 0, 2k, 2 · 2k, . . . .)
end

un+1 = MGMult
nonlinear(u(1), b(1))

Algorithm: Nonlinear Additive Scheme

u(1) = un, b(1) = 0
Define ũ(k) = MGAdd

nonlinear(u(k), b(k)) by:
if k = L,

ũ(k)
j = u(k)

j − �t(k) r(k)
j + �t(k) b(k)

j
(j = 0, 2k−1, 2 · 2k−1, . . . .)

else
ū(k)

j = u(k)
j − �t(k) r(k)

j + �t(k) b(k)
j

(j = 0, 2k−1, 2 · 2k−1, . . . .)
u(k+1)

j = u(k)
j

(j = 0, 2k, 2 · 2k, . . . .)
b(k+1)

j = r(k+1)
j − Rnl r̄(k)

j
(j = 0, 2k, 2 · 2k, . . . .)

ũ(k+1) = MGAdd
nonlinear(u(k+1), b(k+1))

ũ(k)
j = ũ(k+1)

j
(j = 0, 2k, 2 · 2k, . . . .)

ũ(k)

j−2k−1 = ū(k)

j−2k−1 + Pnl
(
ū(k+1) − u(k)

)
j−2k−2

(j = 0, 2k, 2 · 2k, . . . .)
end

un+1 = MGAdd
nonlinear(u(1), b(1))

4 Linear analysis

In this section, we analyze the linear multigrid time
stepping schemes described in Sect. 2.4 for the linear
wave equation in one dimension. We shall provide a
theoretical foundation for the upwind biased interpola-
tion and restriction, and the modified coarse grid update
which aim at minimizing numerical oscillations. Like dis-
cretization schemes for conservation laws, one impor-
tant measure of nonoscillatory schemes is whether it
preserves monotonicity. More precisely, if un is a nonin-
creasing (nondecreasing) function, after one time step-
ping (in our case, one multigrid cycle), un+1 must remain
nonincreasing (nondecreasing). Another important
measure is total variation diminishing (TVD), which
requires that the total variation of un+1 does not exceed
that of un. Both concepts are fundamental to design-
ing numerical schemes for conservation laws, but nev-
ertheless, have never been used to analyze multigrid
methods.

Hence, the primary focus of our analysis is on the
monotonicity and total variation diminishing proper-
ties of the MG time stepping schemes. In particular, we
prove that both the two-level multiplicative and additive
schemes preserve monotonicity and are TVD; and the
same holds for multilevel additive scheme. In the fol-
lowing section, we analyze the convergence and speed
of propagation by means of Fourier transform.

We first summarize the two-level case result here [17].

Theorem 4.1 Both two-level multiplicative and additive
multigrid time stepping schemes preserve monotonicity.

Proof For j even, from the multiplicative algorithm,

un+1
j = ũh

j = ūH
j = ūh

j − λ
(

ūh
j − ūh

j−2

)
,

un+1
j−1 = ũh

j−1 = ūh
j−1 + ūH

j−2 − un
j−2.

Subtracting the two and by direct computation,

un+1
j − un+1

j−1

= (1 − λ)2
(

un
j − un

j−1

)
+ 2λ(1 − λ)

(
un

j−2 − un
j−3

)

+ λ
(

un
j−3 − un

j−4

)
+ λ2(un

j−4 − un
j−5). (8)

Similarly, for j − 1 being odd, we have,

un+1
j−1 − un+1

j−2 = ūh
j−1 + ūH

j−2 − un
j−2 − ūH

j−2

= (1 − λ)
(

un
j−1 − un

j−2

)
. (9)

Thus, if un is monotone, so is un+1, provided 0 ≤ λ ≤ 1
satisfies the CFL condition.



48 J. W. L. Wan, A. Jameson

For the additive scheme, the calculations are similar.
For even j, we have

un+1
j = ũh

j = ūH
j = un

j − λ
(

un
j − un

j−2

)
,

un+1
j−1 = ũh

j−1 = ūh
j−1 + ūH

j−2 − un
j−2.

After simplifying,

un+1
j − un+1

j−1 = (1 − λ)
(

un
j − un

j−1

)
+ λ

(
un

j−2 − un
j−3

)

+ λ
(

un
j−3 − un

j−4

)
, (10)

un+1
j−1 − un+1

j−2 = (1 − λ)
(

un
j−1 − un

j−2

)
. (11)

Therefore, monotonicity is preserved for 0 ≤ λ ≤ 1.

We generalize the above results to show that these
two schemes are also TVD.

Theorem 4.2 The two-level multiplicative and additive
multigrid time stepping schemes are TVD.

Proof Denote the total variation of a function u by
TV(u). For the multiplicative scheme, using the formu-
lae in (8) and (9),

TV(un+1)

=
∑

j

∣
∣un+1

j − un+1
j−1

∣
∣

=
∑

even j

∣
∣un+1

j − un+1
j−1

∣
∣ + ∣

∣un+1
j−1 − un+1

j−2

∣
∣

=
∑

even j

∣
∣(1 − λ)2

(
un

j − un
j−1

)
+ 2λ(1 − λ)

×
(

un
j−2 − un

j−3

)
+ λ

(
un

j−3 − un
j−4

)

+ λ2
(

un
j−4 − un

j−5

) ∣
∣ + ∣

∣(1 − λ)
(

un
j−1 − un

j−2

) ∣
∣.

≤
∑

even j

(1 − λ)2∣∣un
j − un

j−1

∣
∣ + (1 − λ)2∣∣un

j−1 − un
j−2

∣
∣

+ λ(1 − λ)
∣
∣un

j−1 − un
j−2

∣
∣ + 2λ(1 − λ)

∣
∣un

j−2 − un
j−3

∣
∣

+ λ
∣
∣un

j−3 − un
j−4

∣
∣ + λ2∣∣un

j−4 − un
j−5

∣
∣

= (1 − λ)2 TV(un) +
∑

even j

λ(1 − λ)
∣
∣un

j−1 − un
j−2

∣
∣

+ λ(1 − λ)
∣
∣un

j−2 − un
j−3

∣
∣ + λ(1 − λ)

∣
∣un

j−2 − un
j−3

∣
∣

+ λ
∣
∣un

j−3 − un
j−4

∣
∣ + λ2∣∣un

j−4 − un
j−5

∣
∣

= ((1 − λ)2 + λ(1 − λ)) TV(un)

+
∑

even j

λ(1 − λ)
∣
∣un

j−2 − un
j−3

∣
∣

+ λ(1 − λ)
∣
∣un

j−3 − un
j−4

∣
∣

+ (λ − λ(1 − λ))
∣
∣un

j−3 − un
j−4

∣
∣ + λ2∣∣un

j−4 − un
j−5

∣
∣

= ((1 − λ)2 + 2λ(1 − λ)) TV(un)

+
∑

even j

λ2∣∣un
j−3 − un

j−4

∣
∣ + λ2∣∣un

j−4 − un
j−5

∣
∣

= ((1 − λ)2 + 2λ(1 − λ) + λ2) TV(un)

= TV(un)

Similarly, for the additive scheme, we have

TV(un+1)

=
∑

even j

∣
∣un+1

j − un+1
j−1

∣
∣ + ∣

∣un+1
j−1 − un+1

j−2

∣
∣

=
∑

even j

∣
∣(1 − λ)

(
un

j − un
j−1

)
+ λ

(
un

j−2 − un
j−3

)

+ λ
(

un
j−3 − un

j−4

) ∣
∣ + ∣

∣(1 − λ)
(

un
j−1 − un

j−2

) ∣
∣

≤
∑

even j

(1 − λ)
∣
∣un

j − un
j−1

∣
∣ + (1 − λ)

∣
∣un

j−1 − un
j−2

∣
∣

+ λ
∣
∣un

j−2 − un
j−3

∣
∣ + λ

∣
∣un

j−3 − un
j−4

∣
∣

= TV(un).

��

For the multilevel algorithms, it turns out that the
multiplicative algorithm does not preserve monotonic-
ity in general. However, the oscillations appear to be
very small and do not seem to affect the fast wave prop-
agation; see the numerical results in Sect. 6. For the
multilevel additive scheme, it still has the monotonic-
ity preserving and TVD properties. We first extend the
formulae in (10) and (11) to the multilevel case.

Lemma 4.1 For the k-level additive multigrid time step-
ping scheme, and j = 2k−1, it holds that

un+1
j − un+1

j−1 = (1 − λ)
(

un
j − un

j−1

)

+ λ
(

un
j−2k−1 − un

j−2k

)

un+1
j−m − un+1

j−m−1 = (1 − λ)
(

un
j−m − un

j−m−1

)

m = 1, . . . , 2k−1 − 1.

Proof We prove by induction. Suppose L is the number
of multigrid levels. For L = 2, it is proved in the proof of
Theorem 4.1. Suppose it is true for L = k, and consider



Monotonicity preserving multigrid time stepping schemes 49

the case L = k + 1. For j=a constant multiple of 2k+1,

un+1
j = ũ(2)

j

un+1
j−1 = ū(1)

j−1 + ũ(2)
j−2 − un

j−2,

where the superscript (1) denotes functions on the first
grid, which is also the finest grid, and (2) functions on
the second grid. Subtracting the two,

un+1
j − un+1

j−1 = ũ(2)
j − ũ(2)

j−2 − (1 − λ)
(

un
j−1 − un

j−2

)
.

Since we use the previous values un on all the coarse
grids, the update of ũ(2)

j from u(2)
j , j = 0, 2, . . . , is com-

pletely independent of the update on the finest grid. In
other words, ũ(2)

j can be thought of being obtained by
applying the level k additive scheme to un on the even
points. By induction hypothesis, we have

un+1
j − un+1

j−1 = (1 − λ)
(
un

j − un
j−2

)
+ λ

(
un

j−2k − un
j−2k+1

)

− (1 − λ)
(

un
j−1 − un

j−2

)

= (1 − λ)
(
un

j − un
j−1

)
+ λ

(
un

j−2k − un
j−2k+1

)
.

Similarly, since un+1
j−2 = ũ(2)

j−2, we have

un+1
j−1 − un+1

j−2 = ūj−1 + ũ(2)
j−2 − un

j−2 − ũ(2)
j−2

= (1 − λ)
(

un
j−1 − un

j−2

)
.

We compute one more difference:

un+1
j−2 − un+1

j−3 = ũ(2)
j−2 −

(
ū(1)

j−3 − ũ(2)
j−4 − un

j−4

)

= (1 − λ)
(

un
j−2 − un

j−3

)
,

by induction hypothesis on ũ(2)
j−2 − ũ(2)

j−4. The rest is essen-
tially the same and we shall omit the calculations. In
conclusion, the formulae are also true for L = k + 1. ��

Theorem 4.3 The multilevel additive multigrid time step-
ping scheme preserves monotonicity and are TVD.

Proof The monotonicity preserving property is clear
from the formulae given by Lemma 4.1. The TVD prop-
erty can be seen by (assuming k-level)

TV(un+1)

=
∑

j

∣
∣un+1

j − un+1
j−1

∣
∣

=
∑

j=multiple of 2k−1

(∣
∣un+1

j − un+1
j−1

∣
∣ + ∣

∣un+1
j−1 − un+1

j−2

∣
∣

+ · · · + ∣
∣un+1

j−2k−1+1
− un+1

j−2k−1

∣
∣
)

=
∑

j=multiple of 2k−1

[∣
∣(1 − λ)

(
un

j − un
j−1

)

+ λ
(

un
j−2k−1 − un

j−2k

) ∣
∣ + (1 − λ)

∣
∣un

j−1 − un
j−2

∣
∣

+ · · · + (1 − λ)
∣
∣un

j−2k−1+1 − un
j−2k−1

∣
∣
]

≤ (1 − λ)TV(un) + λTV(un)

= TV(un).

��

4.1 Convergence analysis

In this section, we analyze the convergence property of
the two-level multiplicative scheme by means of Fourier
analysis. Our results show that waves of both low and
high frequency propagate with the speed of 4, in con-
trast with the Fourier analysis given by Gustafsson and
Lötstedt which showed that, for their multigrid method,
the smooth low frequency waves propagate with speed 3.
This is expected since the linear two-level schemes have
been proven to be nonoscillatory and hence should not
have any dispersive effect.

Consider the update formula (6) for un+1. We can
express it in terms of matrices instead of the interpola-
tion operator P :

un+1 = ūh + Podd

(
ūH − Ruun

)

+ Peven

(
ūH − Ruūh

)
, (12)

where

Podd =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
1

0
1

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Peven =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
0

1
0

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Ru = PT
even.

Noting that ūh = (I −λAh)un and ūH = (I −λAH)Ruun,
(12) can be written as un+1 = Mun, where the iteration
matrix M is given by

M = [I + PoddRu − λ(Peven + Podd)AHRu](I − λAh)

− PoddRu.

Following the standard Fourier analysis for multigrid
methods, let

eµ(xj) = eiµπxj − N + 1 ≤ µ ≤ N,

be the Fourier basis of frequency µ. The Fourier trans-
form matrix has eµ’s as columns, and each low frequency
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µ, −N/2 + 1 ≤ µ ≤ N/2, is paired with the correspond-
ing high frequency µ′ = µ + N. Under this ordering,
it is well-known that the Fourier transformed iteration
matrix, M̂, is block diagonal:

M̂ = blkdiag(M̂1, . . . , M̂N/2),

where each M̂µ is a 2 × 2 matrix. By examining M̂µ, we
can determine the convergence and propagation prop-
erties of un. We first state the Fourier transform result.

Lemma 4.2 The Fourier transformed iteration matrix is
given by

M̂µ = [I + (P̂odd)µ(R̂u)µ − λ((P̂odd)µ + (P̂even)µ)

ÂH
µ (R̂u)µ](I − λÂh

µ) − (P̂odd)µ(R̂u)µ,

where

Âh
µ =

[
1 − e−µπhi 0

0 1 + e−µπhi

]

, ÂH
µ = 1 − e−2µπhi

(P̂odd)µ = 1√
2

[
e−µπhi

−e−µπhi

]

, (P̂even)µ = 1√
2

[
1
1

]

,

(R̂u)µ = (P̂even)T
µ .

Theorem 4.4 For λ = 1.0, the speed of wave propagation
of any frequency is 4.

Proof Simplifying the formula for M̂µ in Lemma 4.2
with λ = 1.0, we obtain

M̂µ = e−3.5µπhi
[

cos(µπh/2) − cos(µπh/2)

i sin(µπh/2) −i sin(µπh/2)

]

.

The eigenvalues of M̂µ are 0 and e−4µπhi, and hence the
wave propagates with the speed of 4, independent of the
frequency. ��

We remark that there is no damping for λ = 1.0 since
the upwind smoothing is exact. In general, for λ < 1.0,
it can be proved that the high frequencies are damped
out. Nevertheless, the key of this approach is to expell
the error out of the boundary via rapid propagation on
multiple grids; the effect of damping is not as important
as in elliptic multigrid methods.

5 Nonlinear analysis

We analyze the monotonicity preserving property of the
nonlinear multigrid time stepping schemes proposed in
Sect. 3.2 for solving the scalar conservation laws (6)
where the flux function is assumed to be convex. We shall

show that the interpolation operator derived from the
local Riemann solutions will lead to a nonoscillatory
multigrid time stepping scheme. Since the analysis for
the nonlinear case is much harder, we only consider
the two-level additive scheme. The effectiveness of the
multilevel multiplicative and additive schemes are dem-
onstrated empirically in Sect. 6.

Although the proposed nonlinear multigrid time step-
ping schemes allow essentially any monotonicity pre-
serving schemes as smoothers, in the analysis, we focus
on the EO scheme since the nonlinear switching via the
maximum and minimum functions can be replaced by
integrals.

Lemma 5.1 ([8]) The EO smoothing scheme can be
written as

un+1
j = un

j − λ

un
j+1∫

un
j

f ′χ ds − λ

un
j∫

un
j−1

f ′(1 − χ) ds,

where χ(u) is defined as

χ(u) =
{

0 if f ′(u) ≥ 0
1 if f ′(u) < 0.

Moreover, we have the following inequalities:

−f ′(u)χ(u) ≥ 0

1 + λf ′(u)(2χ(u) − 1) ≥ 0

f ′(u)(1 − χ(u)) ≥ 0

provided the CFL condition is satisfied:
∣
∣λf ′(u)

∣
∣ ≤ 1.

We consider the interval (xj−2, xj), j = even, and com-
pute un+1

j −un+1
j−1 and un+1

j−1 −un+1
j−2 , where un+1 is obtained

from the two-level nonlinear additive multigrid time
stepping scheme. Since our interpolation is defined by
the local Riemann solution which depends on the signs
of f ′(un

j−2

)
, f ′(un

j−1

)
, and f ′(un

j

)
, we separate the compu-

tations into four cases, each of which is presented as a
lemma.

Lemma 5.2 Suppose f ′(un
j−2

) ≥ 0 and f ′(un
j

) ≥ 0. If
un is monotonically nondecreasing (nonincreasing), so is
un+1.

Proof We assume that un is monotonically nondecreas-
ing; the other case can be handled similarly. Since un

is monotone and the flux f (u) is convex, it implies that
f ′(un

j−1

) ≥ 0. Thus, our Riemann solution interpolation
gives
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un+1
j−1 = ū(1)

j−1 + ū(2)
j−2 − un

j−2.

In the coarse grid evolution, in general, we also have the
forcing term due to the residual on the fine grid:

ū(2)
j−2 = un

j−1 − λ

un
j∫

un
j−2

f ′χ ds − λ

un
j−2∫

un
j−4

f ′(1 − χ) ds

+�t(2) b(2)
j−2,

where the forcing term is defined as

b(2)
j−2 ≡ 1

�x(2)

⎛

⎜
⎜
⎝

un
j∫

un
j−2

f ′χ ds +
un

j−2∫

un
j−4

f ′(1 − χ) ds

⎞

⎟
⎟
⎠

−Rnl(r̄
(1))j−2.

Our nonlinear Riemann solution restriction gives

b(2)
j−2

= 1
�x(2)

⎛

⎜
⎜
⎝

un
j∫

un
j−2

f ′χ ds +
un

j−2∫

un
j−4

f ′(1 − χ) ds

⎞

⎟
⎟
⎠

− 1
2
(r̄(1)

j−2 + r̄(1)
j−3)

= 1
�x(2)

⎛

⎜
⎜
⎝

un
j∫

un
j−2

f ′χ ds +
un

j−2∫

un
j−4

f ′(1 − χ) ds

⎞

⎟
⎟
⎠

− 1
2

1
�x(1)

⎛

⎜
⎜
⎝

un
j−1∫

un
j−2

f ′χ ds +
un

j−2∫

un
j−3

f ′(1 − χ) ds

+
un

j−2∫

un
j−3

f ′χ ds +
un

j−3∫

un
j−4

f ′(1 − χ) ds

⎞

⎟
⎟
⎠

= 1
�x(2)

⎛

⎜
⎜
⎝

un
j−2∫

un
j−3

f ′χ ds +
un

j∫

un
j−1

f ′χ ds

⎞

⎟
⎟
⎠

= 1
�x(2)

un
j−2∫

un
j−3

f ′χ ds,

since
∫ un

j

un
j−1

f ′χ ds = 0 on the interval
(
un

j−1, un
j

)
. Hence

un+1
j − un+1

j−1

= ū(2)
j − ū(1)

j−1 − ū(2)
j−2 + un

j−2

= un
j − λ

un
j+2∫

un
j

f ′χ ds − λ

un
j∫

un
j−2

f ′(1 − χ) ds − un
j−1

+ λ

un
j∫

un
j−1

f ′χ ds + λ

un
j−1∫

un
j−2

f ′(1 − χ) ds − un
j−2

+ λ

un
j∫

un
j−2

f ′χ ds + λ

un
j−2∫

un
j−4

f ′(1 − χ) ds

− λ

un
j−2∫

un
j−3

f ′χ ds + un
j−2

= un
j − un

j−1 − λ

un
j+2∫

un
j

f ′χ ds + λ

un
j∫

un
j−2

f ′(2χ − 1) ds

+ λ

un
j∫

un
j−1

f ′χ ds + λ

un
j−1∫

un
j−2

f ′(1 − χ) ds

+ λ

un
j−2∫

un
j−4

f ′(1 − χ) ds − λ

un
j−2∫

un
j−3

f ′χ ds

=
un

j∫

un
j−1

1 + λf ′(2χ − 1) ds + λ

un
j∫

un
j−2

f ′χ ds

− λ

un
j+2∫

un
j

f ′χ ds − λ

un
j−2∫

un
j−3

f ′χ ds

+ λ

un
j−2∫

un
j−4

f ′(1 − χ) ds.

Since f ′(u) ≥ 0 for un
j−2 ≤ u ≤ un

j , χ(u) = 0, and

hence
∫ un

j

un
j−2

f ′χ ds = 0. By Lemma 5.1, all the integrands

on the right-hand side are nonnegative, and therefore
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un+1
j − un+1

j−1 ≥ 0. Similarly,

un+1
j−1 − un+1

j−2

= ūn
j−1 + ū(2)

j−2 − un
j−2 − ū(2)

j−2

= un
j−1 − λ

un
j∫

un
j−1

f ′χ ds − λ

un
j−1∫

un
j−2

f ′(1 − χ) ds − un
j−2

=
un

j−1∫

un
j−2

1 − λf ′(1 − χ) ds − λ

un
j∫

un
j−1

f ′χ ds

≥ 0,

by Lemma 5.1 and the CFL condition:
∣
∣λf ′(u)

∣
∣ ≤ 1. ��

Lemma 5.3 Suppose f ′(un
j−2

) ≤ 0 and f ′(un
j

) ≤ 0. If
un is monotonically nondecreasing (nonincreasing), so is
un+1.

Proof Similar to the proof in Lemma 5.2. ��

Lemma 5.4 Suppose f ′(un
j−2

)
< 0 and f ′(un

j

)
> 0. If un

is monotonically nondecreasing, so is un+1.

Proof (Note that since f is convex and un is monotone,
un cannot be decreasing.) This is the case of transonic
rarefaction. The Riemann solution interpolation gives
un+1

j−1 = ū(1)

j−1. Moreover, b(2)
j = 0. If f ′(un

j−1

) ≥ 0, then

b(2)
j = 1

�x(2)

⎛

⎜
⎜
⎝

un
j+2∫

un
j

f ′χ ds +
un

j∫

un
j−2

f ′(1 − χ) ds

⎞

⎟
⎟
⎠

− 1
2
(r̄(1)

j−1 + r̄(1)
j )

= 1
�x(2)

⎛

⎜
⎜
⎝

un
j+2∫

un
j+1

f ′χ ds −
un

j∫

un
j−1

f ′χ ds

⎞

⎟
⎟
⎠

= 0,

since f ′(u) ≥ 0 for u ≥ un
j−1. If f ′(un

j−1

)
< 0, then

b(2)
j ≡ 1

�x(2)

⎛

⎜
⎜
⎝

un
j+2∫

un
j

f ′χ ds +
un

j∫

un
j−2

f ′(1 − χ) ds

⎞

⎟
⎟
⎠ − 1

2
r̄(1)

j

= 1
�x(2)

⎛

⎜
⎜
⎝

un
j+2∫

un
j+1

f ′χ ds +
un

j−1∫

un
j−2

f ′(1 − χ) ds

⎞

⎟
⎟
⎠ = 0.

By similar computations, we can also show that b(2)
j−2 = 0.

Hence,

un+1
j − un+1

j−1

= ū(2)
j − ū(1)

j−1

= un
j − λ

un
j+2∫

un
j

f ′χ ds − λ

un
j∫

un
j−2

f ′(1 − χ) ds − un
j−1

+ λ

un
j∫

un
j−1

f ′χ ds + λ

un
j−1∫

un
j−2

f ′(1 − χ) ds

=
un

j∫

un
j−1

1 + λf ′(2χ − 1) ds − λ

un
j+2∫

un
j

f ′χ ds

≥ 0,

by Lemma 5.1. Similarly,

un+1
j−1 − un+1

j−2

= ū(1)

j−1 − ū(2)
j−2

= un
j−1 − λ

un
j∫

un
j−1

f ′χ ds − λ

un
j−1∫

un
j−2

f ′(1 − χ) ds − un
j−2

+ λ

un
j∫

un
j−2

f ′χ ds + λ

un
j−2∫

un
j−4

f ′(1 − χ) ds

=
un

j−1∫

un
j−2

1 + λf ′(2χ − 1) ds + λ

un
j−2∫

un
j−4

f ′(1 − χ) ds

≥ 0.

��

Lemma 5.5 Suppose f ′(un
j−2

) ≥ 0 and f ′(un
j

) ≤ 0. If un

is monotonically nonincreasing, so is un+1.

Proof This is the case of a shock. As opposed to the
rarefaction case, un cannot be increasing. Assume first
that f ′(un

j−1

) ≥ 0. Then our interpolation gives

un+1
j−1 = ū(1)

j−1 + ū(2)
j−2 − un

j−2.
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In this case, b(2)
j−2=0 since f ′(un

j−3

)
, f ′(un

j−2

)
, f ′(un

j−1

) ≥ 0

(cf. Lemma 5.2). However, b(2)
j �= 0, and it can be shown

that

b(2)
j ≡ 1

2h

⎛

⎜
⎜
⎝

un
j+2∫

un
j

f ′χ ds +
un

j∫

un
j−2

f ′(1 − χ) ds

⎞

⎟
⎟
⎠

− 1
2
(r̄(1)

j−1 + r̄(1)
j + r̄(1)

j+1)

= −1
2h

⎛

⎜
⎜
⎝

un
j∫

un
j−1

f ′χ ds +
un

j+1∫

un
j

f ′(1 − χ) ds

⎞

⎟
⎟
⎠

= −1
2h

un
j∫

un
j−1

f ′χ ds,

since f ′(un
j

)
, f ′(un

j+1

) ≤ 0. Thus ū(2)
j becomes

ū(2)
j = un

j − λ

un
j+2∫

un
j

f ′χ ds − λ

un
j∫

un
j−2

f ′(1 − χ) ds

− λ

un
j∫

uj−1

f ′χ ds.

Combining all these formulae, we have

un+1
j − un+1

j−1

= ū(2)
j − ū(1)

j−1 − ū(2)
j−2 + un

j−2

=
un

j∫

un
j−1

1 + λf ′(2χ − 1) ds + λ

un
j−1∫

un
j−2

f ′χ ds

− λ

un
j+2∫

un
j

f ′χ ds + λ

un
j−2∫

un
j−4

f ′(1 − χ) ds

≤ 0,

since λ
∫ un

j−1

un
j−2

f ′χ ds = 0 because f ′(un
j−2

)
, f ′(un

j−1

) ≥ 0,

and the remaining terms are all nonpositive by
Lemma 5.1 and the fact that un is nonincreasing. Simi-
larly,

un+1
j−1 − un+1

j−2 = ū(1)

j−1 + ū(2)

j−1 − un
j−2 − ū(1)

j−2

=
un

j−2∫

un
j−1

1 − λf ′(1 − χ) ds − λ

un
j∫

un
j−1

f ′χ ds

≤ 0.

The case where f ′(un
j−1

)
< 0 is analogous and it will be

omitted here. ��
Theorem 5.1 The two-level additive multigrid time step-
ping scheme preserves monotonicity.

Proof In the convex case, the four possible cases of
f ′(un

j−2

)
and f ′(un

j

)
are proved in Lemma 5.2-5.5, and

hence the result. ��

6 Numerical results

In this section, we verify numerically that the linear and
nonlinear multigrid time stepping schemes are nonos-
cillatory and the steady state solution can be reached in
small number of multigrid cycles. We consider the linear
wave equation (1) and the nonlinear Burgers’ equation:

ut +
(

1
2

u2
)

x
= 0 0 < x < 1,

with appropriate boundary and initial conditions.
For the linear wave equation, the boundary condi-

tion is chosen as 0 and the initial condition is a square
wave. Therefore, the steady state solution u ≡ 0. We
apply the 3-level multiplicative and additive schemes to
solving the equation with CFL number λ = 1.0. Thus,
the smoothing step given by the upwinding is in fact
exact evolution. The results are shown in Figs. 8 and 9,
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Fig. 8 The numerical solution given by the 3-level multiplica-
tive scheme, λ = 1.0, at (top-left) time step = 0, (top-right) time
step = 4, (bottom-left) time step = 8, (bottom-right) time
step = 12
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Fig. 9 The numerical solution given by the 3-level additive
scheme, λ = 1.0, at (top-left) time step = 0, (top-right) time
step = 8, (bottom-left) time step = 16, (bottom-right) time
step = 24.

respectively. First, contrast with the standard multigrid
approach (see Fig. 1), the initial square wave remains as
a square wave as it propagates. We remark that the mul-
tiplicative scheme in general does not preserve mono-
tonicity and is not TVD when the number of grids is
more than 2, but with the special choice of CFL num-
ber, λ = 1.0, no oscillations occurred.

Secondly, the theoretically results by Jespersen [19]
and Gustafsson and Lötstedt [12] estimate that the opti-
mal speed of propagation is:

optimal speed of multigrid = 2k − 1,

where k is the number of grids. Our convergence result
in Sect. 4.1, however, suggests a speed up of 2k. By care-
ful inspection, we can see that the speed of propagation
of the wave given by the multiplicative scheme is indeed
23 = 8 times faster than the speed of upwinding on
a single grid, since the wave takes 128/8 ≈ 16 multi-
grid cycles to propagate out of the boundary. Thus, it
achieves the theoretical optimal speed while the oscilla-
tions produced by the standard multigrid method delay
the convergence.

Comparing the propagation speeds of the multiplica-
tive and the additive schemes (Figs. 8 and 9), the former
is twice as fast as the latter (cf Gauss-Seidel vs. Jacobi).

When the CFL number �= 1.0, e.g. λ = 0.5, the upwind
smoothing is dissipative. Moreover, the multiplicative
scheme introduces oscillations. In Fig. 10, second left
plot, we can see a small dip on the top of the solution;
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Fig. 10 The numerical solution given by the 3-level multiplica-
tive scheme, λ = 0.5, at (top-left) time step = 0, (top-right)
time step = 8, (bottom-left) time step = 16, (bottom-right) time
step = 24
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Fig. 11 The numerical solution given by the 3-level additive
scheme, λ = 0.5, at (top-left) time step = 0, (top-right) time
step = 16, (bottom-left) time step = 32, (bottom-right) time
step = 48

i.e. the scheme does not preserve monotonicity and is
not TVD. However, we note that the oscillations appear
to be very minimal and do not seem to affect the fast
wave propagation. The additive scheme remains nonos-
cillatory, as is proved in Sect. 4; see Fig. 11.
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Next, we apply the two schemes together with non-
linear upwind restriction and interpolation to solve the
Burgers’ equation. We start with a shock problem, which
has also been tested by Ferm and Lötstedt [9], with
boundary conditions: u(0, t) = 1 and u(1, t) = −1, and
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Fig. 12 The numerical solution given by the 4-level multiplica-
tive scheme, λ = 1.0, at (top-left) time step = 0, (top-right) time
step = 2, (bottom-left) time step = 4, (bottom-right) time step = 6
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Fig. 13 The numerical solution given by the 4-level additive
scheme, λ = 1.0, at (top-left) time step = 0, (top-right) time
step = 3, (bottom-left) time step = 6, (bottom-right) time step = 9

piecewise constant initial condition as shown in Figs. 12
and 13. Thus the steady state solution is

u =
{

1 if 0 ≤ x < 0.5
−1 if 0.5 < x ≤ 1.
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Fig. 14 The numerical solution given by the 4-level multiplica-
tive scheme, λ = 1.0, at a time step = 0, b time step = 3, c time
step = 6, d time step = 9
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Fig. 15 The numerical solution given by the 4-level additive
scheme, λ = 1.0, at (top-left) time step = 0, (top-right) time
step = 6, (bottom-left) time step = 12, (bottom-right) time
step = 18.
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with a discontinuity at x = 0.5. The intermediate
solutions given by the four-level multiplicative and addi-
tive schemes are shown in Figs. 12 and 13. On a sin-
gle grid, EO scheme alone takes 81 time steps to reach
the steady state. The optimal linear speedup for a four-
level method is 24 = 16, and hence the optimal number
of multigrid time steps for the multiplicative scheme is
81/16 ≈ 5, which is essentially achieved by the multipli-
cative scheme. The four-level additive scheme takes 10
multigrid time stepping, which is about half the speedup
of the multiplicative scheme, as expected.

In the previous example, only shocks are developed.
We also test the schemes with the initial condition being
u(x, 0) = cos(5πx), thus both shocks and rarefactions
are developed during time steppings. The steady state
solution, however, is the same as the previous example.
We again apply the four-level schemes and the results
are shown in Figs. 14 and 15. The single-grid EO scheme
takes 143 time steps, and hence the optimal number
of multigrid time steps for the multiplicative scheme is
143/16 ≈ 9. The multiplicative and additive schemes
take 10 and 19 multigrid time steppings, respectively,
agreeing closely with the optimal predicted values.

An extension of this approach to two dimensions is
possible. However, it is noted in [17] that there exist
pathological cases where multigrid with full coarsening
would fail completely if the disturbances happen to lie
on the noncoarse grid lines. Thus, semi-coarsening is
necessary. An extension of the linear approach together
with a semi-coarsening strategy is used to solve the fol-
lowing two-dimensional wave equation:

ut + ux + uy = 0 0 < x, y < 1.

We use three-level and λ = 0.5. The results are shown
in Fig. 16.

Finally, we present the numerical results for solving a
two dimensional Burgers’ equation ([31, Example 3a]):

ut +
(

1
2

u2
)

x
+ uy = 0 0 < x, y < 1,

with boundary conditions: u = −1 on the left side, u = 1
on the right side, and u = 2x − 1 on the bottom side.
Thus a shock is developed in the domain. The interme-
diate solutions given by the three-level multiplicative
scheme, λ = 0.25, are shown in Fig. 17. On a single grid
of 65 × 65, EO scheme takes 255 time steps to steady

Fig. 16 The numerical
solution given by the 3-level
multiplicative scheme,
λ = 0.5, at (top-left) time
step = 0, (top-right) time
step = 6, (bottom-left) time
step = 11, (bottom-right) time
step = 16
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Fig. 17 The numerical
solution given by the 3-level
multiplicative scheme,
λ = 0.25, at (top-left) time
step = 0, (top-right) time
step = 12, (bottom-left) time
step = 24, (bottom-right) time
step = 36
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state. The optimal number of multigrid time steps would
be 253/8 ≈ 32. The three-level method requires 36 time
steps, showing similar convergence behaviour as in one-
dimensional case.

7 Concluding remarks

Through the analytical and numerical results, we have
demonstrated that monotonicity preserving and total
variation diminishing are two key properties to obtain
an efficient multigrid time stepping schemes. To achieve
these properties, we have described an upwind resid-
ual restriction and interpolation which are based on the
characteristics of the linear wave equation. For nonlin-
ear conservation laws, we have proposed a nonlinear
restriction and interpolation which are based on local
Riemann solutions, a natural generalization of the char-
acteristics approach.

The present study has been focused primarily on the
one-dimensional case. The numerical results in two
dimensions, however, have indicated the potential of
this approach. Nevertheless, extensions to systems and
multidimensions are yet to be investigated.
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