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tool in modern risk management since it is well suited for

1 Introduction

dealing with the large number of variables that are re-

quired to analyze the market risk and credit risk of large

Monte Carlo simulation is an important computational portfolios. In fact, the method is really the only viable nu-



merical technique for high dimensional problems and such
problems are becoming more prevalent in modern finance.

Despite significant progress, however, the valuation of
American options by simulation still remains a challeng-
ing problem. One difficulty in applying the Monte Carlo
method stems from its early exercise feature. At each point
the holder of an American option has to decide whether to
exercise the contract or continue to hold on to it. A ra-
tional investor will select an optimal exercise strategy that
will maximize the value of the contract.

A variety of approaches have been used to value the
early exercise feature by simulation. Typically they in-
volve some technique for approximating the early exercise
boundary or approximating the transitional density func-
tion. This problem can also be set up in a dynamic pro-
gramming framework where we can solve the optimization
problem by working backwards through time. An impor-
tant advantage of this method over other methods is that
it does not require any initial knowledge of the shape of
the exercise region, which in a multi-asset problem can be
very complex.

An important contributions to this problem has been
made by Broadie and Glasserman (1997a), who proved
that for a large class of problems the simulation estima-
tor must be biased. They also developed a simulated
tree approach which produces two estimators: one biased
high and the other biased low. Unfortunately, this algo-
rithm becomes computational burdensome when the num-
ber of exercise points or underlying assets is large. Subse-
quently, they propose a stochastic mesh method (Broadie
and Glasserman, 1997b) which could handle much higher
dimensions. The rate of convergence for this method, how-
ever, is very slow and significant variance reduction tech-
niques need to be incorporated in order for this method to
be practically useful.

As inspired by the stochastic mesh method, Boyle et al.
(2000) showed that with an appropriate choice of mesh
density, the method can be combined with the quasi-Monte
Carlo technique to achieve a significant bias reduction of
the high-biased estimator. In subsequent papers (Boyle
et al. (2002, 2003)), this approach has been extended to
low-biased estimators.

Results of an extensive simulation study presented by
Boyle et al. (2000, 2002, 2003) indicate that an applica-
tion of low discrepancy sequences can improve dramati-
cally the accuracy of the mesh method: The achieved rate
of convergence exceeded significantly the rate that corre-
sponds to pseudo-random numbers. Despite this, however,
for options with several assets the required time is still sig-
nificant. For instance, in Section 3.5, we present an exam-
ple with 5 assets and 10 exercise times, the sequential run
time is more than 22 hours. In more complex cases, it can
take even days. However, in practice, people in financial
institutions would want real time quotes.

The use of parallel computing to achieve practical run
times has been gaining popularity in the area of computa-
tional finance. For instance, Gerbessiotis (2004) considers
pricing American option on one asset (whereas the present

paper considers multi-assets). His parallel algorithm is
based on the binomial lattice model. With only one sin-
gle asset, the complexity is linear in, n, the number of
the discretization time step. Hence, the parallel efficiency
can only achieve around 50% for the values of n tested in
Gerbessiotis (2004). Thulasiram and Bondarenko (2003),
on the other hand, consider a more challenging problem in
parallelizing the multidimensional binomial lattice model
for pricing more complex derivatives. Improved parallel ef-
ficiency is reported with increasing number of assets. Both
of these papers use MPI (message passing interface) pro-
gramming model. Multithreaded parallel implementation
has also been studied by Thulasiram and Thulasiraman

(2003) and Thulasiram et al. (2001).

In this paper, we study parallel implementations of the
low discrepancy (LD) mesh method, and in particular, the
backward recursion step which is the most computational
intensive part of the LD mesh method. We propose two
parallel approaches based on the block and checkerboard
layout of the data. The idea of the block approach is
to partition data among processors arranged in a linear
array topology whereas the checkerboard approach parti-
tions data in a 2D array. Thus the communication cost
is relatively cheaper for the latter. Furthermore, since the
complexity of the backward recursion is quadratic in b,
the number of asset prices per exercise date, it is then
more amenable to parallelization and more effective use of
multiple processors can be resulted. The numerical exam-
ples conducted in 3.5 indicate that our implementation can
achieve almost optimal speedup.

The paper is organized as follows. In Section 2, we de-
scribe the low discrepancy mesh method. In Section 3, we
present the the proposed block and checkerboard paral-
lel implementations of the LD mesh method. Section 3.5
shows the numerical results and parallel efficiency. Section
5 concludes the paper.

2 Low Discrepancy Mesh Method

The objective is to price an American style derivative
security contingent on n underlying asset prices {5;} =
{(S}, 8%, ..., 58")}. The security can be exercised prior to
maturity at d + 1 time points (including the initial time),
which will be denoted as tg,%1, ...,tq = T. If the security
is exercised at time 7, its value is equal to I(r, 5;), where
I(-) is a known function representing the discounted value
of the contract.

We assume that under the risk-neutral measure @,
the price process {S;} is a Markov process with a
fixed initial state, §0, whose transition probability den-
sities f(ti,tj, &), defined by P(S,, € A|S,, = &) =
[4 F(ti,t;, B d)di, exist and are known.

The valuation of the American derivative can be formu-
lated as the maximization of its expected exercise value
taken over all stopping times taking values in the set
{to,t1, ..., T}. Tt is well known that this problem can be



solved using the principle of dynamic programming: We
find the functions V(t;,-), the value of the American op-
tion, through the backward recursion:

v(T,7) = IT,7%),
V(t;, &) = max[I(t,7), Ct;, %)), i=d-1,...,0,
where C'(t;, %) is the continuation value at point Z
C(ti, &) = E[V (tig1, Stiy)I S, = 7)), (1)

and finally set V = V/(0, §0).

To use this method in practice we must be able to cal-
culate or approximate efficiently the continuations values
C(t;, &) for all i = 0, ...,d—1 and some selected set of points
¥ from the state space. For ¢t = ¢ this can be accomplished
using the Monte Carlo method:

E[V(tl, Stl |St0 ~

b
Z (t1, Xe, (1)

where V(tl, -)is an approxnnatlon of V(ty, ) obtained from

@I»—k

the backward recursion and X;, (1), ..., X;,(n) is a ran-
dom sample drawn from a distributlon Wlth density func-
tion f(to, t1, §t0; -). In practice, however, this method will
quickly become unworkable because the number of points
will grow exponentially.

The key to the stochastic mesh method (Broadie and
Glasserman, 1997b) and low discrepancy (LD) mesh
method (Boyle et al. (2000, 2002, 2003)) is the observation
that points that we generate to calculate one conditional
expectation can also be used to calculate other expecta-
tions. In both methods, first we generate a mesh of state
points {ftl(j),i =1,...,d,5 = 1,...,b}, from R*. In
the stochastic mesh method this is achieved by generat-
ing random points from a distribution specified by a cer-
tain density function g,, which is referred to as a mesh
density. For the low discrepancy mesh method the mesh
points are generated by applying the inverse method to a
low discrepancy sequence. Once a mesh is constructed, the
values V(ti, -) are calculated using the backward recursion
method, where the continuation values are approximated

by

b
I , .
Clti, Xe.(4) = 3 D Vltivns Kooy (D)w(ti, Xe,(7)s Koo (

~—

);

=
IIL\‘/

for j = 1,...,b, i = 0,1,...,d, where w(t;,7,9) :
[f(ti, tigr, Z59)]/g¢,(¥) is the Radon-Nikodym derivative.
The introduction of the weights w is necessary as the points
in the mesh are sampled from the density g:,. This proce-
dure, applicable to both stochastic and deterministic mesh
points, generates an estimate that is biased high.

A good choice of the densities g;,, 7 = 1,...,d, is crucial
for the success of the mesh method. For random sampling,
Broadie and Glasserman (1997b) suggests to use a uniform
mixture of transition densities. More formal argument for
American options in favor of this distribution is presented

by Boyle et al. (2000). However, in the same paper it
has been also shown that for low discrepancy sequences a
simpler choice of the mesh density g equal to the marginal
distribution f(0,%;, So;-) will give a very similar rate of
convergence.

3 Parallel implementation

In this section, we introduce two parallel implementa-
tions of the LD mesh method. The first is an intuitive
block approach, and the other one is the more communi-
cation efficient checkerboard approach.

The general LD mesh method can be summarized into
three steps as follows (note: we simplify the notation from
t; to ¢ here for easy exposition).

e Step 1: mesh generation

- Start with Xo(1) = So.
- Generate X;(i) = (X}(i), X2(3),..., XP(9)), i =
1,2, bit=1,2,....T.

e Step 2: initialization of estimators at final time T
- V(T, Xr(i)) = I(T, X7(3)), i = 1,2,...,b.

e Step 3: backward recursion

- V(t, X (1) = max([(t,Xt(z')),é(t,Xt(i))), i =
1,2, bit=T—1,...,0.
- Ot X (1) = § 252 (t+1 Xiy1(4))w(t, i, 7).

- w(t, i, j)=weight attached to the arc joining X;(¢)

to Xt+1( )

The complexity of Step 1 and Step 2 are O(nbd) and
O(b), respectively, whereas the complexity for Step 3 is
O(nb*d). Thus, the backward recursion step, in particu-
lar, the computation of C’, contributes the most computa-
tional time. This is also consistent with our findings em-
pirically that over 90% of the computational time is spent
in the backward recursive step. Furthermore when we in-
crease both n and d, b will need to be increased accordingly
in order to achieve a reasonable accuracy. Consequently,
the overall computational time grows much worse than lin-
early. Hence this put additional computational burden on
the underlying LD mesh method. For this reason, the pri-
mary focus of this paper is to address the parallelization
issues of the backward recursion.

3.1 Mesh generation

At the beginning, the total work of generating the entire
mesh is divided up among all the processors. Each pro-
cessor is responsible for generating the asset prices for a
certain period of time, then send the simulated asset prices
to other processors.

Let Z;,7 =1, ...,bd, be a sequence of low discrepancy
points used to simulate the mesh points. To parallelize



asset prices

proc,,

proc, proc,

Exercisetimest=0, ..., T

Figure 1: Data partition of all asset prices at all times
among p processors. The arrows show the data flow of the
all-to-all broadcast.

this procedure, each processor is assigned with a block
of elements from the low discrepancy sequence. For ex-
ample, a processor, prock, has Trpiy1, TkB4+2, ThB+3s - -
where B = bd/p is the block size; see e.g. Bratley and Fox
(1988); Bromley (1996); Li and Mullen (2000); Okten and
Srinivasan (2002); Srinivasan (2002). Each processor gen-
erates a block of asset prices for a period of time. When
finished, perform an all-to-all broadcast so that each pro-
cessor has a complete mesh (of all the asset prices at all
times) for the backward recursion; see Fig. 1. The memory
storage is nbd.

We remark that in the LD mesh algorithm, we only need
to generate the mesh once. This mesh generation step
typically is negligible compared to the backward recursion.

3.2 Backward recursion: block approach

As argued above, this step dominates the overall compu-
tational time. At each exercise time step ¢, the proces-
sors need to determine C’(t, X:(7)) (and hence V(t, X:(%))),
i=1,2,...,b,using (2). To parallelize this calculation, the
idea underlies the block approach is to distribute the com-
putation of C’(t, X:(7)) to each processor. More precisely,
let {Ir} be a partition of {1,2,...,b}; i.e. {1,2,...,b} =
IyuhLU---UI,_q, where Iy = {kb/p+1,...,(k+1)b/p}
and p=total number of processors. Then, each processor,
procg, will compute C(t, X;(7)),i € Iy at the mesh point
in the range specified by Ij in parallel.

proc, w(t, Xi(l9, Xi1) lg
proc, w(t, X(19), Xi.1) Iy | blp
procy, W(t, Xi(Ip1), Xia) Ipa

W(t, X, X1) V(LX)

Figure 2: Data partition of w and 1% among p processors.

The computation of C’(t, X:(i)) consists of 3 steps.

Step 1: initialization of w and V

The weight function w and the approximate option func-
tion V computed from the previous time step are parti-
tioned among processors as shown in Fig. 2. Note that w
depends on the current asset prices X; as well as previous
asset prices X¢y1, and so its values are stored in a 2D ar-
ray. In this partition, procy contains those weights w and
V whose current asset prices are in the range X;(j), j € I.
Also, each processor has the entire mesh with all the as-
set prices at all times, and so each processor can compute
their own w values without any communication.

Step 2: distribution of V(t + 1, X¢4+1(+)) among processors

We note that we need V(¢4 1,-) at all asset, prices to com-
pute C(t, X;(7)). Thus, we perform an all-to-all broadcast
as shown in Fig. 3. As a result, every processor now has a
copy of entire V(t +1,-).

proc " : o A 4 4
proc,,, v v v N : P

Figure 3: Distribution of V(¢ + 1, X;41(-)) among all
processors. The symbol V;{:l denotes the values V(t +
1, X¢41(7)), ¢ € Ix. The arrows show the data flow of the
all-to-all broadcast.

Step 3: local computation

Finally, each processor proci; computes

Oty Xa (i) = %Z Qt + 1, X1 () wit, i, )

j=1

using the local data it has without communication. Once
C(t, X¢(3)), 1 € Iy, are known, we can compute V (¢, X;(i))
accordingly.

Note: In Step 2, the all-to-all broadcast of V(t—{—l, Xev1(4))
can also be done at the end of Step 3 whenever the current

V(t, X:(-)) are available.

The block parallel backward recursion algorithm can be
summarized as:



Algorithm: (at each exercise time ¢ until ¢ = 0)

for each procy, i € I:

compute w(t, X¢(i), Xe41(J)) =

F(,Xe(1), X241 (4 i 1.9 b

g(t+1,X141(7)) PR

compute C(t X:(7) =

b E] V(I + 1 X (5)w(t, Xe(2), Xea (7))
compute V(t X (7)) = max( (t, X: (7)), (t X (7))
all-to-all broadcast local V(t X:(7)) to other procs

Remark: Since each processor has all the asset prices at
all times, w can be computed without any communication.
Hence, communication only occurs at the end of each ex-
ercise time.

3.3 Backward recursion: checkerboard

approach

In the parallel block approach, the communication is all
concentrated in the all-to-all broadcast. Although it only
occurs once every time step, all-to-all broadcast is rela-
tively complex and time-consuming mode of communica-
tion. In the parallel performance analysis (Section 3.5),
the large communication time cost shows up in the overall
parallel run time. For parallel platforms with many pro-
cessors and high latency, e.g. PC clusters, it is desirable
to avoid all-to-all broadcasts.

In this section, we introduce the checkerboard paral-
lel implementation, namely, partition data into a checker-
board fashion. Using this special layout, we are able to
reduce the communication costs between processors and
ultimately reduce the overall computational time. In this
paper, we assume that the number of processors is a square
number for easy implementation. In practice, however, we
can relax on this condition.

The basic idea is to arrange the processors in a two-
dimensional mesh (see Fig. 4), and that each proces-
sor only has a portion of w(t, X¢(-), X¢41(-)). Recall
that the computation of C’(t X:(7)) involves a sum of
weighted Q(t + 1, X¢41(4))- In contrast with the block ap-
proach, each processor computes only a local partial sum
of C(t, X; (7)) and then at the end, the partial sums across
each row of processors are combined to obtain C(t, X;(i)).

introduce another partition of
{1,2,...,b}; namely {1,2,...,b} = JoUJ1U---UJ s5_1,
where Ji, = {kb/\/p,...,(k + 1)b/\/p}. Then we break

down the sum for computing C’(t,Xt(i)) into ,/p partial

Specifically, we

sums:

C(t, Xu(i)) = (3)
Z V(t+ 1, Xep1 (§)w(t, Xe (), Xegr (§)) + -+

Z V(t-l— L Xe1(4)w(t, Xe(2), Xeq1(5))
J€J 51

We remark from (3) that processors in the kth column of
the checkerboard data partition need the values of V(t +
1, X¢41(5)), j € Jk, in order to compute the kth partial
sum of C’(t,Xt(i)). Also, processors in the /th row are
responsible for computing C’(t,Xt(i)) at the asset prices
specified by ¢ € J;.

Before the start of the backward recursion process, the
diagonal processors compute V(T, X1 (7)), j € Jg, if that
processor is located at column k. During the backward
recursion steps, the computation of C’(t, X:(%)) consists of
the following 4 steps.

Step 1: initial partition of w and 1%

The 2D array of the weight function values w(t, X, Xi41)
are partitioned among p processors organized as a 2D
mesh, or checkerboard, as shown in Fig. 4. Thus, if a
processor is located in the /th row and kth column of the
checkerboard partition, then it has w(t, X¢(%), X¢+1(4)),
1€ J;, j € Jg. The values of V(t—}— 1, X¢41) are distributed
only among processors on the diagonal; i.e. the diagonal
processor on row k will have V(t + 1, Xi41(0), i € Jg.

proc, proc, proc,, Iy
I, | blp
ProCm(m-1) proc lpa
A
w(t, X, Xi41) V(t+1,X,,y)

Figure 4: Data partition of w and 1% among p processors.

Here, m = ,/p.

Step 2: distribution of V(t + 1, X;41) along each column
As pointed out above, processors in the kth column need
the values V(t—}— 1, X¢41(J)), j € Jk, which are store in the
diagonal processor. Thus we perform an one-to-all broad-
cast from the diagonal processor to the processors located
in the same column; see Fig. 5.

Step 3: local computation

Each processor in row k£ and column [ computes the local
partial sum in parallel:

A 1 : . , Ay
le]l = E E V(t + 1,Xt+1(]))w(t,Xt(l),Xt+1(_])), 1€ Jk.
jES



] I S R
v v \ proc,

Figure 5: Distribution of V(¢ + 1, X;;1(+))) among all
processors. Here m = ,/p. The arrows show the data flow
of the one-to-all broadcasts.

Step 4: accumulation of partial sums
Finally, we compute C(¢, X;(7)), i € J, by combining the
partial sums across processors in row k:

il

To do so, all-to-one reductions are performed from proces-
sors across the rows to the diagonal processors as shown
in Fig. 6. At the end, the values V(t, X:(7)) are also com-
puted. Since only the diagonal processors have C’(t, X:(7))
and hence the new V(t, X:), and we are now back to Step
1 for the next exercise time.

C(t, X4 (i

ProC fe----=--------m--oo----

fffff S POC g~

,,,,,,,, eooooose—ooospOC

_ Figure 6: Accumulation of partial sums to compute
C(t, X;(7)). Here m = /p. The arrows show the data flow

of the all-to-one reductions.

3.4 Memory optimization

The above implementations (block or checkerboard) use
nbd memory space to store the complete mesh (i.e. all
asset prices at all times). The memory consumption might
not be an issue if n,b,d are small; however, due to the
ability that the parallel implementations can solve large
size problems, it may not be desirable to store the entire
mesh in memory.

This can be optimized since the asset prices in the mesh
are independent of one another and therefore at time f,

only mesh points of #, £ + 1 are needed. Thus, we only
generate new mesh points in each exercise point and in the
mean time discard the old mesh points in previous exercise
times. As a result, our mesh-on-demand optimization only
stores 2nb mesh points (vs nbd mesh points in a complete
mesh).

3.5 Parallel performance analysis

In pricing American options with many assets and number
of exercise dates, large number of processors would be nec-
essary to achieve fast run times. However, the associated
communication cost in the parallel algorithm will increase
as well, which deteriorates the overall efficiency. Thus,
it is desirable the parallel algorithms are scalable (Grama
et al., 2003), in the sense that the parallel efficiency can
be kept constant by simultaneously increase the number of
processors and the size of the problem.

To measure the scalability of the block and checkerboard
approaches, we analyze the parallel run times of these two
algorithms. For easy exposition, we adopt a simplified time
model for communication (Grama et al., 2003). More pre-
cisely, the communication time for sending a message of
length m between two processors is given by:

Teomm =T + mTwa

where Ty is the startup time (or latency), and T,, is the
transfer time per word.

For the block approach, an all-to-all broadcast is per-
formed in each exercise time. Thus the parallel run time

is:
bp—1)

block
T ws

bz
= +10ngs +
P

and so the parallel efficiency of the algorithm is then given
by:
Eblock b2
P b2 + plogp Ts + b(p —

On the other hand, for the checkerboard approach, only an
one-to-all and all-to-one broadcasts are performed. Thus
the parallel run time is reduced to:

)T

blogp

VP

and the corresponding parallel efficiency is given by:

Tchkrbrd

—l—log T + —— Ty,

b2
b? + plog pT; + by/plogpT,,

Echkrbrd

By comparing the parallel run times of the block and
checkerboard approaches, we see that the checkerboard is
more efficient for having a smaller T,, term. Specifically, it
gains by a factor of /p/logp. For large p, this factor can
be significant as logp is a very mildly growing function.
Moreover, the scalability of the checkerboard approach is
also better in the sense that to maintain constant efficiency,
or in other words, an effective use of the processors, the



block approach requires b = O(p) whereas the checker-
board approach only requires b = O(,/plogp). Thus, the
latter impose a less restrictive constraint on the size of the
problem to maintain constant efficiency.

4 Numerical results

In this section, we demonstrate the accuracy and ef-
ficiency of our parallel LD mesh methods. The parallel
algorithms are implemented using C and MPI. Thus, our
code is portable on a wide range of parallel platforms. The
programs are run on a SGI Onyx shared memory machine
with 8 processors. (We note that OpenMP is an alterna-
tive implementation of the parallel algorithms presented
on the SGI machine; however, we opted to use MPI for
portability reason.) Timing is obtained via the MPI wall
clock function, MPI_Wtime().

We consider the following American options:

1. American call option on one asset with 50 exercise
dates and payoff = max(S — K,0). The parameter
values are d = 50, r = 5%, § = 10%, T = 3 years,
K = 100, So = {90,100,110}, 0 = {20%,40%}, b =
{256, 1024, 4096}.

o

American maximum call option on five assets with 4
exercise dates and payoff = max(max(S}, ...,S?) —
K,0). The parameter values are d = 3, r = 5%, § =
10%, o = 20%, T = 3 years, K = 100, So = 100, b =
{4096, 8192, 16384}, and the assets are uncorrelated.

3. Similar to the last example except with 10 exercise

dates (i.e. d=9).

4. American geometric average call option on five
assets with 11 exercise dates and payoff =
max((S}---52)1/5 — K,0). The parameter values are
d=10,r = 3%, 6 = 5%, 0 = 40%, T = 1 year,
K =100, So = 100, b = {4096, 8192, 16384}, and the

assets are uncorrelated.

Among these test cases, the first example is the simplest.
Efficient numerical methods such as the binomial model
(Cox et al., 1979) exist for valuing such option contract.
We included this standard American option in our anal-
ysis so that we can use this as a benchmark against the
parallel LD mesh method. The second example is a situ-
ation where it is computational infeasible to use binomial
model. The computational complexity of the binomial
model grows exponentially with the number of underly-
ing assets. Researching for efficient numerical methods for
pricing multi-asset American options remains an on-going
challenging problem. Hence this is an area where the par-
allel LD mesh method has a potential application. The
third and fourth examples are even more challenging in
that they have more exercise dates. The last three ex-
amples are studied by Broadie and Glasserman (1997a).
Because of the significant bias in the underlying stochas-
tic mesh methods, Boyle et al. (2000)) proposed a number

of control variates in conjunction of the stochastic mesh
method. The parallel LD mesh method, on the other hand,
is able to reduce substantially the bias without using any
control variate, as illustrated in Table 1.

Table 1: Various mesh estimators for American call option
on one asset with 50 exercise dates.

Mesh estimators
So o b BG AH | Parallel LD
90 | 20% 256 9.96 7.73 4.66
1024 6.22 5.33 4.51
4096 5.23 4.94 4.47
Lattice | 4.47 | 4.47 4.47
90 | 40% 256 33.07 | 25.77 15.15
1024 20.75 | 17.74 14.55
4096 17.43 | 16.31 14.41
Lattice | 14.40 | 14.40 14.40
100 | 20% 256 16.30 | 13.13 8.26
1024 10.40 | 9.39 8.16
4096 9.09 8.74 8.14
Lattice | 8.14 8.14 8.14
100 | 40% 256 42.38 | 33.57 19.92
1024 26.74 | 23.55 19.36
4096 22.78 | 21.53 19.24
Lattice | 19.23 | 19.23 19.23
110 | 20% 256 24.14 | 20.11 13.47
1024 16.10 | 14.96 13.43
4096 14.35 | 14.00 13.42
Lattice | 13.42 | 13.42 13.42
110 | 40% 256 52.44 | 42.18 25.34
1024 33.32 | 29.89 24.84
4096 28.68 | 27.27 24.75
Lattice | 24.74 | 24.74 24.74

Table 1 compares our results (Parallel LD) with the
stochastic method method (BG) by Broadie and Glasser-
man (1997a), and the average mesh estimator (AH) by
Avramidis and Hyden (1999). The results from the bino-
mial lattice method (Lattice) are used as benchmark. Each
number is obtained by the mean of 10 independent runs
and the number in brackets is the sample standard error.
The BG mesh estimators are high-biased and the bias is in
fact quite high for low mesh points or high volatility cases.
The AH mesh estimators show a reduced bias of the BG
results, but are still subject to the same high variation as
the BG mesh estimators. The convergence of our parallel
LD mesh estimators is very fast; accurate answers can gen-
erally be obtained by using small number of mesh points.
Moreover, the parallel LD mesh method is very stable as
indicated by the small standard errors.

We now examine the parallel efficiency of the parallel
LD mesh methods by considering American options on 5
assets. For this example, the option estimates (based on 10
independent replications) are: 25.35(0.004), 25.34(0.004),
25.29(0.003) for b = 4096, 8192, 16384, respectively. These

values are in good agreement with (Broadie and Glasser-



Table 2: The parallel run times (in seconds) of the block

approach for pricing American max-option on 5

exercise times.

=

assets, 4

b Number of processors
1 2 3 4
4096 961.52 484.948 | 325.195 | 224.263
8192 | 3834.285 | 1917.969 | 1286.414 | 962.679
16384 | 15311.54 | 7656.253 | 5129.152 | 3858.866
b Number of processors
5 6 7 8
4096 | 198.578 | 166.481 141.99 125.649
8192 776.43 647.71 557.999 | 490.994
16384 | 3090.062 | 2574.452 | 2212.128 | 1942.534

Table 3: The parallel run times (in seconds) of the
checkerboard approach for pricing American max-option
on 5 assets, 4 exercise times.

b Number of processors
1 4
4096 | 1315.259 | 324.632
8192 | 5115.727 | 1285.494
16384 | 20453.7 | 5118.776

man, 1997b, Table 4). Tt should be emphasized that the
reported results in Broadie and Glasserman (1997b) are
based on a number of control variates while our results is
a direct implementation of LD mesh method. Additional
enhancement to the underlying LD mesh method can sim-
ilarly be achieved with the variance reduction techniques
such as incorporating the control variates (see Boyle et al.
(2002)).

We compute the option pricing using different number
of processes, p = 1,2,...,8. The timing results (mea-
sured in seconds) are shown in Table 2 and Table 3 for the
block and checkerboard approaches, respectively. For the
checkerboard approach, since the processors are mapped
onto a square mesh topology, we can test it only using 1
and 4 processors.

To analyze their parallel efficiency, we use the paral-
lel timings to produce speedup plots for the two parallel
implementations. As shown in Fig. 7, both block and
checkerboard approaches achieve almost the theoretical op-
timal speedup (indicated by the dotted line). We remark
that the performance gain of the checkerboard approach is
not dramatic as the communication costs of all-to-all and
all-to-one (or one-to-all) broadcasts are not very different
among 8 processors where latency is low (shared-memory
architecture). However, if more processors were to be used
on a distributed system where latency is much higher, we
would expect to have more significant differences.

Table 4: The parallel run times (in seconds) of the block
approach for pricing American max-option on 5 assets, 10
exercise times.

8| 45
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Figure 7: Speedup graph of the block approach (left) and
the checkerboard approach (right), for pricing American
max-option on 5 assets, 4 exercise times.

b Number of processors
1 2 3 4
4096 | 5095.13 | 2545.81 | 1706.74 | 1286.18
8192 | 20377.22 | 10181.06 | 6826.20 | 5153.52
16384 | 81533.66 | 40674 27270.57 | 20611.08
b Number of processors
5 6 7 8
4096 | 1059.81 870.29 745.50 656.66
8192 | 4233.41 | 3487.77 | 2975.32 | 2626.94
16384 | 16881.57 | 13891.15 | 11831.57 | 10454.64

Table 5: The parallel run times (in seconds) of the

checkerboard approach for pricing American max-option

on 5 assets, 10 exercise times.

The third option is similar to the second option except
that we increase the complexity by increasing the num-

b Number of processors
1 4
4096 | 5121.534 1290.33
8192 | 20501.65 5159.38
16384 | 81862.02 | 20623.53
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Figure 8: Speedup graph of the block approach (left) and
the checkerboard approach (right), for pricing American
max-option on 5 assets, 10 exercise times.

ber of exercise dates to 10. In this case, the option es-
timates are: 27.59(0.169), 27.11(0.047), 26.72(0.022) for
b = 4096,8192, 16384, respectively. The fourth example
is American geometric average call option, and the num-
ber of exercise dates is increased to 11. The option esti-
mates computed are: 4.48(0.024), 4.40(0.007), 4.34(0.000)
for b = 4096, 8192, 16384, respectively. Again, they are
consistent with those reported in (Broadie and Glasser-
man, 1997b, Table 6, 7).

The parallel timing results for the third option are shown
in Table 4 and Table 5, and the corresponding speedup
graphs are shown in Fig. 8. The results for the fourth op-
tion are shown in Table 6 and 7, and in Fig. 9. We see that
as in the previous example, both the block and checker-
board approaches again exhibit near optimal speedup.

Table 6: The parallel run times (in seconds) of the block
approach for pricing American geometric average option
on 5 assets, 11 exercise times.

Table 7: The parallel run times (in seconds) of

the checkerboard approach for pricing American geometric

average option on 5 assets, 11 exercise times.

b Number of processors
1 4
4096 | 5870.807 1500.41
8192 | 23402.88 5948.86
16384 | 93263.29 | 23693.95

b Number of processors
1 2 3 4
4096 | 5825.38 | 2920.18 | 1949.71 | 1467.83
8192 | 23290.34 | 11630.76 | 7748.60 | 5836.18
16384 | 92947.7 | 46485.45 | 30957.5 | 23296.62
b Number of processors
5 6 7 8
4096 | 1212.89 994.59 869.83 772.20
8192 | 4804.93 | 3913.95 | 3377.87 | 2951.25
16384 | 19071.21 | 15705.02 | 13366.35 | 11946.57

5 Conclusion

We have presented a block and checkerboard parallel im-

plementations of the LD mesh method for pricing Ameri-
can options on multi-assets. We have analyzed the parallel
run times of these approaches based on a simplified com-
munication cost model and proved that these two methods
are scalable; that is, they can maintain constant parallel
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Figure 9: Speedup graph of the block approach (left) and
the checkerboard approach (right), for pricing American
geometric average option on 5 assets, 11 exercise times.

efficiency if the number of processors and the size of the
problem are increased accordingly. We have validated the
accuracy of our parallel algorithms for pricing the Amer-
ican call option on one asset. We then demonstrated the
parallel efficiency of our parallel algorithms for the case
of multiple assets. Near optimal speedup results are ob-
tained on a SGI Onyx machine with 8 processors. In the
future, we would like to compare the parallel efficiency of
our block and checkerboard approaches on distributed sys-
tems where latency is high.
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