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Abstract. We propose a robust interpolation for multigrid based on the concepts of energy
minimization and approximation. It can handle PDE coefficients of various types on structured or
unstructured grids under one framework. The formulation is general; it can be applied to any di-
mension. We demonstrate numerically the effectiveness of the multigrid method in two dimensions
by applying it to a discontinuous coefficient problem, an oscillatory coefficient problem, and an
anisotropic problem. Empirically, the convergence rate is independent of the coefficients of the un-
derlying PDE, in addition to being independent of the mesh size. The proposed method is primarily
designed for second-order elliptic PDEs, with possible extensions to other classes of problems such
as integral equations.
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1. Introduction. Multigrid methods are widely used as efficient solvers for
second-order elliptic partial differential equations (PDEs) because of their often opti-
mal convergence behavior; that is, their convergence rate is independent of the mesh
size. Optimal theory can be found, for example, in [3, 4, 5, 23, 32, 36, 43, 44]. However,
the convergence rate may depend on the nature of the coefficients in the PDE. Typ-
ically, the convergence deteriorates as the coefficients become rougher. Specifically,
if the coefficients are anisotropic [23], have large jumps [1, 6, 12, 13], or are highly
oscillatory [19, 30, 39], standard multigrid methods will converge very slowly. Special
techniques such as line Gauss–Seidel/block smoothing [6], semicoarsening [14, 15, 37],
algebraic multigrid [2, 7, 33, 35, 38], frequency decomposition [16, 24, 39], and ho-
mogenization [19, 30] are used to handle some of these cases. In this paper, we study
the design of multigrid methods from the energy minimization point of view, which
gives powerful insight into the design of robust multigrid methods.

The success of multigrid hinges on the choice of the coarse grid points, the smooth-
ing procedure, the interpolation operators, and the coarser grid discretization. In
standard multigrid, full coarsening, Jacobi or Gauss–Seidel smoothing, and linear
interpolation are usually used. Classical convergence theory shows that these simple
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ingredients are enough to achieve optimal convergence for smooth coefficient problems.
In general, however, these choices may lead to slow convergence. In one dimension,
to remedy the situation, a more robust interpolation [23, 33, 42] can be used. It is
obtained by solving local homogeneous PDEs, which are equivalent to minimizing the
energy of the coarse grid basis functions.

The extension of this approach to higher dimensions is not obvious. Nonetheless,
many attempts [1, 12, 23, 22, 28, 34, 42] have been made to set up similar local PDEs
for defining a robust interpolation. In place of setting up PDEs, we consider an equiva-
lent minimization formulation and derive a so-called energy-minimizing interpolation
with special emphasis on its stability and approximation properties, which are es-
sential for optimal convergence. In this paper, we propose an energy minimization
with global constraint framework to construct robust interpolation which can handle
elliptic PDEs with rough coefficients on structured or unstructured grids with one
unifying approach. Moreover, it does not assume any underlying coarsening strategy,
and hence can be used in combination with, for instance, semicoarsening or algebraic
multigrid coarsening. This will be made more precise in section 3.

This energy-minimizing approach to determining appropriate interpolation oper-
ators has also been used for iterative substructuring [17]. We also note that general
properties of interpolation operators for multigrid have been discussed by Vaněk,
Mandel, and Brezina [40], in which they describe a smoothed aggregation method of
achieving these properties. The connections between their and our approaches will be
discussed in section 3.2.3. In their recent paper [31], Mandel, Brezina, and Vaněk in-
terpret the smoothed aggregation approach as a projected steepest descent method for
computing the interpolation operators formulated in section 3, and they also extend
the formulation to systems of PDEs arising from linear elasticity problems.

In section 4, we give numerical examples mainly in two dimensions, including a dis-
continuous coefficient problem, an oscillatory coefficient problem, and an anisotropic
problem. Empirically, the convergence rate is independent of the coefficients of the
underlying PDE, in addition to being independent of the mesh size. In the one-
dimensional case, this can be rigorously proved (see [41]), which has not been given
in the literature before. Finally, we summarize our experience with several remarks in
section 5.

We now set up notation to be used throughout the paper. Let V = V h and let
V1 ⊂ V2 ⊂ · · · ⊂ VJ = V denote a sequence of nested subspaces of V defined by
the span of nodal basis functions, {φk

i }nk
i=1, k = 1, . . . , J, at level k. The operator

A : V → V is self-adjoint and induces the A-inner product, (·, ·)A ≡ (A·, ·). Also,
we define Ai : Vi → Vi by (Aiui, vi) = (Aui, vi), ui, vi ∈ Vi. Correspondingly, we
have Ri : Vi → Vi, which is an approximate inverse of Ai. Let Qi : V → Vi and
Pi : V → Vi be the projection operators with respect to the L2 and the A inner
product, respectively. In the following analysis, the generic constant C is independent
of the mesh size h.

2. Stability and approximation property. Before we explain the formula-
tion of the energy-minimizing interpolation, we first discuss our motivation from the
classical results of multigrid and domain decomposition methods. Two key proper-
ties, stability and approximation, must be satisfied by the coarse subspaces and the
smoothers [4, 23] in order to obtain optimal convergence results. These two terms
occur frequently in the literature but often appear in slightly different forms. For ex-
ample, in the subspace correction framework [44], these two properties are built into
the estimate of a constant K0, which in turn is used to prove optimal convergence,
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together with another constant K1. The definitions of K0 and K1 are as follows:
K0: For any v ∈ V, there exists a decomposition v =

∑J
i=1 vi for vi ∈ Vi such

that
J∑

i=1

(R−1
i vi, vi) ≤ K0(Av, v),(1)

where Ri is usually known as the smoother in the multigrid context.
K1: For any S ⊂ {1, . . . , J} × {1, . . . , J} and ui, vi ∈ V for i = 1, . . . , J,

∑
(i,j)∈S

(Tiui, Tjuj)A ≤ K1


 J∑

i=1

(Tiui, ui)A




1
2

 J∑

j=1

(Tjvj , vj)A




1
2

,(2)

where Ti = RiAiPi.
Theorem 2.1. Let EJ be the iteration matrix given by the V-cycle multigrid,

namely,

u− uk+1 = EJ(u− uk),

where u is the exact solution and uk and uk+1 are two consecutive multigrid iterates.
Then

EJ = (I − TJ)(I − TJ−1) · · · (I − T1)

and

‖EJ‖2
A ≤ 1 − 2 − ω1

K0(1 + K1)2
,

where ω1 = max1≤i≤J ρ(RiAi).
Proof. See [44].
By Theorem 2.1, the convergence rate can be improved by producing a smaller

K0 or K1. In this paper, we propose an interpolation that will potentially decrease the
size of the constant K0 by reducing its dependence on the coefficients of the underlying
elliptic PDE.

As shown in [44], the estimate of K0 relies on two inequalities:

‖Q̃1v‖2
A +

J∑
k=2

‖(Q̃k − Q̃k−1)v‖2
A ≤ C0‖v‖2

A,(3)

‖(Q̃k − Q̃k−1)v‖ ≤ C1hk‖Q̃kv‖A ∀k > 1,(4)

where Q̃k : V → Vk is any linear operator onto Vk.
Inequality (3) appears in the partition lemma, which is well known in the domain

decomposition literature [18, 36]. In the multigrid context, however, this inequality
typically is used only implicitly. Intuitively speaking, (3) says that given any v ∈ V,
we must be able to decompose v into the subspaces such that the total energy of
all the pieces vi is bounded by a small constant factor of the original energy of v.
Besides (3), we also require that functions on the coarser grids approximate those on
the finer grids to at least first-order accuracy in hk. This requirement is quantified
by the inequality (4). If we have both (3) and (4), we can bound K0 by a constant
independent of the mesh size h.
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Lemma 2.2. Let ω0 = min2≤i≤J (ρ(Ai)λmin(Ri)). Suppose (3) and (4) are satis-
fied. Then

K0 ≤ C

ω0
,

where C is a constant independent of the mesh size.
Proof. See [44].
To summarize, if the stability and approximation properties (3) and (4) are satis-

fied, mesh independent convergence follows. Thus, these two properties characterize a
good coarse subspace. It is interesting to note that linear finite element subspaces are
not compulsory for the Vk, though they are typically used or assumed in the classical
analysis of multigrid methods. Moreover, the Q̃k in the approximation inequality (4)
need not necessarily be the L2 projections Qk. Linear finite element and L2 projec-
tions are simply two convenient and powerful tools for showing the stability and the
approximation properties, but are not necessarily the only choice.

Mesh independent convergence, however, need not imply rapid convergence. The
reason is that, in general, K0 will depend on the PDE coefficients. The implicit depen-
dence of the coefficients of the underlying PDE in the convergence rate may cause the
multigrid method to converge very slowly, for example, when the coefficients are not
smooth. In the following section, we construct coarse subspaces whose basis functions
are, in general, different from piecewise linear finite elements but possess the stability
and the approximation properties. In addition, the resulting multigrid algorithm is
less sensitive to the coefficients than is the standard multigrid method. Furthermore,
we show that these two concepts lead to an optimal convergence for a one-dimensional
multigrid method, and we illustrate how they motivate a two-dimensional multigrid
algorithm.

3. Energy-minimizing interpolation. In this section, we introduce the energy
minimization approach to constructing the interpolation. The resulting formulation
in the one-dimensional case is well known in the literature [23, 33, 42]. We explain the
energy-minimizing interpolation in one dimension first and then in two dimensions.

3.1. One dimension. Consider the following model problem:

− d

dx
a(x)

d

dx
u(x) = f in (0,1),(5)

u = 0 at x = 0 and x = 1,

where a(x) and f(x) are integrable and a(x) is uniformly positive.
Let H1(0, 1) be the standard Sobolev space on the interval [0, 1] and H1

0 (0, 1) its
subspace whose functions vanish at x = 0 and x = 1. Then the variational formulation
of (5) is to find u ∈ H1

0 (0, 1) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (0, 1),

where

a(u, v) =

∫ 1

0

a(x)u′(x)v′(x)dx, (f, v) =

∫ 1

0

f(x)v(x)dx.

Given a uniform grid with grid size h = 1/n, let xhj = jh, j = 0, . . . , n. Here, n is
assumed to be a power of 2. Define the fine grid linear finite element space to be

V h = {vh ∈ H1
0 (0, 1) : vh is linear on [xhj , x

h
j+1], j = 0, . . . , n− 1}
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ΦH

i

1

x2i-2 x2i-1 x2i x2i+1
h h h x2i+2

h h

unknown

unknown

Fig. 1. One-dimensional coarse grid basis function φH
i on its support [xh

2i−2, x
h
2i+2].

and denote the set of nodal basis by {φh
j }nj=1. The finite element approximation to

the solution of (5) is the function uh ∈ V h, so that

a(uh, vh) = (f, vh) ∀vh ∈ V h.(6)

Let uh =
∑n

j=1 µjφ
h
j and f =

∑n
j=1 βjφ

h
j . Then (6) is equivalent to a linear system

Ahµ = Mhb,

where µ = (µ1, . . . , µn)T , b = (β1, . . . , βn)T , Ah is the stiffness matrix, and Mh is the
mass matrix. Define Ãh to be the augmented stiffness matrix that also includes the
equations of the boundary points. Thus, Ãh is singular with the null space consisting
of constant functions, and Ah is a submatrix of it.

Let xHi = xh2i, i = 0, . . . , n/2, be the set of coarse grid points. Now we define a
coarse subspace V H for multigrid by defining the coarse grid nodal basis functions
{φH

i }. That is,

V H = span{φH
i : i = 1, . . . ,m}

and m = n/2−1. Since {φH
i } are nodal basis functions on the coarse grid, φH

i (xh2i) = 1
and φH

i (xh2i−2) = φH
i (xh2i+2) = 0. We need only to define φH

i (xh2i−1) and φH
i (xh2i+1)

(see Figure 1). For example, if we let them equal 1/2, the basis functions {φH
i } are

just linear finite elements, implying that the interpolation from the coarse grid to the
fine grid is piecewise linear.

Since {φH
i } is a basis of V H , which is a subspace of V h, there exists a unique

matrix IH
h of size n×m such that

[φH
1 · · ·φH

m] = [φh
1 · · ·φh

n]IH
h .

The matrix IH
h is usually known as the prolongation (or interpolation) matrix and its

transpose (IH
h )T = Ih

H as the restriction matrix in the multigrid context. Hence, the
set of coarse grid basis functions defines an interpolation and vice versa. In the fol-
lowing, instead of deriving an interpolation method directly, we construct an energy-
minimizing basis.

Formulation. As noted above, the interpolation is uniquely defined if the coarse
grid basis functions {φH

i } are known. We can define φH
i (x) by solving the following

local PDE problem in [xHi−1, x
H
i ] = [xh2i−2, x

h
2i]:

− d

dx
a(x)

d

dx
φH
i = 0 in [xh2i−2, x

h
2i],(7)

φH
i (xh2i−2) = 0, φH

i (xh2i) = 1.
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We observe that the PDE formulation of the basis functions has a “physical”
meaning attached to it. Specifically, it looks for basis functions that have small energy.
It is best illustrated by the following result.

Lemma 3.1. An equivalent formulation of (7) is

min a(φH
i , φ

H
i ) in [xh2i−2, x

h
2i],(8)

subject to φH
i (xh2i−2) = 0, φH

i (xh2i) = 1.

Thus, the solution of the local PDE minimizes the energy of the coarse grid basis
functions. This observation turns out to be very convenient for extending the idea to
higher dimensions.

The solution of φH
i (x) on [xh2i−2, x

h
2i] gives φH

i (xh2i−1). We can do the same for
φH
i (xh2i+1) in [xh2i, x

h
2i+2]. The local PDE formulation calculates the “harmonic” func-

tion φH
i which minimizes the energy on its support. If a(x) ≡ 1, φH

i is a linear function
and we recover the linear interpolation, that is, φH

i (xh2i−1) = φH
i (xh2i+1) = 1/2. In fact,

in this case, φH
i is harmonic in the usual sense, and it has minimum energy. In general,

instead of 1/2, we have

φH
i (xh2i−1) = − a(φh

2i−1, φ
h
2i)

a(φh
2i−1, φ

h
2i−1)

= − Ah
2i−1,2i

Ah
2i−1,2i−1

,(9)

where (Ah
ij) is the stiffness matrix. Since our interpolation depends on the matrix

Ah, sometimes it is called a matrix-dependent interpolation in the algebraic multigrid
context. The resulting interpolation was also described in [23, 33, 42] but from a
different point of view. Our interpretation based on the energy-minimization principle
provides a clue to developing similar interpolation operators in higher dimensions.

The approximation property (4) is closely related to preserving constant functions.
In fact, the coarse space V H constructed in this way automatically contains constant
functions on the fine grid.

Lemma 3.2.

m∑
i=1

φH
i (x) = 1.

Proof. Let ψH(x) =
∑m

i=1 φ
H
i (x). By (7), for i = 1, . . . ,m, ψH satisfies the

following:

− d

dx
a(x)

d

dx
ψH = 0 in [xh2i−2, x

h
2i],

ψH(xh2i−2) = 1, ψH(xh2i) = 1.

By uniqueness, ψH ≡ 1 on [xh2i−1, x
h
2i], and hence the result follows.

Thus, the interpolation derived from the energy-minimizing coarse grid basis func-
tions preserves constants.

Theorem 3.3. If the energy-minimizing interpolation operator derived from (8) is
used together with damped Jacobi or Gauss–Seidel smoothings, the resulting multigrid
convergence is independent of the mesh size and the PDE coefficient a(x).

The proof, which is given in detail in [41], uses the fact that {φk
i }Jk=1 obtained

from recursively applying (8) to coarser levels contains an A-orthogonal hierarchical
basis, and hence the damped Jacobi and Gauss–Seidel smoothings give an optimal
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constant bound for K0 and K1 which are the essential elements for estimating multi-
grid convergence by Theorem 2.1.

Remarks. (1) If a(x) is piecewise constant, this interpolation preserves the conti-
nuity of the flux, a(x)∇u, at the discontinuities [23]. (2) If red-black Gauss–Seidel is
used as a smoother, the resulting multigrid method coincides with the cyclic reduction
method in the numerical linear algebra context.

3.2. Higher dimensions. The construction of the energy-minimizing interpo-
lation described in this section is valid for two and three dimensions. However, to
facilitate understanding, we focus on the standard structured grid on the square do-
main Ω: [0, 1] × [0, 1] in two dimensions. The model problem is

−∇ · a(x, y)∇u(x, y) = f(x, y) in Ω,(10)

u = 0 on ∂Ω,

with the same assumptions on a(x, y) and f(x, y) as before. Again, we use a finite
element method to discretize (10).

3.2.1. Formulation. The extension to higher dimensions of the local PDE ap-
proach is difficult because there is no natural analog between one dimension and
higher dimensions. For instance, in one dimension, the coarse grid points form the
boundaries of the local subdomains so that well-posed PDEs can be easily defined.
In higher dimensions, however, the boundaries consist of both coarse grid and non-
coarse grid points, and hence local boundary value problems apparently do not ex-
ist. Nevertheless, several possibilities for setting up local PDEs are discussed in the
literature, for instance, the stencil or the so-called black-box multigrid approach
[1, 12, 13, 23, 22, 27, 28, 42, 45], the Schur complement approach [20, 29, 34], and
the algebraic multigrid approach [2, 7, 33, 35, 40], each of which mimics the one-
dimensional case in some way.

Our approach is based on the observation (8). The coarse grid basis functions
{φH

i } should possess the least amount of energy while preserving constant functions.
However, we can not use (8) directly in higher dimensions. First, the {φH

i }, each of
which has minimum energy, do not preserve constant functions. Second, the boundary
of the support of each φH

i , in general, consists of both coarse and noncoarse grid points,
and hence the boundary conditions of (8) must be modified. The stability inequality
(3) in the two-level setting (J = 2) provides a hint on the quantity to be minimized.
Let IH be the usual nodal value interpolant. By the Cauchy–Schwarz and Poincaré
inequalities, we have

‖IHv‖A =

∥∥∥∥∥
∑
i

v(xHi )φH
i

∥∥∥∥∥
A

(11)

≤
(∑

i

‖φH
i ‖2

A

)1/2(∑
i

|v(xHi )|2
)1/2

≤
(∑

i

‖φH
i ‖2

A

)1/2
C

H
‖v‖2

≤

C
H

(∑
i

‖φH
i ‖2

A

)1/2

 ‖v‖A,
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6 7 8

j4

Fig. 2. Two-dimensional coarse grid basis function φH
i on its support. φH

i is a linear combi-

nation of fine grid basis functions φh
j , j = j1, . . . , j8, and ci.

where C is a constant independent of h. Comparing (11) with the stability inequality
(3), we see that the constant C0 in (3) depends on the total energy of {φH

i }. Thus,
our formulation is to minimize the sum of energies of {φH

i } so that the constant C0

and hence the multigrid convergence will be improved.
The precise mathematical formulation is explained in the following. Given a set of

m coarse grid points obtained by, for example, a maximal independent set or algebraic
multigrid coarsening, denote their index set by M = {c1, . . . , cm}. Write the coarse
grid nodal basis function φH

i at node xci as a linear combination of the fine grid ones,

φH
i =

∑
j∈Nci

\M
ϕi
jφ

h
j + φh

ci ,(12)

where Nci is the set of neighboring nodes of ci with respect to the mesh or matrix ad-
jacency graph. Thus, φH

i is a local combination of φh
ci and the fine grid basis functions

whose corresponding node is adjacent to node xci but not itself a coarse grid point.
Figure 2 shows the support of φH

i in a two-dimensional regular grid. The indices j in
the sum on the right-hand side of (12) correspond to j1, . . . , j8. Since φH

i is a nodal
basis function, the coefficient of φh

ci is equal to 1. In view of the above calculation for
estimating C0, our formulation is to define the interpolation by solving a constrained
minimization problem for {ϕi

j},

min
1

2

m∑
i=1

‖φH
i ‖2

A subject to

m∑
i=1

φH
i (x) = 1 in Ω̄.(13)

Notice that the minimization problem is solved up to and including the boundary
of Ω. Usually, the grid points on the boundary with Dirichlet boundary condition
are treated separately, and no coarse grid point is placed there. However, in our
formulation, we compute all φH

i including the ones at the boundary, but only those
not on the boundary with Dirichlet condition are used in the interpolation.

Lemma 3.4. An equivalent formulation of (7) and (8) is the global minimization

min
1

2

m∑
i=1

‖φH
i ‖2

A subject to

m∑
i=1

φH
i (x) = 1 on [0, 1].

Thus, we see a way to naturally generalize the approach for generating a robust
interpolation from one dimension to multiple dimensions.
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Remarks. (1) The values of the basis functions are defined implicitly by the solu-
tion of (13) and are not known explicitly in general. However, for the Laplacian, we
recover exactly the bilinear interpolation on tensor-product grids, which is known to
lead to optimal multigrid convergence for Poisson equations.

Lemma 3.5. The solution of (13) gives the bilinear interpolation if a(x) ≡ 1.
We also remark that if triangular grids are used, the linear interpolation is almost

recovered; numerical experiments show that the interpolation values are close to 1/2.
(2) Like algebraic multigrid, the construction of the interpolation operator is

purely algebraic. In other words, geometry and, in particular, the grid information
are not needed. The formulation of the interpolation remains valid if the coarse grid
points do not form an independent set. Independent sets are certainly beneficial to
efficiency but are not necessary. In some situations, we may want to remove this
requirement, for example, when semicoarsening is used.

(3) Since the construction is algebraic, we can recursively define a multilevel coarse
grid basis functions {φk

i }, k = 1, . . . , J, satisfying (13).
(4) Finally, we remark that we may generalize the formulation further by putting

in positive weights θi in front of ‖φH
i ‖2

A. Similarly, we have the following equivalence.
Lemma 3.6. Recall that (7) and (8) apply only for problems in one dimension.

An equivalent formulation of (7) and (8) is the global weighted minimization

min
1

2

m∑
i=1

θi‖φH
i ‖2

A subject to

m∑
i=1

φH
i (x) = 1 on [0, 1]

for any sets of positive θi.
In our experience, special scalings in two or more dimensions, for instance, θi =

1/Ãh
ci,ci , may improve the performance for problems such as discontinuous coefficient

PDEs where the discontinuities do not align with any coarser grids. However, an
optimal choice of θi has not yet been fully analyzed, and hence we shall not discuss
this generalization further in the present paper.

3.2.2. Solution of the minimization problem. We describe a solution pro-
cedure for the minimization problem (13) below. For each i, write φH

i =
∑n

j=1 ϕ
i
jφ

h
j

and ϕi = (ϕi
1, . . . , ϕ

i
n)T . By (12), ϕi is a sparse vector. For example, in two dimen-

sions, ϕi has at most nine nonzeros. For structured triangular grids, ϕi has at most
seven nonzeros. Let Φ = [ϕ1; · · · ;ϕm] be an mn× 1 vector obtained by concatenating
all the ϕ’s. Note that ‖φH

i ‖2
A = ‖∑n

j=1 ϕ
i
jφ

h
j ‖2

A = (ϕi)T Ãhϕi. (Recall that Ãh is
the augmented stiffness matrix on the fine grid without incorporating any Dirichlet
boundary condition.) Thus, (13) can be written as the following equivalent discrete
linear constrained quadratic minimization problem:

min
1

2
ΦTQΦ subject to BT Φ = 1.(14)

The symbol 1 denotes a vector of all 1’s. The mn×mn SPD matrix Q is block diagonal
with each block equal to Ãh

i which is defined as

(Ãh
i )kl =

{ Ãh
kl if ϕi

k �= 0 and ϕi
l �= 0,

δkl otherwise.

The n × mn rectangular matrix BT = [J T
1 · · · J T

m ], where Ji = J T
i is a matrix

corresponding to the restriction operator that maps v to vi such that (v)k = (vi)k on
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supp(φH
i ) and (vi)k = 0 otherwise. More precisely,

(Ji)kl =

{
1 if k = l and ϕi

k �= 0,
0 otherwise.

It is clear that J T
i ϕ

i = ϕi, and hence BT Φ =
∑m

i=1 J T
i ϕ

i =
∑m

i=1 ϕ
i = 1. We

solve the discrete linearly constrained minimization problem (14) by the Lagrange
multiplier formulation, which is equivalent to[ Q B

BT 0

] [
Φ
Λ

]
=

[
0
1

]
,(15)

where Λ is an n× 1 vector of Lagrange multipliers. If Λ is known, Φ can be computed
by solving

QΦ = −BΛ.(16)

Since Q is block diagonal and inverting each block corresponds to solving a matrix
of at most 9 × 9 in size, it is trivial to compute Φ once Λ is known. Thus, the entire
minimization procedure is reduced to solving for the Lagrange multipliers Λ via

(BTQ−1B)Λ = −1.(17)

Note that B and Q−1 are sparse matrices. We can solve the linear system by the
conjugate gradient (CG) method.

The solution of (17) could be costly. Depending on the conditional number of Q−1,
the CG iteration may converge slowly. We shall discuss how to speed up the process.
First, we need not compute (BTQ−1B)−11 exactly because we are merely computing
the interpolation to be used in the multigrid method. In fact, the numerical results
in section 4 indicate that Λ is usually accurate enough when the relative residual of
(17) is less than 10−2.

Besides, we have a readily obtainable initial guess for Λ. Consider (16). Multiply-
ing both sides by BT , we have

Λ = −(BTB)−1BTQΦ.

By a direct computation, one verifies that BTB is a diagonal matrix. Hence, this
gives an easy way to compute an initial guess for Λ from Φ. Since the interpolation
weights are between 0 and 1, the solution Φ usually is not very far from the linear
interpolation. It may be advantageous to use the linear interpolation as an initial
guess for Φ, which in turn provides an initial guess for Λ.

It is interesting to note that Ãh is a free and natural preconditioner for BQ−1B.
By the definition of B and Q, rewrite the product BTQ−1B as a sum of matrices:

BTQ−1B =

m∑
i=1

J T
i (Ãh

i )−1Ji =

m∑
i=1

RT
i (RiÃhRT

i )−1Ri,

where Ri is the submatrix of the nonzero rows of Ji and it is sometimes known as
the restriction matrix in the domain decomposition context. Clearly, BTQ−1B is an
overlapping additive Schwarz preconditioner of Ãh. Unfortunately, Ãh is singular in
our case. A simple remedy is to use Ãh + ηI instead as the preconditioner.
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Because of the potentially high cost of computing Φ, the energy-minimizing in-
terpolation is aimed at problems for which linear interpolation does not work well.
Quite often, we may need to solve the same system many times, for instance, in time-
dependent problems. The rapid convergence of each multigrid solve compensates for
the expensive setup cost.

Remark. In [31], Mandel, Brezina, and Vaněk propose the use of steepest descent
for solving (14) in place of the Newton’s method on the Lagrangian described above.

3.2.3. Connections to other approaches. As noted above, the entire pro-
cedure of constructing the interpolation is algebraic; therefore it can be considered
as a type of algebraic multigrid. In fact, it is related to the one derived by Vaněk,
Mandel, and Brezina [40]. In their approach, groups of fine grid nodes are agglomer-
ated to form larger elements, or macroelements. In each agglomerated region (which
can be thought of a subdomain in the domain decomposition context), a value of 1
is assigned to each node as an initial guess of the coarse grid basis. Because of the
high energy of the piecewise constant basis functions, they are smoothed by a few
steps of Jacobi iteration. Our energy-minimizing coarse grid basis can also be thought
of as being formed by agglomerating nearby fine grid nodes, but the agglomeration
only occurs at the neighboring nodes of the coarse grid nodes. Also there are overlaps
among agglomerated regions, while there are none in the approach of Vaněk, Mandel,
and Brezina. Moreover, the support of their basis functions will increase when the
Jacobi “smoothing” steps are applied to the basis functions. In our approach, the
supports are fixed and the energy is minimized by solving the minimization problem
(13). In the recent paper of Mandel, Brezina, and Vaněk [31], they show that the first
step of the steepest descent procedure in [31] yields the same result as the smoothed
aggregation with a single smoothing step.

Because of the agglomeration view of the construction, our approach is also related
to the one derived by Chan et al. [10, 11]. They explicitly form the macroelements by
agglomeration using standard graph theoretical techniques. Then they describe ways
of defining the coarse grid basis functions. One way is the following: The noncoarse
grid points on the edge of a macroelement are assigned a value using the graph
distance, and those noncoarse grid points in the interior are obtained by solving a
local homogeneous PDE. Our approach does not prescribe a value on the edges of
the macroelements first and then solve for the interior points. Rather, we take all
the unknowns together and solve for all the values simultaneously by solving the
minimization problem.

4. Numerical results. In this section, we present results of numerical experi-
ments mainly in two dimensions to verify that the multigrid algorithm resulting from
the energy-minimizing interpolation has optimal convergence behavior and is robust
with respect to the coefficients of the PDEs. Meanwhile, we compare the results with
algebraic multigrid (AMG) [21], whose implementation is based on [35], to show that
the energy-minimizing interpolation obtained from an abstract formulation leads to a
multigrid convergence rate comparable to AMG. The problems are chosen to illustrate
that the energy-minimizing multigrid is applicable to various kinds of coefficients such
as discontinuous, oscillatory, and anisotropic.

In all the numerical examples, the computational domain is Ω = [0, 1]× [0, 1] with
homogeneous Dirichlet boundary condition. In the multigrid procedure a V-cycle is
used with two pre- and two postpointwise Gauss–Seidel smoothings. The iteration
was terminated when the relative residual 12-norm was less than 10−6. The number of
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Table 1
Number of V-cycles using bilinear and energy-minimizing interpolations when a(x) = 1 + xey.

MGBL EMMG(10−1) EMMG(10−12)

h 4 5 6 7 4 5 6 7 4 5 6 7

1/16 5 - - - 5 - - - 5 - - -

1/32 5 5 - - 5 5 - - 5 5 - -

1/64 5 5 5 - 5 5 5 - 5 5 5 -

1/128 5 5 5 5 5 5 5 5 5 5 5 5

multigrid levels is such that the coarsest grid is a single point, or as otherwise stated.
All the coarse grid operators are obtained by the standard Galerkin process.

In section 3.2.1, we mentioned that it is not necessary to compute the Lagrange
multipliers to machine precision; they are solved only approximately in all the exam-
ples below. Moreover, we used piecewise linear or bilinear interpolation as our initial
guess for the minimization problem. Besides, as discussed in section 3.2.2, the aug-
mented stiffness matrix Ãh, or more precisely, Ãh + ηI, is a free preconditioner for
solving the Lagrange multiplier equation (17). In all the numerical examples, this
preconditioner is used with η chosen as 10−3.

Example 1. In this example we verify numerically that the convergence rate does
not depend on the mesh size and the number of levels. Here we consider the following
PDE with a smooth coefficient:

−∇ · (1 + xey)∇u = 1.

Table 1 shows the number of multigrid iterations to converge. We denote the multigrid
method with bilinear interpolation by MGBL and our energy-minimizing multigrid
method by EMMG(ε), where ε specifies the stopping criterion for CG applied to the
Lagrange multiplier equation (17). More precisely, the CG iteration is stopped when
the relative residual norm is less than ε. We see that when the optimization problem
is effectively solved (ε = 10−12), the convergence rate is independent of the mesh size
h and the number of levels. In fact, we observe that same convergence rate can be
achieved even if the optimization problem is solved approximately (ε = 10−1). Thus,
we may reduce the cost by applying significantly fewer number of CG iterations as
shown in Table 2, which gives the number of conjugate gradient iterations at each
multigrid level to solve (17).

We remark that this example is used to illustrate the optimal convergence of
EMMG(ε) and the effect of varying ε only. It is not cost-effective to use energy-
minimizing interpolation when bilinear interpolation works well.

Example 2. We compare the multigrid method using bilinear interpolation with
that using energy-minimizing interpolation by solving the following discontinuous co-
efficient problem [1, modified Example I]:

−∇ · a(x, y)∇u = 1,

where

a(x, y) =

{
a+ 0.5 − h ≤ x ≤ 0.5 + h and 0.5 − h ≤ y ≤ 0.5 + h,
a− otherwise.



1644 W. L. WAN, TONY F. CHAN, AND BARRY SMITH

Table 2
Number of CG iterations at each multigrid level with varying ε when a(x) = 1 + xey.

h level EMMG(10−1) EMMG(10−12)

1/16 4 1 53

2 1 22

1/32 5 1 98

3 1 33

2 1 22

1/64 6 1 180

4 1 53

2 1 22

1/128 7 1 309

5 1 98

3 1 33

2 1 22

Table 3
Number of V-cycles using bilinear, energy-minimizing, and AMG interpolations for the dis-

continuous coefficient problem. The jump a+ = 10, 102, 104. ∗ More than 100 V-cycles required for
convergence.

MGBL EMMG(10−3) AMG

h 10 102 104 10 102 104 10 102 104

1/16 12 41 ∗ 5 5 5 5 6 7

1/32 11 33 ∗ 5 5 5 6 7 7

1/64 11 31 ∗ 5 5 5 6 9 10

1/128 10 30 ∗ 6 6 6 7 9 10

Notice that the discontinuities do not align with any coarser grid. We fix a− = 1
and vary a+ from 10 to 104. The convergence results are given in Table 3. Here ∗
denotes convergence beyond 100 multigrid iterations. Consistent with the classical
theory, the convergence rate of the standard multigrid does not depend on the mesh
size h. However, the convergence rate deteriorates substantially as the jump of the
discontinuity increases. On the other hand, the convergence of the energy-minimizing
multigrid and AMG do not depend either on the mesh size or the size of the jump.

Table 4 shows the average number of CG iterations on the fine grid. It is com-
puted as follows. One CG iteration on the first coarse grid is counted as 1/4 of a CG
iteration on the fine grid and so on. From the column under “Ex2” of Table 4, we see
that by applying only a few CG iterations to construct the energy-minimizing inter-
polation, the convergence of multigrid is improved significantly over that using linear
interpolation. This result demonstrates that the extra cost of solving the minimization
problem is justified by the much faster convergence of the multigrid method.

Example 3. We solve another PDE to demonstrate the robustness of the energy-
minimizing multigrid method. The coefficient is oscillatory, and the equation is [25],
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Table 4
Average number of CG iterations on the fine grid for the discontinuous coefficient problem

(Example 2), oscillatory coefficient problem (Example 3), and anisotropic problem (Example 4).

Ex2: EMMG(10−3) Ex3: EMMG(10−2) Ex4: EMMG(10−2)

h a+ = 10 a+ = 104 η = 0.1 η = 0.01

1/16 8.69 10.69 36.56 1.31 8.50

1/32 7.63 10.88 51.83 70.34 9.25

1/64 6.66 8.66 96.64 117.83 8.69

1/128 6.66 8.66 144.66 280.15 8.81

Table 5
Number of V-cycles using bilinear, energy-minimizing, and AMG interpolations for the oscil-

latory coefficient problem. η = 0.1, 0.01. ∗ More than 100 V-cycles required for convergence.

MGBL EMMG(10−2) AMG

h 0.1 0.01 0.1 0.01 0.1 0.01

1/16 ∗ 4 7 5 6 4

1/32 51 ∗ 7 14 8 6

1/64 65 58 7 7 10 9

1/128 66 ∗ 7 10 10 16

[26, Example 7.4]:

−∇ · 1

(2 + P sin(x/η))(2 + P sin(y/η))
∇u = 1.

We chose P = 1.99 and η=0.1 and 0.01. The difficulty of this problem is the small
scale generated by small η. As the mesh size increases with coarser grids, eventually
the coarser grids do not resolve the oscillation of the coefficient, thus slowing down
the standard multigrid convergence. The results are shown in Tables 5 and 4 (column
under “Ex3”). Both EMMG and AMG converge rapidly. However, the minimization
problem is more difficult to solve this time since the coefficient is very rough.

We remark that the nonuniform number of V-cycles to convergence for the case
η = 0.01 may be because the mesh size h is not small enough to resolve the coefficient
a(x, y) for the first couple of values of h.

Example 4. We show by an anisotropic problem that the constrained energy min-
imization formulation will generate the correct coarse grid basis functions, provided
that the set of coarse grid points is selected appropriately. The model equation is

10−4uxx + uyy = 1.

For this kind of problem, semicoarsening [14, 15, 37] is often used, and the interpola-
tion is only done in the y direction but not in the x direction. Suppose the semicoarsen-
ing is used to select the coarse grid points and the constrained energy minimization is
applied to construct the interpolation operator. Since the construction of the energy-
minimizing interpolation is purely algebraic, it may interpolate in both directions
depending on the adjacency graph and the mesh topology. Numerical results show
that the constrained energy minimization formulation will automatically determine
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Table 6
Number of V-cycles using bilinear, energy-minimizing, and AMG interpolations for the

anisotropic coefficient problem. ∗ More than 100 V-cycles required for convergence.

h MGBL EMMG(10−2) AMG

1/16 ∗ 5 15

1/32 ∗ 6 17

1/64 ∗ 6 20

1/128 ∗ 6 22

Table 7
Number of V-cycles using linear and energy-minimizing interpolations for the matrix defined

in Example 5.

h MGBL EMMG
1/32 ∗ 5
1/64 ∗ 5
1/128 ∗ 5

the interpolation weighting to be about 1/2 in the y direction and negligibly small in
the other directions. If the small elements in the interpolation operator are truncated,
it will recover precisely the standard multigrid with semicoarsening. Table 6 shows
the fast convergence of EMMG for the anisotropic problem when semicoarsening is
used.

The average number of CG iterations for solving the minimization problem as
shown in Table 4 (column under “Ex4”) is calculated differently from the others.
Since semicoarsening is used, one CG iteration on the coarse grid is counted as 1/2
of a CG iteration on the fine grid.

Example 5. We show that the energy minimization principle is not restricted
to PDEs by considering a tridiagonal matrix Ah whose diagonal entries are 2 and
off-diagonal entries are 1. This matrix has the same spectrum as the one-dimensional
Laplacian operator and hence it is very ill-conditioned. It may be considered as the
discretization matrix of a one-dimensional banded convolution operator arising from
image processing [8]. It is known that standard multigrid converges slowly for this
kind of operator.

For this problem, we obtained φH
i from solving the local PDEs (7), not from

the minimization problem (13), since constant functions are not in the kernel of Ah.
The convergence results of the multigrid methods using linear and energy-minimizing
interpolations are shown in Table 7. The ∗ in the first column indicates that the
standard multigrid takes more than 100 V-cycles to converge. The poor convergence
comes from the effect of smoothing and the way the interpolation is done. The eigen-
functions of the operator Ah corresponding to small energy are oscillatory, whereas
those corresponding to large energy are relatively smooth. As a result of standard
relaxation smoothings, the errors become more oscillatory. Figure 3 shows the effect
of 4 and 8 iterations of Gauss–Seidel smoothing applied to a smooth initial error. Such
a phenomenon was also discussed in [9]. Hence, if we use linear interpolation, it will
not be able to approximate the oscillatory error on the coarser subspaces. This causes
the failure of the standard multigrid method.

On the other hand, the multigrid method using energy-minimizing interpolation
works fine and shows no deterioration, because the energy minimization captures the
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Fig. 3. Left to right: errors after 0, 4, and 8 Gauss–Seidel iterations when Ah is as defined in
Example 5.
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Fig. 4. A coarse grid basis function obtained by the energy minimization when Ah is as defined
in Example 5.

property of this type of operators and produces oscillatory coarse grid basis functions
(see Figure 4). This consistency enables a good approximation on the coarser sub-
spaces, and hence the multigrid convergence is much better. The AMG algorithm,
however, breaks down for this problem since the matrix Ah is not an M -matrix which
is essential for the definition of strong coupling for this implementation of AMG.

Remark. The coarse grid basis functions obtained by solving the local PDEs do
not preserve constants, an approach that is natural because the operator A does not
annihilate constant functions. If we were to extend our minimization formulation to
this case in higher dimensions, we would have to modify the constraint in (13).

5. Concluding remarks. Through the analytical and numerical results we have
demonstrated that energy-minimizing and constant preserving are two key properties
of the coarse grid interpolation required to obtain a robust multigrid method. An
obvious drawback to the construction of the robust interpolation is the expensive
solution of the minimization problem. An inexact preconditioned conjugate gradient
method with the linear interpolation as initial guess is proposed to overcome this
problem. More efficient methods for solving the minimization problem need to be
derived and studied.

Finally, because of the algebraic nature of the construction of the interpolation,
our method is also applicable to complicated geometries, for instance, unstructured
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grids, but these cases are not discussed in the present paper.
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