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Abstract. In this paper, we study the effects of the coarse grid correction process on multi-
grid convergence for hyperbolic problems in one and two dimensions. We approach this from the
perspective of phase error, which allows us to exploit the hyperbolic nature of the underlying PDE.
In particular, we consider three combinations of coarse grid operators and coarse grid solution ap-
proaches: (1) inexact coarse grid solve with direct discretization, (2) exact coarse grid solve with
direct discretization, and (3) exact coarse grid solve with Galerkin coarse grid operator. For all these
approaches, we show that the convergence behavior of multigrid can be precisely described by the
phase error analysis of the coarse grid correction matrix, and we verify our results by numerical
examples in one and two dimensions.
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1. Introduction. Multigrid has been established as a powerful and successful
numerical technique for fast solution of elliptic partial differential equations (PDEs).
Many different approaches have been proposed and various sophisticated techniques
have been developed for the cases of nonsmooth coefficient PDEs, complex geometries,
and unstructured meshes (see, for example, [3, 17, 31, 35] and the survey in [12]). For
the elliptic case, multigrid convergence is governed by smoothing of the high frequency
errors and coarse grid correction of the low frequency errors. Classical Fourier analysis
[3, 17, 35] and finite element analysis [2, 17, 37] have been well developed for the elliptic
case. However, this elliptic multigrid principle may not hold for the hyperbolic case
since the success of the standard techniques often rely on the intrinsic properties of
elliptic PDEs, for instance, symmetry, decay of Green’s function, and dissipation,
which are not generally properties of hyperbolic problems.

Several smoothing techniques have been proposed for convection dominated prob-
lems. One approach is to apply Gauss–Seidel smoothing with the so-called downwind
ordering [1, 10, 18, 24, 34]. Another approach is to use time-stepping methods as
smoothers [19, 20, 23, 27]. The idea is that the smoothers not only reduce the high
frequency errors but, more importantly, also propagate the errors along the flow di-
rections. For the latter, the solution on the coarsest grid is done by a few smoothing
steps. Thus, the multigrid process can be interpreted as speeding up the wave prop-
agation by taking larger time step sizes on the coarse grids. As a result, errors can
be removed rapidly by propagating them out of the boundary. A roadmap of recent
multigrid developments for nonelliptic PDEs can be found in [9].

Fourier analysis has been a useful tools for analyzing multigrid methods and,
more generally, iterative methods [13]. A simplified but more generally applicable
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version, the local mode analysis, can be obtained by considering an infinite grid, i.e.,
ignoring the boundary effect. It was first introduced to analyze multigrid smooth-
ing and two-level analysis by Brandt [3] and was later extended in [5, 6, 7, 8]; see
also [17, 30, 31, 35]. In the half-space mode analysis [4, 5, 6, 10], the boundary ef-
fect can also be studied. For nonelliptic problems, first differential approximation
(FDA) analysis [4] is often used to analyze smooth components. In this analysis, the
discrete differential operator is replaced by its FDA [38], and the intergrid transfer
and smoothing operators are ignored. For a model convection-diffusion equation with
very small diffusion coefficient, it has been shown in [4, 10, 11] that the two-level
convergence factor is at best 0.5. Fourier analysis of multigrid methods for convection
dominated problems can also be found in [16, 29, 35]. Although two-level analysis is
often sufficient to determine convergence behavior, occassionally, three-level analysis
is necessary [36].

In the classical Fourier analysis mentioned above, the asymptotic convergence
rate of multigrid convergence is often measured by the spectral radius of the iteration
matrix. For elliptic problems, the spectral radius has been found to be an accu-
rate measure of asymptotic convergence rates. For hyperbolic problems, however, the
eigenvalues of the iteration matrix of multigrid are in general complex. The spectral
radius estimate would ignore the phase angle information. In the analysis of numerical
schemes for hyperbolic equations, phase angle, more commonly known as phase ve-
locity, has been used extensively [32]. However, the use of phase error analysis in the
multigrid context has not been much explored. We are advocating such an approach
in this paper. We use standard Fourier analysis to compute the Fourier symbol of
the multigrid iteration matrix, in particular, the symbol of the coarse grid correction
matrix. In addition to the spectral radius, we also study the phase error of the Fourier
symbol to gain more insight into the multigrid convergence.

The discretization schemes studied in this paper are primarily first order and are
commonly used in multigrid literature for hyperbolic or convection-diffusion equa-
tions (see, e.g., [10, 31, 36, 39]). However, our phase error analysis is general; it is
not restricted to any particular scheme. In section 4.4, a nonlinear second order total
vartiation diminishing scheme is considered. Although Fourier analysis is not applica-
ble, we show numerically that the phase error analysis can still be used to analyze the
effectiveness of the coarse grid correction. Furthermore, we remark that the discretiza-
tion scheme alone does not determine the phase error of the coarse grid correction,
which is a combination of restriction, coarse grid solution (CGS), and prolongation.
For instance, although the dissipation of first order upwind schemes dominates the
dispersive effect, we find that the phase error of the coarse grid correction process
can still be significantly large. A change in the multigrid components such as restric-
tion and prolongation, however, can reduce or even remove (cf. section 5) the phase
error.

To explore the wave propagation nature of the underlying hyperbolic PDEs,
Gustafsson and Lötstedt [15, 26] first analyze the phase error (or phase velocity) of
a multigrid approach and prove that a speedup of 2K − 1 in convergence is obtained
using K grids for smooth errors, which would not be inferred from the spectral radius
analysis. In practice, however, the multigrid convergence can be much slower than
the analysis predicts due to severe numerical oscillations generated by the algorithm
(cf. section 2). In the analysis of Gustafsson and Lötstedt, they focus primarily on
the leading order term of the asymptotic expansion of the phase speed. In this paper,
we extend their analysis to include also the first order correction term with which we
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can explain the dispersive behavior of the multigrid process, which turns out to have
a significant influence on the convergence rate.

We find that the phase error analysis is not only useful for the wave propagation
multigrid approach but can also be used to explain the efficiency of other coarse
grid correction methods. One common coarse grid correction approach is to use
discretization matrices as coarse grid operators (CGOs). It has been shown by Brandt
and Yavneh in [4, 10, 11, 39] that the resulting coarse grid correction has O(1) error
for the characteristic components for 2D nonaligned flow problems. Our phase error
analysis not only recovers the same result but also provides more insight into the
source of the error. In particular, we prove that this coarse grid correction is only
first order accurate for cross-characteristic components due to the phase shift error
caused by the discretization CGOs.

In this paper, we show that the Galerkin coarse grid correction [28, 40] can be
a more efficient approach (the same is also observed in [39]) from the perspective of
the phase error. We prove that the phase error of the coarse grid correction is smaller
than that of the previous approach, and hence higher order accuracy of the coarse
grid correction can be achieved. We note, however, that Galerkin CGOs tend to
become central difference discrete operators, which may lead to spurious oscillations
in the coarser grid calculations. To remedy this problem, Dendy [14] uses operator-
dependent restriction and interpolation constructed from the symmetric part of the
operator. Yavneh [39] also uses interpolation and restriction operators, which depend
on the flow directions, together with artificial viscosity. He also pointed out that
the order of accuracy of the high frequency components is crucial to obtain efficient
Gakerlin coarse grid correction. Based on our phase error analysis, one could use the
Galerkin approach with an appropriately defined interpolation so that the Galerkin
CGO is stable. How to construct such an interpolation, however, requires substantial
investigation and is not within the scope of this paper. We also note that accurate
(higher order) non-Galerkin CGOs can be constructed, which would result in small
phase errors. However, such CGOs may have the same stability problem as the
Galerkin approach. Thus, the non-Galerkin CGOs we considered are limited to those
by direct discretization.

We would like to remark that the FDA analysis [4] does not take into account
the effect of the intergrid transfer operators. However, as reported in [4, p. 84],
downwind residual transfer is observed to produce better convergence results, which
was not explained. In fact, different interpolation and restriction operators lead to
very different phase errors of the coarse grid correction process. In section 5, we
demonstrate how our phase error analysis can successfully prove the fast convergence
of two multigrid methods using upwind-type interpolation and restriction.

In section 3, explicit analytic formulae for the asymptotic expansion of the phase
error of the different coarse grid correction approaches are established in one dimen-
sion. In section 4, results in two dimensions are presented with emphasis on Fourier
components in the characteristic and cross-characteristic directions. Numerical results
are given in section 6 to compare how these coarse grid correction approaches affect
the actual multigrid convergence. Finally, concluding remarks are given in section 7.

2. Model problem. The model problem we are interested in is the steady state
solution of linear hyperbolic equations,

Lu(x) ≡
d∑

i=1

ai(x)
∂u

∂xi
= f(x) x ∈ Ω,
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subject to periodic boundary conditions. Here, ai(x) are smooth functions, and Ω is
a d-dimensional unit cube.

Discretizing the equation by finite difference methods on a standard uniform fine
grid Ωh on Ω with mesh size h results in a linear system

Lhuh = fh.

The discrete problem is solved using K grids, {Ωl}K−1
l=0 , where the finest grid is

ΩK−1 = Ωh, and Ωl−1 is obtained from Ωl by standard full coarsening. Denote
by pl the prolongation operator from Ωl−1 to Ωl and by rl the restriction operator
from Ωl to Ωl−1, l = 1, 2, . . . ,K − 1. Also, denote the smoothing operator on Ωl by

Sl, and denote q steps of smoothing by S(q)
l . The solution process on the coarsest

grid is denoted by CGS. A standard multigrid V(q1,q2)-cycle algorithm with q1 steps
of presmoothing and q2 steps of postsmoothing can be written as [3, 17]

procedure MG(l,u,f)
if l = 0
u = CGS(u, f);

else

u = S(q1)
l (u, f);

d = rl(Llu− f);
v = 0;
MG(l − 1, v, d);
u = u− plv;

u = S(q2)
l (u, f);

end
u = un;
MG(K − 1, u, f);
un+1 = u;

Multigrid convergence is often studied by means of Fourier analysis [6, 7, 8, 17,
30, 31, 35]. In two dimensions, the discrete Fourier function (mode), ψh

µ,ν , can be
written as

ψh
µ,ν(xh

j,k) =
1

2
eiµπx

h
j eiνπy

h
k , −N ≤ µ, ν ≤ N − 1.

We note that ψh
µ,ν , with |µ|, |ν| ≈ 0, correspond to smooth or less oscillatory (low)

modes whereas ψh
µ,ν , |µ|, |ν| ≈ N , correspond to the most oscillatory (high) modes.

The orthogonal Fourier transform matrix Qh can be formed by taking ψh
µ,ν as its

columns. For two-grid analysis, it is customary to pair up the low-low, high-low,
low-high, and high-high modes together:

Qh = [· · ·ψh
µ,ν ψh

µ,ν′ ψh
µ′,ν ψh

µ′,ν′ · · ·],
where µ′ = µ − N , ν′ = ν − N . Denote the Fourier transform of a matrix B by
B̂ ≡ Q−1

h BQh, with entries B̂µ,ν .
The iteration matrix of the V(q1,q2)-cycle can be written as

M = Sq2CSq1 ,

where C and S are the coarse grid correction matrix and the iteration matrix of the
smoother, respectively. Hence M̂ = Ŝq2ĈŜq1 . With the ordering used in the Fourier
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transform and assuming PDE coefficients being constant, M̂ is a block diagonal matrix
with each block a 4 × 4 matrix M̂µ,ν , where

M̂µ,ν = Ŝq2
µ,νĈµ,ν Ŝ

q1
µ,ν , µ, ν = −N/2, . . . , N/2 − 1.

If the coarse grid problem is solved exactly, i.e., CGS(u, f) = (LH)−1f , then

Ĉµ,ν = I − p̂µ,ν(L̂H
µ,ν)−1r̂µ,νL̂

h
µ,ν ,

where p, r, and LH are the prolongation, restriction, and CGOs, respectively.
The convergence of the two-grid method will then be determined by M̂µ,ν , which

is often referred to as the Fourier symbol of the iteration matrix. In standard Fourier
analysis of two-grid convergence, the spectral radius of M̂µ,ν is considered. More
precisely, the asymptotic convergence rate is often measured by (see, e.g., [17, 31, 35])

ρ := sup
−N/2≤µ,ν≤N/2−1

ρ(M̂µ,ν),

where ρ(M̂µ,ν) denotes the spectral radius of M̂µ,ν . Since eigenvalues of M̂µ,ν are
complex in general, the spectral radius takes into account only the modulus infor-
mation of the eigenvalues while ignoring the phase angle information. Using the
terminology from numerical methods for solving hyperbolic equations, the spectral
radius essentially corresponds to the dissipation and the phase angle corresponds to
the dispersion. Their definitions are given as follows.

Given a finite difference scheme in one dimension, suppose the Fourier transform
of the numerical solution at time step n + 1 can be written as

ûn+1(µ) = g(µ)ûn(µ),

where g(µ) is the amplification factor and µ is the wave number. The scheme is
dissipative if |g(µ)| < 1, and dispersive if the phase velocity [32], κ(µ), defined as,

κ(µ) ≡ −arg(g(µ))

µπ∆t
,

is different for a different wave number µ, where ∆t is the time step size. The phase
velocity, κ(µ), measures the propagation speed of the wave with wave number µ.

The concepts of dissipation and dispersion become very useful in the context
of multigrid when one interprets the smoothing process as solving a pseudotime-
dependent problem:

∂ul

∂t
+ Llul = f l, l = 0, 1, . . . ,K − 1.(2.1)

The coarse grid problem is often solved by a few steps of smoothing, e.g., CGS(u, f) =
Sq1+q2(u, f). This approach was proposed by Jameson, Schmidt, and Turkel [19, 21]
and Ni [27] and later analyzed by Gustafsson and Lötstedt [15, 26]. The idea is to
accelerate error propagation by taking larger time steps on the coarse grids. To give a
more precise account of the wave propagation property of the multigrid V(1,0)-cycle,
Gustafsson and Lötstedt analyzed the dispersion, or phase velocity, of the multigrid
process by a Fourier analysis of the two-grid iteration matrix M = CS. The smoother
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Fig. 2.1. The numerical solutions given by a three-level multigrid V-cycle at (a) iteration = 0,
(b) iteration = 20, (c) iteration = 40, (d) iteration = 60.

considered is an m-stage Runge–Kutta method, and hence the coarse grid correction
matrix, C, and the iteration matrix of the smoother, S, are given by

C = I +
m∑
j=1

∆tjHp(LH)j−1
m∏

k=m−j+1

(−αk)rLh,

S = I −
m∑
j=1

(∆thL
h)j

m∏
k=m−j+1

αk,

where α′
ks are parameters of the m-stage Runge–Kutta method. We summarize the

results of the analysis of Gustafsson and Lötstedt in one dimension as follows.
Theorem 2.1. Let λ1 be the first eigenvalue of M̂µ. For frequency µ ≈ 0,

λ1(µ) = 1 − (∆th + ∆tH)iµπ + O(µ2).

Consequently, the phase velocity of the two-grid method is

κ(µ) = −arg(λ1(µ))

µπ∆th
= 1 +

∆tH
∆th

= 3.

In general, if tl denotes the time step on grid l, then the phase speed of the K-level
multigrid method is given by

κ(µ) =
1

∆t1

K∑
j=1

∆tj = 2K − 1, µ ≈ 0.

Thus, they can explain the fast propagation of this multigrid approach, which
would not be explained by the standard spectral radius or dissipation analysis.

However, the effective speed of wave propagation observed is much slower than the
analysis predicts. The reason is that their analysis focuses primarily on the leading
order terms of the Taylor expansion of λ1, which only accounts for the speed of
propagation of smooth waves. However, the error after smoothing also consists of
nonnegligible higher frequency modes, which need to be taken into account.

As an example, we take a square wave as the initial error, which consists of
nonnegligible high frequency Fourier modes. Snapshots of the error in the first sixty
multigrid V-cycles are shown in Figure 2.1. We use linear interpolation, one step
of Euler smoothing, and three coarse grids. The number of fine grid points is 128.
For ∆t = 0.5∆x, the single grid method (i.e., only smoothing) will converge in 256
iterations. The analysis of Gustafsson and Lötstedt estimated that the multigrid
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method should have a speedup of 23 − 1 = 7, and it should have converged in 36
iterations. However, it takes more than 100 iterations to reduce the initial residual
norm by 10−6. The reason is that, as shown in Figure 2.1, oscillations are generated
as the wave propagates to the right—a phenomenon of dispersion.

In this paper, we do not consider any specific smoothers; we only assume that
the smoothers are effective in reducing high frequency errors. Thus the multigrid
convergence will hinge on the effectiveness of the coarse grid correction. As the main
theme of this paper, we shall consider three types of coarse grid correction approaches
commonly used in the literature and analyze them using phase error analysis. The
first one is the wave propagation approach just described in which the coarse grid
problem is solved approximately by a few smoothing steps and the CGO is obtained
by direct discretization. The second approach is to solve the coarse grid problem
exactly and also obtain the CGO by direct discretization. The third approach is like
the second one except that Galerkin CGO is used.

3. One dimension. This paper will focus on the phase error analysis in two
dimensions. However, most of the 2D results are motivated by the 1D analysis. To
make the paper self-contained, we briefly summarize the main 1D results here. The
details of the analysis can be found in [33]. The 1D hyperbolic equation is discretized
by the standard first order upwinding. We note that a higher order method can also
be considered (cf. section 4.4). In this paper, however, the primary focus is on the
phase error analysis of the coarse grid correction process, which is the result of the
restriction, CGO, and interpolation.

3.1. Inexact coarse grid solve, direct discretization CGO. In the Fourier
analysis of Gustafsson and Lötstedt [15, 26] for this approach, they only provide
information on the phase speed of the smooth wave propagation. Thus, their analysis
would not be able to explain the oscillatory phenomenon as shown in Figure 2.1. In
this section, we extend the phase velocity analysis to also include the first order term
in the asymptotic expansions.

The coarse grid solve is carried out by one step of m-stage Runge–Kutta smooth-
ing. For easy exposition, we take m = 1, ∆tH = λH, where λ is the CFL-number.
Thus the coarse grid correction matrix can be written as

C = I − λHprLh,

where p is the linear interpolation and r = 1
2p

T its transpose, as considered in [15, 26].
Then, the 2 × 2 subblocks of the Fourier transform of C are given by

Ĉµ = I − λHp̂µr̂µL̂
h
µ(3.1)

= I − λH

[
c2µ
−s2

µ

] [
c2µ −s2

µ

] 1

h

[
1 − e−µπhi 0

0 1 + e−µπhi

]
.

Since Gustafsson and Lötstedt consider one presmoothing and no postsmoothing,
the Fourier symbol of the iteration matrix has the form M̂µ = ĈµŜµ. Note that

Ŝµ is a diagonal matrix. Moreover, if the smoother is effective in reducing high

frequency errors, then Ŝµ(1, 1), the (1,1) entry of Ŝµ, is dominant. Consequently,

M̂µ is essentially determined by Ĉµ(1, 1), which represents the low frequency–low
frequency interaction. In other words, it represents how the smooth waves are changed
by the coarse grid correction. Hence, we focus just on the (1,1) entry of Ĉµ. By (3.1),

Ĉµ(1, 1) = 1 − 2λc4µ(1 − e−µπhi) ≡ |Ĉµ(1, 1)|e−iκ(µ)µπhλ.
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Fig. 3.1. The numerical solutions given by a four-level multigrid with exact coarse grid solve
at (a) iteration = 0, (b) iteration = 1, (c) iteration = 2, (d) iteration = 3.

Below we present our result on the dispersion of Ĉµ(1, 1), which is not considered
explicitly by Gustafsson and Lötstedt [15].

Theorem 3.1. The coarse grid correction is dissipative of order 2 for 0 < λ ≤ 1/2
and dispersive. More precisely, the dissipation and phase velocity of Ĉµ are given,
respectively, by

|Ĉµ(1, 1)| ≤ 1 if and only if 0 < λ ≤ 1

2
,

κ(µ) = 2 +
8λ− 15

12
(µπh)2 + O(µπh)4.

Proof. For the proof see [33].
There are two implications of Theorem 3.1. First, considering |Ĉµ(1, 1)|, the CFL

condition on λ (≤ 1
2 ) is more restrictive than that imposed by Euler’s smoothing

(λ ≤ 1). Second, the leading order term shows that the coarse grid correction has
an effect of propagating smooth waves with speed 2. Furthermore, we note that the
second term is negative for 0 < λ < 1. Thus, the nonconstant smooth waves will have
a negative phase velocity error, which accounts for the oscillations generated at the
tail as the wave propagates to the right; see Figure 2.1.

3.2. Exact coarse grid solve, direct discretization CGO. The dispersion
effect discussed in section 3.1 is largely due to the inexact coarse grid solve, and
it explains that different waves travel at different speeds, which delay the overall
multigrid convergence. In this section, we consider an exact coarse grid solve instead.
Thus, as in standard multigrid, the idea is to eliminate the smooth errors completely
on the coarse grid while the oscillatory errors are damped by the smoother. The CGOs
used are the same as before; we apply the same discretization scheme to all the coarse
grids. Linear interpolation is used for intergrid transfer. As an example, we apply
this multigrid with three coarse grids to solve our model problem. The numerical
solutions obtained are shown in Figure 3.1. Although the solutions are converging to
0 (note the change in scale on the y-axis), the formation of the relatively large error
in the middle is unexpected since the starting solution is very smooth, and the exact
coarse grid solve should, in principle, have eliminated it completely.

We discuss the numerical oscillation with the help of several plots, followed by a
phase error analysis. We use the same multigrid method to solve the model problem.
This time, we use three grids and many smoothing steps (25, and λ = 0.8) to provide
a better illustration. In Figure 3.2(a), we start with a smooth starting function u(1)

(solid line) on the first grid and obtain ū(1) (dashed line) after 25 smoothing steps.
We then restrict the residual to the second grid and apply the two-grid method to
solve the error equation on this grid. The initial guess is zero. The initial error,
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Fig. 3.2. The initial error (solid line), error after smoothing (dashed line), error from coarse
grid correction (dotted line), error after coarse grid correction (dash-dotted line) on (a) first grid,
(b) second grid, (c) first grid.

e(2) (solid line), and the error after 25 smoothing steps, ē(2) (dashed line), are shown
in Figure 3.2(b). We then restrict the residual to the third grid and solve the error
equation exactly. The coarse grid error is then interpolated back to the second grid
as pe(3) (dotted line) in Figure 3.2(b). In principle, the coarse grid error pe(3) should
approximate well the error on the current grid ē(2), which seems to be close, but it
is clearly shifted a bit to the left. Thus, after the coarse grid correction, the error of
the updated solution (dash-dotted line) shows an oscillation underneath ē(2) due to
the shift. Finally, we interpolate the solution on the second grid, which is the coarse
grid error for the first grid, back to the first grid. The solution after the coarse grid
correction (dash-dotted) is shown in Figure 3.2(c). Instead of obtaining a near zero
function, we have two oscillations corresponding to the coarse grid corrections of the
second and third grids, respectively.

We use a phase error analysis to explain this phenomenon for the two-grid method.
With exact coarse grid solve, the coarse grid correction matrix is

C = I − p(LH)−1rLh.

As in the previous approach, we are interested in the low-low interaction, i.e., the
(1,1) entry of Ĉµ.

Theorem 3.2. The coarse grid correction of smooth waves given by the exact
coarse grid solve together with linear interpolation is only first order accurate, with

|Ĉµ(1, 1)| =
µπh

2
+ O(µπh)2.

Proof. We first consider the term D ≡ p(LH)−1rLh, i.e., the effect of exact coarse
grid solve. The (1,1) entry of D̂µ can be calculated as

D̂µ(1, 1) =
2c4µ

1 + e−µπhi
= c4µ + isµc

3
µ = c3µe

µπhi/2.

As a result,

Ĉµ(1, 1) = 1 − D̂µ(1, 1) = 1 − c3µe
µπhi/2.

The results follow by Taylor expansion.
By examining the formula of D̂µ(1, 1), we can see that D̂µ(1, 1) has the effect

of shifting waves of any frequency by 1/2 grid point (to the left) immediately after
the exact coarse grid solve. In other words, the coarse grid error given by the exact
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Fig. 3.3. (a) The initial error (solid line) and error after smoothing (dashed line), (b) The
error from coarse grid correction (dotted line) and error after coarse grid correction (dash-dotted
line) on the first grid.

coarse grid solve and the fine grid error differ by 1/2 grid point. Thus, it explains
precisely the slight shift of the coarse grid correction error (dash-dotted line) shown
in Figure 3.2(b). As we shall see in the next section, this shift arises essentially from
the discretization of the first order PDE with two different mesh sizes, which cause
dispersion to occur. Due to the shift generated by D̂µ(1, 1), the amplification factor

of Ĉµ(1, 1) = O(µπh), i.e., the coarse grid correction, is only first order accurate.

3.3. Exact coarse grid solve, Galerkin CGO. In the elliptic case, one often
uses the Galerkin approach to form the coarse grid correction operator

GH = rLhp,

since the coarse grid error is minimized in the A-norm. For hyperbolic equations,
however, the Galerkin CGO is less commonly used. In this section, we consider the
use of a Galerkin CGO with exact coarse grid solve and show that it does not have
the dispersion effect caused by the discretization matrix on the coarse grid, as in the
non-Galerkin approach.

We start with a similar numerical experiment as in the previous section. This
time, we only use two grids. In Figure 3.3(a), it shows the smooth starting function
and the solution after 25 smoothing steps. An exact coarse grid solve is used with
a Galerkin CGO. The interpolated coarse grid error (dotted line) and the error after
coarse grid correction (dash-dotted line) are shown in Figure 3.3(b). We see that the
CGS approximates well the error on the fine grid, and hence the error after the coarse
grid correction is essentially gone; thus, there is no visible oscillation.

We explain the numerical observation by the phase error analysis. Since the CGO
is obtained by the Galerkin process, its Fourier transform can be calculated as follows:

ĜH
µ = r̂µL̂

h
µp̂µ =

cos2(µπh) − e−2µπhi

2h
.

Theorem 3.3. The coarse grid correction of smooth waves given by the exact
coarse grid solve and Galerkin CGO is third order accurate, with

|Ĉµ(1, 1)| =
1

8
(µπh)3 + O(µπh)5.

Proof. We define D as in the proof of Theorem 3.2. The (1,1) entry of D̂µ is then
given by

D̂µ(1, 1) ≡ p̂µ(ĜH
µ )−1r̂µL̂

h
µ =

2c4µ(1 − e−µπhi)

cos2(µπh) − e−2µπhi
=

c3µ
c6µ + s6

µ

(c3µ + is3
µ).
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By direct calculation, the amplification factor of D̂µ(1, 1) and the phase angle θ are
given by

|D̂µ(1, 1)| =
c3µ√

c6µ + s6
µ

, θ(µπh) = arctan

(
s3
µ

c3µ

)
=

1

8
(µπh)3 + O(µπh)5.

The results for Ĉµ follow by Taylor expansion.

We see that the phase error of D̂µ(1, 1) in the Galerkin approach is two orders of
magnitude smaller than that in the non-Galerkin approach, implying that essentially
no shifting occurs after the exact coarse grid solve. Consequently, the coarse grid
correction operator is two orders more accurate.

4. Two dimensions. We extend the phase error analysis of section 3.1 to two
dimensions. Consider the convection dominated problem on a unit square:

−ε∆u + a(x, y)ux + b(x, y)uy = f, x ∈ Ω = (−1, 1) × (−1, 1),

with periodic boundary condition. In particular, we focus on two model problems:

(1) entering flow (constant coefficient):

a(x, y) ≡ a, b(x, y) ≡ b.

(2) recirculating flow (variable coefficient):

a(x, y) = 4x(x− 1)(1 − 2y), b(x, y) = −4y(y − 1)(1 − 2x).

We discretize the equation using the first order upwind scheme on a uniform fine
grid {(xh

j , y
h
k )}−N≤j,k≤N−1 with mesh size h, resulting in a linear system

Lhuh = fh,

where

(Lhuh)i,j = ε
4uh

i,j − uh
i−1,j − uh

i+1,j − uh
i,j−1 − uh

i,j+1

h2

+
(−a− |a|)uh

i−1,j + 2|a|uh
i,j + (a− |a|)uh

i+1,j

2h

+
(−b− |b|)uh

i,j−1 + 2|b|uh
i,j + (b− |b|)uh

i,j+1

2h
;

see, for instance, [39]. Since our primary focus is on the limit ε → 0, we shall ignore
the elliptic term in the analysis. Also, we assume a, b are positive; general a, b can
be treated similarly.

We remark that Gauss–Seidel smoothing with “downstream ordering” is often
used in multigrid for convection dominated problems [1, 10, 18, 24, 34]. In this
approach, the role of Gauss–Seidel is not only as a smoother but also, at least in part,
as a solver. In this paper, however, we concentrate only on the effect of coarse grid
correction, and hence we do not take into account the ordering issue.
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4.1. Inexact coarse grid solve, direct discretization CGO. In the 1D anal-
ysis, we conclude that the multigrid V-cycle convergence is delayed by the oscillation
generated as a result of the dispersive effect caused by the coarse grid correction.
In the following, we shall show that similar oscillations occur also in the 2D case.
The interpolation, p, and the restriction, r, are bilinear and full weighting, respec-
tively; hence r = 1/4pT . The smoother is the same as in one dimension—a first order
Runge–Kutta method, which is also Richardson smoothing.

Assuming a, b constant, the Fourier symbol of the coarse grid correction matrix
C is given by

Ĉµ,ν = I − λHp̂µ,ν r̂µ,νL̂
h
µ,ν

= I − 2λh




c2µc
2
ν

−s2
µc

2
ν

−c2µs
2
ν

s2
µs

2
ν


 [ c2µc

2
ν −s2

µc
2
ν −cµ2s2

ν s2
µs

2
ν

]
L̂h
µ,ν .

In particular, we are interested in the (1,1) entry of Ĉµ,ν ,

Ĉµ,ν(1, 1) = 1 − 2λhc4µc
4
ν

[
a

h
(1 − e−µπhi) +

b

h
(1 − e−νπhi)

]
.

To gain more insight into the formula of Ĉµ,ν(1, 1), we consider the special case where
a = b = 1 and we have frequencies in the characteristic direction, i.e., ν = µ.

Theorem 4.1. Assume a = b = 1. In the characteristic direction, i.e., ν = µ,
the coarse grid correction is dissipative for 0 < λ ≤ 1/4, and dispersive, i.e.,

|Ĉµ(1, 1)| ≤ 1 if and only if 0 < λ ≤ 1

4
,

κ(µ) = 2 +

(
2λ− 9

4

)
(µπh)2 + O(µπh)4.

Proof. Under the assumptions,

Ĉµ,ν(1, 1) = 1 − 2λhc8µ

[
2

h
(1 − e−µπhi)

]
= 1 − 2λc6µ sin2(µπh) − i4λc8µ sin(µπh).

The results follow from Taylor expansion on |Ĉµ,ν(1, 1)| and phase of Ĉµ,ν(1, 1).

Figure 4.1(a) shows maxµ,ν |Ĉµ,ν(1, 1)| for different values of λ, a = b = 1. We
note that the stability requirement for the coarse grid correction is 0 ≤ λ ≤ 1/4,
whereas that for smoothing is only 0 ≤ λ ≤ 1/2. Thus, a more restrictive CFL-
number is needed, which is consistent with the 1D result (cf. Theorem 3.1). For
λ = 0.25, Figure 4.1(b) shows that Ĉµ,ν(1, 1) is dissipative for all values of µ, ν.

Figure 4.1(c) shows the phase velocity of Ĉµ,ν(1, 1). For µ, ν ≈ 0, the phase veloc-
ity is approximately 2; thus smooth waves propagate at a speed of 2 on the coarse
grid. Moreover, as µ, ν increases, the phase velocity decreases from 2, suggesting that
dispersion also occurs in the 2D case.

As an example, we solve the model entering flow problem by multigrid, and snap-
shots of the errors in the first 15 V-cycles are shown in Figure 4.2. We use bilinear
interpolation, one presmoothing, and three grids. The mesh size is h = 1/32, and
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Fig. 4.1. Spectrum of the Fourier transform of the inexact coarse grid correction for the entering
flow problem. (a) maxµ,ν |Ĉµ,ν(1, 1)| with CFL-number 0 ≤ λ ≤ 0.5; (b) |Ĉµ,ν(1, 1)|, λ = 0.25; (c)
phase velocity of Ĉµ,ν(1, 1).
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Fig. 4.2. Numerical solutions given by a three-level multigrid for the entering flow problem at
(a) iteration = 0, (b) iteration = 5, (c) iteration = 10, (d) iteration = 15.

λ = 0.25. We observe that oscillations are generated at the tail as the square wave
propagates from (−1,−1) to (1,1), which agrees with our phase velocity analysis.

For the recirculating flow problem, Fourier analysis is not feasible, and yet we
still observe a similar wave propagation phenomenon as in the entering flow case; see
Figure 4.3. The same parameters are used as before. We can see that the wave rotates
around the domain with oscillations at the tail due to dispersion of the coarse grid
correction. Thus, the results of the phase velocity analysis for constant coefficient
problems appear to hold also for variable coefficient problems.

4.2. Exact coarse grid solve, direct discretization CGO. Instead of ap-
plying a few steps of smoothing on the coarse grid, we solve the coarse grid equation
exactly. Direct discretization is used for the CGO. Thus, the coarse grid correction
matrix is

C = I − p(LH)−1rLh,

and its Fourier transform is given by

Ĉµ,ν = I − p̂µ,ν(L̂H
µ,ν)−1r̂µ,νL̂

h
µ,ν

= I −




c2µc
2
ν

−s2
µc

2
ν

−c2µs
2
ν

s2
µs

2
ν


 1

a
2h (1 − e−µπ2hi) + b

2h (1 − e−νπ2hi)

· [ c2µc
2
ν −s2

µc
2
ν −cµ2s2

ν s2
µs

2
ν

]
L̂h
µ,ν .
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Fig. 4.3. Numerical solutions given by a three-level multigrid for the recirculating flow problem
at (a) iteration = 0, (b) iteration = 5, (c) iteration = 10, (d) iteration = 15.

Therefore,

Ĉµ,ν(1, 1) = 1 − c4µc
4
ν

a
h (1 − e−µπhi) + b

h (1 − e−νπhi)
a
2h (1 − e−µπ2hi) + b

2h (1 − e−νπ2hi)
.

To better understand the formula, we consider two special and yet important cases:
frequency components in the characteristic direction, i.e., (µ, ν) such that

bµ− aν = 0,

and the cross-characteristic direction1 [4, 11, 39], i.e., (µ, ν) such that

aµ + bν = 0.

Theorem 4.2. For the components in the characteristic direction and assuming
a = b,

|Ĉµ,ν(1, 1)| =
µπh

2
+ O(µπh)2.

For the components in the cross-characteristic direction and positive constants a, b,

lim
µ→0

Ĉµ,ν(1, 1) =
1

2
.

In particular, for a = b, then Ĉµ,ν(1, 1) = 1 − c6µ/2.
Proof. As in the corresponding 1D case, we are also interested in the effect of the

exact coarse grid solve, i.e., D = p(LH)−1rLh, whose Fourier transform is given by

D̂µ,ν(1, 1) = c4µc
4
ν

a
h (1 − e−µπhi) + b

h (1 − e−νπhi)
a
2h (1 − e−µπ2hi) + b

2h (1 − e−νπ2hi)
.

In the characteristic direction, and a = b, then

D̂µ,ν(1, 1) = c8µ
2a(1 − e−µπhi)

a(1 − e−2µπhi)
= c7µe

µπhi
2 .

As a result,

Ĉµ,ν(1, 1) = 1 − c7µe
µπhi

2 = 1 − c8µ − isµc
7
µ.

1Brandt and Yavneh refer to these components as characteristic components.
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Fig. 4.4. Spectrum of the Fourier transform of D = p(LH)−1rLh, where LH is obtained from

the direct discretization of the entering flow problem. (a) |D̂µ,ν(1, 1)|; (b) |D̂µ,ν(1, 1)|, µ = ν (solid

line) and µ = −ν (dashed line); (c) scaled phase angle of D̂µ,ν(1, 1).

Then, we have |Ĉµ,ν(1, 1)|2 = 1 − 2c8µ + c14µ , and hence

|Ĉµ,ν(1, 1)| =
µπh

2
+ O(µπh)2.

In the cross-characteristic direction, and positive constants a, b, by l’Hospital’s rule,

lim
µ→0

Ĉµ,ν(1, 1) = 1 − lim
µ→0

2a(1 − e−µπhi) + 2b(1 − e(a/b)µπhi)

a(1 − e−2µπhi) + b(1 − e2(a/b)µπhi)

= 1 − lim
µ→0

2a(πhi)e−µπhi − 2a(πhi)e(a/b)µπhi

2a(πhi)e−2µπhi − 2a(πhi)e2(a/b)µπhi

=
1

2
.

For a = b = 1, the explicit formula for Ĉµ,ν(1, 1) follows from direct substitu-
tion.

We note that our analysis for the cross-characteristic direction is consistent with
the result of Brandt and Yavneh [11] in which they also showed that limµ→0 Ĉµ,ν(1,1)=
1/2 for the special case b = 0, and so they concluded that the coarse grid error is not
a good approximation to the fine grid error for components in the cross-characteristic
directions. In [39], Yavneh proposes the use of higher order interpolation and restric-
tion operators and more accurate discretizations of the CGO to improve the accuracy
of the coarse grid correction.

In both [11, 39], the phase error is not discussed, which has been shown by
Theorem 4.2 to be relevant for components in the characteristic direction. Specifi-
cally, in the characteristic direction, the magnitude of these components is accurate:
|D̂µ,ν(1, 1)| = c7µ, µ ≈ 0. However, it has a phase error of µπh/2. Qualitatively
speaking, the coarse grid error is shifted by h/2 in the characteristic direction, and
hence the accuracy of Ĉµ,ν(1, 1) is only first order.

Figure 4.4(a) shows that |D̂µ,ν(1, 1)| ≈ 1, for µ, ν ≈ 0 and having the same sign,
but is significantly below 1 for other values of µ and ν. In Figure 4.4(b), we plot the
values of |D̂µ,ν(1, 1)| for µ = ν (solid line) and µ = −ν (dashed line). Both agree with
the results of Theorem 4.2. Figure 4.4(c) shows the scaled values of the phase angles,

θ
(µ+ν)πh , which measure the amount of shift in the coarse grid error along the flow

direction. In the characteristic direction, the amount of shift is negative and relatively
constant. In the cross-characteristic direction, the amount of shift varies. Thus, we
expect the coarse grid error to be slightly shifted from the fine grid error.
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Fig. 4.5. Contour plots of the fine grid error (dashed line) and the interpolated coarse grid
error (solid line) for (a) the entering flow, and (b) the recirculating flow,.

Figures 4.5(a) and (b) show the contour plots of the fine grid error (dashed line)
and the interpolated coarse grid error (solid line) for the entering flow and recirculating
flow, respectively. Both results agree with the phase analysis in that the interpolated
coarse grid errors are shifted behind the direction of the flow. We note that the
amount of shift depends on the mesh size, and hence it becomes more serious on the
coarser meshes which occurs when many levels of multigrid are used.

4.3. Exact coarse grid solve, Galerkin CGO. To avoid the shifting phe-
nomenon, we use the Galerkin approach to form the CGO, i.e.,

GH = rLhp.

Thus, the Fourier transform of the coarse grid correction matrix is given by

Ĉµ,ν = I − p̂µ,ν(ĜH
µ,ν)−1r̂µ,νL̂

h
µ,ν .

We again consider the characteristic and cross-characteristic components.
Theorem 4.3. For the components in the characteristic direction and assuming

constant a = b,

|Ĉµ,ν(1, 1)| =
(µπh)3

8
+ O(µπh)5.

For the components in the cross-characteristic direction and positive constants a, b,

lim
µ→0

Ĉµ,ν(1, 1) = 0.

In particular, if a = b, then

|Ĉµ,ν(1, 1)| =
(µπh)2

4
+ O(µπh)4.

Proof. First, consider D = p(GH)−1rLh. Fourier transform gives

D̂µ,ν(1, 1) = c4µc
4
ν

L̂h
µ,ν(1, 1)

ĜH
µ,ν

,(4.1)

where the Fourier transform of the Galerkin CGO is given by

ĜH
µ,ν =c4µc

4
ν

[
a

h
(1−e−µπhi)+

b

h
(1 − e−νπhi)

]
+s4

µc
4
ν

[
a

h
(1 + e−µπhi) +

b

h
(1 − e−νπhi)

]

+ c4µs
4
ν

[
a

h
(1 − e−µπhi)+

b

h
(1+e−νπhi)

]
+s4

µs
4
ν

[
a

h
(1+e−µπhi)+

b

h
(1+e−νπhi)

]
.
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Fig. 4.6. Spectrum of the Fourier transform of D = p(GH)−1rLh, where GH is obtained from

the Galerkin approach to the entering flow problem. (a) |D̂µ,ν(1, 1)|, (b) |D̂µ,ν(1, 1)|, µ = ν (solid

line) and µ = −ν (dashed line) (c) Scaled phase angle of D̂µ,ν(1, 1).

In the characteristic direction and a = b, (4.1) becomes

D̂µ,ν(1, 1) =
c7µ

(c4µ + s4
µ)(c6µ + s6

µ)
(c3µ + is3

µ).

Let D̂µ,ν(1, 1) = |D̂µ,ν(1, 1)|eiθ and, by direct calculation,

|D̂µ,ν(1, 1)| =
c7µ

(c4µ + s4
µ)
√

c6µ + s6
µ

,

θ =
1

8
(µπh)3 + O(µπh)5.

Thus, the coarse grid error is accurate in magnitude and the phase shift is negligibly
small. As a result, we have

Ĉµ,ν(1, 1) = 1 − D̂µ,ν(1, 1) =
c4µs

4
µ + s10

µ − is3
µc

7
µ

(c4µ + s4
µ)(c6µ + s6

µ)
,

and the result follows from Taylor expansion.
In the cross-characteristic directions, general positive constants a, b, we obtain

the limit result by a similar calculation as in the proof of Theorem 4.2. Finally, if in
addition, a = b, then

Ĉµ,ν(1, 1) = 1 − c2µs
2
µ + s6

µ

c6µ + c2µs
2
µ + s6

µ

=
(µπh)2

4
+ O(µπh)4.

In the Galerkin approach, the magnitudes of smooth coarse grid errors are 1
for both cross-characteristic and characteristic components. Furthermore, there is
essentially no phase shift in both directions, as opposed to the non-Galerkin approach.
As a result, the coarse grid correction is second and third order accurate in the
characteristic and cross-characteristic components, respectively.

Figure 4.6(a) shows that |D̂µ,ν(1, 1)| ≈ 1 for µ, ν ≈ 0 in all directions. In particu-

lar, Figure 4.6(b) shows the values of |D̂µ,ν(1, 1)| in the characteristic (solid line) and
cross-characteristic directions (dashed line), which verify the results of Theorem 4.3.
Figure 4.6(c) shows the scaled values of the phase angles, θ

(µ+ν)πh . Again for µ, ν ≈ 0

in all directions, there is essentially no phase error.
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Fig. 4.7. Contour plots of the fine grid error (dashed line) and the interpolated coarse grid
error (solid line) for (a) the entering flow and (b) the recirculating flow.
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Fig. 4.8. (a) Plots of the fine grid error (solid line), the coarse grid error (dotted line), and the
error after coarse grid correction (dash-dotted line). (b) Contour plots of the fine grid error (dotted
line) and the coarse grid error (solid line).

Figures 4.7(a) and (b) show the contour plots of the fine grid error (dashed line)
and the interpolated coarse grid error (solid line) for the entering flow and recirculating
flow problems, respectively. Both results agree with the phase analysis in that the
interpolated coarse grid errors match accurately with the fine grid errors.

4.4. High order method. We have considered first order upwind discretization
so far. However, the phase error analysis is not restricted to first order methods. In
fact, our phase error analysis does not assume any particular discretization schemes
or multigrid methods. Here, we illustrate the phase shift error (cf. sections 3.2 and
4.2) for a second order total variation diminishing (TVD) scheme [25]:

ux(xi) ≈ 1

h

((
ui +

1 − λ

2
si

)
−
(
ui−1 +

1 − λ

2
si−1

))
,

where λ is a parameter (which in the time dependent case is the CFL-number) and
si = minmod(ui+1−ui, ui−ui−1) is the minmod function. Since it is nonlinear, Fourier
analysis is not applicable. Thus, we demonstrate the phase shift error numerically.
The CGO is obtained by direct discretization and the coarse grid problem is solved
exactly. In Figure 4.8(a), we show the fine grid error (solid line) and the error after
coarse grid correction (dashed line). We can see that the coarse grid error is shifted
to the left (probably by half a grid point), just like in Figure 3.2. The errors of
the 2D entering flow problem are shown in Figure 4.8(b), where the contour plots
of the fine grid error (dotted line) and the coarse grid error (solid line) are shown.
As in Figure 4.5, the coarse grid error is shifted behind the direction of the flow. In
conclusion, the phase error property of the coarse grid correction approach with the
direct discretization CGO and exact coarse grid solve using the second order TVD
schemes in one and two dimensions is consistent with the results using the first order
upwind schemes.
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4.5. Summary. In practice, the wave propagation approach is appealing since
it is simple and uses the same smoothing method on all the coarse grids. However,
such coarse grid correction is dispersive and oscillations generated can slow down
multigrid convergence. For the exact coarse grid solve, direct discretization approach,
the same smoothing method can also be used on all the coarse grids. Since exact
coarse grid solve is used, the dispersive effect is much improved. However, the coarse
grid correction is only first order accurate, leading to slower convergence. For the
Galerkin approach, the coarse grid correction is more accurate, and hence the resulting
multigrid convergence should be like the elliptic case.

We note that although our analysis suggests that the Galerkin approach has the
least phase error, in practice, however, there are several issues to be addressed. It has
been observed that the Galerkin CGOs on the coarse grids become more and more
like the central finite difference operators and hence lead to stability problems. To
remedy this, carefully designed interpolation and restriction are needed, for instance,
operator-dependent interpolations and restrictions [14, 40], such that the resulting
Galerkin CGO is stable. If the intergrid transfer operators are chosen such that the
Galerkin CGO coincides with the one by direct discretization, then we would expect
the phase error to be small even if direct discretization were used together with such
intergrid transfer operators. The construction of an appropriate interpolation and
restriction, however, requires further research.

5. Applications. In the FDA analysis [4, 10, 11], the effect of the interpolation
and restriction operators are ignored. However, as we have seen, the phase error
property of the coarse grid correction process is coupled with the CGO as well as the
intergrid transfer operators. In this section, we show that the phase error analysis can
explain the fast convergence of two multigrid methods which use direct discretization
CGO and upwind-type interpolation and restriction.

5.1. Modified inexact coarse grid solve, direct discretization CGO. In
section 3.1, we show that the convergence of the multigrid methods based on the wave
propagation approach is slowed down by the dispersion effect. To fix this problem,
upwind-type interpolation and restriction are proposed in [22]. More precisely, the
upwind-biased residual restriction operator, r, can be defined as

r(dhi ) =
1

2
(dhi + dhi−1),(5.1)

where dh is the fine grid residual. Similarly, the interpolation of a coarse grid function
vH is given by

(pvH)2i = (pvH)2i+1 = vH2i .

Moreover, the coarse grid update formula is also modified:

un+1 = ūh + p(ūH − run),

where ūh and ūH are the approximate solutions after smoothing on the fine and coarse
grids, respectively. When applying this multigrid method to solve the 1D problem,
the iteration matrix M of a two-level method is given by

M = [I + poddr − λ(peven + podd)LHr](I − λLh) − poddr,
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where

podd =




0
1

0
1

. . .


 , peven =




1
0

1
0

. . .


 , r = pTeven.

In this case, the iteration matrix cannot be written as a product of two matrices.
Thus, we will compute the eigenvalues of M̂ directly.

Lemma 5.1. The Fourier transformed iteration matrix is given by

M̂µ = [I + (p̂odd)µ(r̂)µ − λ((p̂odd)µ + (p̂even)µ)L̂H
µ (r̂)µ](I − λL̂h

µ) − (p̂odd)µ(r̂)µ,

where

(p̂even)µ =
1√
2

[
e−µπhi

e−µπhi

]
, (p̂odd)µ =

1√
2

[
1
−1

]
, (r̂)µ = (p̂even)Tµ .

Suppose the largest time step size is taken, i.e., λ = 1.0. We have the following
result.

Theorem 5.2. The eigenvalues of M̂µ are 0 and e−4µπhi.

Proof. Simplifying the formula for M̂µ in Lemma 5.1 with λ = 1.0, we obtain

M̂µ = e−3.5µπhi

[
cos(µπh/2) − cos(µπh/2)
i sin(µπh/2) −i sin(µπh/2)

]
.

By direct calculation, the eigenvalues of M̂µ are 0 and e−4µπhi.
By Theorem 5.2, the phase velocity is 4 for any wave number µ. Hence there is no

dispersion, as opposed to the wave propagation approach discussed in section 3.1. In
other words, the numerical error will propagate with a speed of 4. Numerical results
showing fast convergence of this multigrid method can be found in [22].

5.2. Modified exact coarse grid solve, direct discretization CGO. Lin-
ear interpolation and full weighting are used in the exact coarse grid correction, direct
discretization approach in section 3.2. Here we use the upwind restriction defined in
(5.1) instead. For an analysis that ignores the interpolation and restriction opera-
tors used, for instance, the first differential approximate analysis [4], we would have
concluded that the modified multigrid method would not be any better than the one
using full weighting. However, as indicated in the numerical section of [4, p. 84], such
restriction indeed leads to better convergence, but no explanation was given. We can
explain this phenomenon from the phase velocity perspective. In particular, we shall
show that there can be no phase error in the coarse grid correction.

Theorem 5.3. The (1, 1) entry of the Fourier transformed coarse grid correction
matrix is

Ĉµ(1, 1) = s2
µ.

Proof. Denote the upwind restriction operator by r̃. Using the Fourier transform
results in sections 3.2 and 5.1, the Fourier transform of the coarse grid correction
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Table 6.1
Number of two-grid V-cycles for the 1D linear wave equation using inexact coarse grid solve,

direct discretization (inexact), exact coarse grid solve, direct discretization (non-Galerkin), and
exact coarse grid solve, Galerkin CGO (Galerkin).

h Inexact Non-Galerkin Galerkin
1/32 31 (35) 13 (16) 8 (11)
1/64 44 (52) 9 (16) 5 (12)
1/128 73 (83) 6 (17) 3 (12)
1/256 141 (144) 5 (17) 3 (12)

matrix is given by

Ĉµ = I − p̂µ(L̂H
µ )−1ˆ̃rµL̂

h

= I −
√

2

[
c2µ
−s2

µ

]
2h

1 − e−2µπhi

1

2
√

2

[
e−µπhi + 1 e−µπhi − 1

]
· 1

h

[
1 − e−µπhi 0

0 1 + e−µπhi

]

=

[
s2
µ c2µ
s2
µ c2µ

]
.

As opposed to the results in section 3.2, if appropriate interpolation and/or re-
striction is used, there is no phase error in the coarse grid correction process when
direct discretization is used. Hence, fast multigrid convergence is expected. In fact,
the Fourier transformed coarse grid correction matrix coincides with the one derived
in the case of the Poisson equation.

6. Numerical results. In the following, we compare the effects of different
coarse grid corrections on the convergence of multigrid V-cycles. The first example is
the steady state solution of the 1D linear wave equation:

ut + ux = 0.

Euler’s method is used as the smoother for the approaches with CFL number λ =
0.5. Linear interpolation and full weighting restriction are used between grids. The
multigrid V-cycle iterations stop when the relative residual norm is less than 10−6.
Zero boundary condition is used.

The number of multigrid V-cycles is shown in Table 6.1. For simplicity, we denote
the three coarse grid correction approaches by inexact, non-Galerkin, and Galerkin,
respectively. To verify the results of the previous sections, we use two multigrid levels
and consider a smooth initial guess and a square wave initial guess (in parenthe-
ses). The results show that the number of multigrid V-cycles taken by the inexact
coarse grid correction increases as the mesh size decreases; thus we do not observe
the classical mesh-independent convergence. Moreover, the convergence is slow due
to the dispersion of the inexact coarse grid solve. Both non-Galerkin and Galerkin
approaches, which use exact coarse grid solve, show much better convergence. How-
ever, due to the phase error that occurred at coarse grid correction, the non-Galerkin
approach is not as efficient as the Galerkin approach. We also note that the square
wave initial guess, which consists of more significant intermediate high frequencies,
has more severe dispersive effects on the multigrid convergence. Qualitatively speak-
ing, both initial guesses give very similar results and hence we will show only those
using the smooth initial guess in the following tests.
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Table 6.2
Number of multigrid V-cycles with 2 to 6 number of coarse grids for the 1D linear wave equation

using inexact and non-Galerkin coarse grid corrections.

Inexact Non-Galerkin
h 2 3 4 5 6 2 3 4 5 6
1/32 31 35 39 13 25 34
1/64 44 43 45 51 9 22 37 46
1/128 73 52 58 61 61 6 13 31 49 55
1/256 141 83 64 72 72 5 9 19 40 59

Table 6.3
Number of two-grid V-cycles for the 2D entering and recirculating flow problems using inexact,

non-Galerkin, and Galerkin coarse grid corrections.

Entering flow Recirculating flow
h Inexact Non-Galerkin Galerkin Inexact Non-Galerkin Galerkin
1/32 28 13 7 63 14 6
1/64 41 13 5 72 14 6
1/128 70 11 5 84 14 7
1/256 134 9 5 > 100 14 8

The same qualitative results hold when more coarse grids are used. Table 6.2
shows the multilevel convergence of the inexact and non-Galerkin coarse grid correc-
tion approaches. The Galerkin approach requires different smoothing parameters on
the coarse grids since the CGOs are changed from grid to grid, and hence it is not
tested in this case. For the inexact coarse grid correction approach, the convergence
should, in principle, have been improved by using more coarse grids based on the
result of Gustafsson and Lötstedt (cf. Theorem 2.1). This is indeed true when the
mesh size is very small (h = 1/256) since the small wave number components are
more dominant in the initial guess. But when the coarse grid becomes smaller, the
convergence starts to deteriorate. For the non-Galerkin approach, the multigrid con-
vergence also starts to deteriorate on the coarser grids due to the shift of the coarse
grid errors, which is more serious with larger mesh size. Thus the phase errors in the
coarse grid correction cause more serious damage to the multigrid convergence with
more coarse grid levels.

We next consider the model entering flow and recirculating flow problems in two
dimensions (cf. section 4). For the entering flow problem, two pre- and two post-
Euler’s smoothing are used for all the coarse grid correction approaches and the CFL
number, λ = 0.25. For the recirculating flow problem, we find that the smoothing
effect of Euler’s method is very poor. Thus, we use Gauss–Seidel for the presmoothing
and backward Gauss–Seidel for the postsmoothing. As noted in section 4, special
orderings are often used to enhance convergence. But here, we focus on the coarse
grid correction part, and therefore natural ordering is used. Linear interpolation and
full weighting restriction are used for all cases except for the singular point (0.5,0.5)
of the recirculating flow problem, in which injection is used instead [11].

The two-grid results are shown in Table 6.3. As in the 1D case, the convergence
of the Runge–Kutta coarse grid correction approach is slow because of the dispersion
effect. The convergence of the non-Galerkin and Galerkin approaches is shown to
be insensitive to the mesh size. We also remark that although our phase velocity
analysis cannot be applied to variable coefficient cases, the numerical results of the
recirculating flow indicate that the same conclusions hold for the different coarse grid
correction approaches.
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We remark that the numerical results in Table 6.3 can be improved by using more
robust smoothers [35], for instance, four direction point Gauss–Seidel, alternating line
Jacobi with damping, and alternating zebra relaxation with damping. In this paper,
however, we focus on the coarse grid correction and do not optimize the choice of
smoothers.

7. Conclusions. We have demonstrated that phase error analysis is a useful tool
for analyzing multigrid methods for convection dominated problems and brings more
insight into the efficiency of different coarse grid correction approaches. In contrast
with the elliptic case, where multigrid convergence is governed by smoothing of high
frequencies and coarse grid correction of the smooth frequencies, we have shown that
it also depends on the phase errors on coarse grids for hyperbolic problems.

For Runge–Kutta coarse grid correction, the propagation of smooth waves is accel-
erated by using coarse grids. However, dispersion occurs in the coarse grid correction
process, which substantially slows down the multigrid convergence. The exact coarse
grid solve approach does not rely on wave propagation, and hence dispersion is not an
issue. However, for the use of the discretization matrix as the CGO, there is a phase
shift error in the coarse grid error which deteriorates the multigrid convergence. The
Galerkin approach has the advantage of maintaining small shift error in the coarse
grid correction. However, one needs to form the CGOs on every grid, and hence to
determine new sets of parameters, e.g., time step size, for the smoother to obtain good
smoothing efficiency.

We have addressed the issue of phase error analysis of multigrid methods for
convection dominated problems. However, the design of new multigrid methods which
possess good phase error properties requires further investigation.
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busch and U. Trottenberg, eds., Lecture Notes in Math. 960, Springer-Verlag, Berlin, 1982,
pp. 1–176.

[31] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, New York,
2001.

[32] R. Vichnevetsky and J. B. Bowles, Fourier Analysis of Numerical Approximations of Hy-
perbolic Equations, Studies in Appl. Math. 5, SIAM, Philadelphia, 1982.

[33] W. L. Wan and T. F. Chan, A Phase Velocity Analysis of Multigrid Methods for Hyperbolic
Equations, Tech. report CAM 02-24, Department of Mathematics, UCLA, Los Angeles,
CA, 2002.

[34] F. Wang and J. Xu, A crosswind block iterative method for convection-dominated problems,
SIAM J. Sci. Comput., 21 (1999), pp. 620–645.

[35] P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, UK, 1992.
[36] R. Wienands and C. W. Oosterlee, On three-grid Fourier analysis for multigrid, SIAM J.

Sci. Comput., 23 (2001), pp. 651–671.
[37] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992),

pp. 581–613.
[38] N. N. Yanenko and Y. I. Shokin, Correctness of first differential approximations of difference

schemes, Sov. Math. Dokl., 9 (1968), pp. 1215–1217.
[39] I. Yavneh, Coarse-grid correction for nonelliptic and singular perturbation problems, SIAM J.

Sci. Comput., 19 (1998), pp. 1682–1699.
[40] P. M. De Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid

solver, J. Comput. Appl. Math., 33 (1990), pp. 1–27.


