
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl.2000;7:727–741

Interface preserving coarsening multigrid for elliptic problems
with highly discontinuous coefficients
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SUMMARY

We propose an interface preserving coarsening, a geometric technique for solving discontinuous coefficient
partial differential equations by multigrid. It selects coarse grid points so that all the coarse grids are aligned with
the interfaces for regular interface problems on structured grids, and so that the interfaces are resolved as much
as possible for irregular interface problems. As a result, multigrid with linear interpolation is sufficient to obtain
fast convergence. We show by one-dimensional and two-dimensional interface problems that the convergence
rate of the resulting multigrid method is independent of the mesh size and the size of the jump at the interfaces.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multigrid methods have been widely used for solving second order elliptic partial differential equations
(PDEs). Their convergence rate is often independent of the mesh size, and such optimal convergence
theory can be found, for instance, in References [1–8]. However, in practice, the convergence rate may
depend on the PDE coefficients. Typically the convergence deteriorates as the coefficients become
rougher. For example, if the coefficients have large jumps [4, 9–13], are highly oscillatory [14–16] or
are anisotropic [4,17,18], standard multigrid methods will converge very slowly. Special techniques are
needed to handle some of the problems. In this paper, we consider PDEs whose coefficients have jumps
of several orders of magnitude:

−∇ · a∇u = f in �

u = 0 on∂�
(1)
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where� is a polygon inRd , d = 1, 2, and the coefficienta is discontinuous. For ease of exposition,
we assume thata is piecewise constant, i.e.

a(x) ≡ ai x [ �i

where�i ⊂ �, �i ∩ �j = ∅ for i 6= j , and�̄ = ∪i�i . Such problems arise in various applications
such as flow in heterogeneous porous media [19], neutron transport [9] and biophysics [20]. Equation
(1), or its variations, has also been used as a model problem in the multigrid literature [9–12,21] for
solving discontinuous coefficient problems. The objective is to derive a multigrid method that is as
insensitive to the jumps as possible.

A typical approach of improving the convergence is to define a sophisticated interpolation such as in
black box multigrid [11,12]. The idea is to capture the discontinuous behaviour of the derivative of the
solution along the interface, or, equivalently, to preserve the continuity of the flux across the interface
[4,9,11,12]. However, these methods require a setup phase for the computation of the interpolation
operator and extra storage for it. Besides, they usually only apply to structured grid problems. The
robust energy-minimizing interpolation proposed by Wan, Chan and Smith [22] may apply to both
structured and unstructured grids, but additional cost for the construction of the interpolation operator is
still required. In this paper, we propose a coarsening scheme with which the simple linear interpolation
suffices to produce fast multigrid convergence.

A successful multigrid method depends not just on interpolation but on all components as a whole.
Our key observation is that coarsening can play a crucial role for interface problems. In scientific and
engineering computations, we often have knowledge of the locations of the interfaces. Our idea, which
is based on the technical report [23], is to select coarse grid points to resolve the shape of the interface
in a certain sense to be described later. Intuitively speaking, experiences from the literature [4,9,21]
indicated that the parts of the solution on the regions of different constant coefficients behave indepen-
dently and are glued together through a Neumann boundary condition on the interfaces. Theoretically
speaking, convergence analysis for interface problems [7,24,25] often requires that the discontinuities
are preserved on all coarser grids. In view of these, we propose an interface preserving coarsening
algorithm so that all the coarse grids are aligned with the interfaces for regular interface problems on
structured grids, and that the interfaces are resolved as much as possible for irregular interface problems.
Consequently, linear interpolation is sufficient to obtain fast multigrid convergence. In addition, we do
not need to construct and store the interpolation operators for regular interfaces.

We remark that special coarsening techniques, for instance, semi-coarsening [17,18,26], are common
for solving anisotropic coefficient PDEs. However, to the best of our knowledge, no coarsening strategy
has been studied specifically for discontinuous coefficient problems. In algebraic multigrid (AMG) [27],
which is applicable to a wide class of problems and, in particular, PDE problems with discontinuous
coefficients, the coarsening is derived based on the notion of strong/weak coupling, which essentially
measures the relative size of the off-diagonal entries. More precisely, nodei is strongly connected to
nodej if

−Aij ≥ θ max
k 6=i

{−Aik}

where 0< θ ≤ 1 is a parameter. Hence, the geometric information of the interface is only exploited
implicitly through the strong/weak coupling (i.e. relatively large matrix entries) occurring along the
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interface nodes. Although the algebraic coarsening makes use of the abrupt changes of matrix entries
arising from the interface, it does not intentionally align the coarse grid points with the interface as
our proposed coarsening method does; see Section 4 for comparison. We also note that an algebraic
interpolation is used in conjunction with the algebraic coarsening and hence the construction and storage
of the interpolation operator is still needed.

Identification of surfaces, corners, etc. has been used by Adams and Demmel [28] in their node-nested
multigrid method for solving three-dimensional unstructured grid finite element problems. In the node-
nested approach [29], the coarse grids are constructed by retetrahedralization using a set of coarse
grid points, and hence geometric details on the boundary are lost on the very coarse grids. Knowledge
of surfaces and corners is useful in selecting coarse grid points to maintain the shape of the outer
boundary during retetrahedralization. Thus, their primary focus is on the shape of the computational
domain—whereas ours is on the location of the internal boundary formed by the interface. Besides, in
their approach the coarse grids are formed by retetrahedralization where the geometric features such
as surfaces and corners are still well-defined. In our approach, the coarse grids (coarse subspaces) are
obtained by the Galerkin process and the geometric features become fuzzy.

We also remark that much work has been done on domain decomposition for discontinuous coefficient
problems; see, for example References [6,30]. For many of these methods, the subdomains are naturally
divided by the interfaces. Thus the true interfaces coincide with the computational subdomain interfaces.
In multigrid, however, we do not usually have large subdomains and hence the interfaces do not generally
align with the coarse grids.

Another approach for discontinuous coefficient problems is to use conjugate gradient preconditioned
by diagonal scaling [31,32]. It is very simple and yet quite effective. Graham and Hagger [21] analysed
such an approach theoretically, and extended the analysis to additive Schwarz preconditioners. They
showed that the largest eigenvalues of the preconditioned system are bounded and that only a finite
number of small eigenvalues approach to zero as the size of the jump increases. Thus the preconditioned
conjugate gradient method converges within a number of iterations that grows only logarithmically with
the size of the jump. In their analysis, the interfaces are not assumed to align with the coarse grids.
Another related approach by Ashbyet al. [19] is to use multigrid preconditioned conjugate gradients.

In Section 2, we first discuss the issues of coarsening for discontinuous coefficient problems and
explain why sometimes it is mandatory to select coarse grid points in a special way. We illustrate the
idea in one dimension in Section 3.1. In two dimensions, we discuss the regular and irregular interface
case separately in Sections 3.2.1 and 3.2.2, respectively. The extension of the algorithms to three
dimensions is possible but is not discussed in the present paper. In Section 4, the effectiveness of the
interface preserving coarsening is demonstrated by one-dimensional and two-dimensional examples.
Finally, concluding remarks are made in Section 5.

2. FAILURE OF MULTIGRID WITH STANDARD COARSENING

As mentioned in the previous section, robust interpolations have been the key for improving multigrid
convergence for discontinuous coefficient problems. However, in some circumstances, especially in
unstructured grid computations, robust interpolation is not sufficient, and hence it is mandatory to
employ special coarsening strategy.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:727–741
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Figure 1. (a) A 5× 5 grid with a jump in coefficient indicated by the shaded area. Coarse grid points are denoted
by ◦. (b) Standard multigrid convergence.
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Figure 2. (a) Error after smoothing. (b) Error given by interpolation with standard coarsening.

Consider a square interface on a 5× 5 triangular mesh as shown in Figure 1(a). The circles denote
the coarse grid points chosen by standard coarsening. The jump in coefficient is indicated by the
shaded area, and zero Dirichlet boundary condition is used. Since it is a triangular mesh, it is natural
to interpolate the non-coarse grid points by the two (and only two) connected coarse grid points. The
robust energy-minimizing interpolation described in [22] is used along with Gauss–Seidel smoothing.
Other types of robust interpolation can be used as well. Slow multigrid convergence is shown in Figure
1(b). The key observation is that the interpolated values at the two non-coarse grid points marked by
• are far from the true values of the errors. Figures 2(a) and 2(b) show the error after smoothing and
the error given by interpolation. Owing to the large jump in coefficient, the error has larger values
in the region with large coefficient and smaller values in the region with small coefficient. Suppose
the Dirichlet boundary condition is used. Then the interpolated values at the two corners will be zero
since their connected coarse grid points are on the boundary. In fact, even if other more sophisticated
interpolations were used, the interpolated values had to be zero as long as they were interpolated only
by the two connected coarse grid points on the boundary and the interpolation method approximates
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Figure 3. (a) Non-standard coarsening, denoted by◦, at the four corners of the square interface. (b) Standard
multigrid convergence.
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Figure 4. (a) Error after smoothing. (b) Error given by interpolation with non-standard coarsening.

constants exactly. Consequently, the approximation of the error on the coarse grid is very poor, which
leads to slow multigrid convergence.

Based on this observation, a natural remedy is to select coarse grid points so that the previous situation
will not happen. For instance, if we choose the coarse grid points shown in Figure 3(a), along with linear
interpolation and Gauss–Seidel smoothing, we obtain the usual rapid multigrid convergence (Figure
3(b)). As shown in Figures 4(a) and 4(b), the true error and the interpolated error are essentially the
same, and hence the fine grid errors can be corrected accurately by the coarse grid. In conclusion, a
special coarsening is crucial to maintain fast multigrid convergence.

3. INTERFACE PRESERVING COARSENING

Standard multigrid converges slowly when the jumps differ by orders of magnitudes due to the inaccurate
approximation given by linear interpolation across the discontinuities if the coarse grids do not align

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:727–741
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a3a2a1

Figure 5. One-dimensional interface preserving coarsening without Step 2 (cf. Algorithm 1). The regions of
different coefficient are denoted bya1, a2 anda3. Coarse grid points are denoted by◦ and the coarse grid points

at the interfaces are denoted by•.

with the interfaces. In the next sections, we describe an interface preserving coarsening technique in
one and two dimensions that aligns the coarse grids with interfaces.

3.1. One dimension

The idea of the interface preserving coarsening is to select coarse grid points so that the interfaces are
aligned with all the coarse grids. In one dimension, we simply assign the points at the interfaces to be
the coarse grid points. After that, we perform standard coarsening for the remaining points; we select
every other point as a coarse grid point (Figure 5). The idea can easily be extended recursively to coarser
grids. The algorithm is described mathematically as follows.

Let Nk = {nk
1, . . . , n

k
mk

} be the set of fine grid points on levelk. Let Nk
C be the set of coarse grid

points andNk
F = Nk\Nk

C be the set of non-coarse grid points. The algorithm consists of the following
three steps; see Algorithm 1.

Algorithm 1. 1D interface preserving coarsening

Step 1. SetNk
C = { interface points} ≡ {nk

i1
, nk

i2
, . . . , nk

ip
}.

Assumenk
i0

= nk
1 andnk

ip+1
= nk

mk
.

Step 2. (optional) SetNk
F = { neighbours ofj : j [ Nk

C}.
Step 3. forl = 0 to p

for j = nk
il

to nk
il+1

if j /[ Nk
F ∪ Nk

C then
Nk

C = Nk
C ∪ {j}, Nk

F = Nk
F ∪ { neighbours of j}

end if
end for

end for

Step 1 selects the interface points as coarse grid points. Step 2 ensures that no two coarse grid points
are adjacent to each other unless they are both interface points. Thus the number of coarse grid points
is not more than half the number of fine grid points. The difference between applying and not applying
Step 2 is shown in Figures 6 and 5, respectively. The former has fewer coarse grid points but more
overlaps between basis functions and the opposite for the latter. Our default is not to apply Step 2. Step
3 performs the standard coarsening between the selected coarse grid points from Step 1.

The other multigrid components are standard. We use Gauss–Seidel as smoother and linear interpo-
lation. We remark that the coordinate information of the computational points is needed to perform the
linear interpolation owing to the non-uniformity in spacing of the coarse grid points.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:727–741
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a3a2a1

Figure 6. One-dimensional interface preserving coarsening with optional Step 2 (cf. Algorithm 1) in effect. No
two consecutive points are coarse grid points.

Figure 7. Tensor product interface preserving coarsening for a regular two-dimensional interface. Coarse grid
points are denoted by◦.

3.2. Two dimensions

We describe separately the algorithm for the regular and irregular interface. For the former, we may apply
the one-dimensional technique. For the latter, we need another algorithm to maintain low complexity
while still being able to resolve the interfaces.

3.2.1. Regular interfaces.Suppose the grids are regular tensor product grids, and the regions of different
coefficients,�i , are also formed by tensor products. In other words, let

X = {x : x is thex-coordinate of an interface point}
Y = {y : y is they-coordinate of an interface point}

Then�i = [x1, x2] × [y1, y2] for somex1, x2 [ X andy1, y2 [ Y . Figure 7 shows an example of a
regular interface problem.

Algorithm 2. 2D regular interface preserving coarsening

Let�k be the set of grid points on levelk.
Step 1. SetXk = {x : (x, y) [ �k}, Y k = {y : (x, y) [ �k}.
Step 2. SetNk

Cx = coarse grid points obtained from 1D coarsening onXk.
Step 3. SetNk

Cy = coarse grid points obtained from 1D coarsening onY k.
Step 4. SetNk

C = {(x, y) : x [ Nk
Cx, y [ Nk

Cy}.

The two-dimensional regular interface preserving coarsening is obtained by a ‘tensor product’ of the
one-dimensional algorithm; see Algorithm 2. A pointx [ Xk is an interface point if there exist a region
�i such that�i = [x, x̃] × [y, ỹ] for somex̃ [ Xk andy, ỹ [ Y k. The set of coarse grid points,Nk

Cx ,
in Xk is obtained from applying Algorithm 1 toXk. Similar coarsening procedure is performed inY k.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:727–741
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Figure 8. Tensor product interface preserving coarsening for (a) a less irregular interface, (b) very irregular
interface. Coarse grid points are denoted by◦.

The final set of coarse grid points,Nk
C, is formed by taking the tensor products of the points inNk

Cx and
Nk

Cy . A result of the regular interface preserving coarsening is illustrated in Figure 7. We note that an
extension of the algorithm to three dimensions is straightforward.

3.2.2. Irregular interfaces.We can still apply the regular techniques if the interfaces are not too irregular.
For example, for the interface shown in Figure 8(a), we may apply Algorithm 2 to obtain a coarsening of
the grid points; we collect thex andy coordinates and determine their interface points as before, and then
coarsen along thex- andy-directions independently. Figure 8(a) shows the resulting coarse grid points.
For less regular interfaces, however, this tensor product procedure may create an excessive number of
coarse grid points to preserve the interfaces; see Figure 8(b). Consequently, the overall computational
cost may increase.

In general, we want to resolve the shape of the interface while maintaining the coarse-to-fine grid
point ratio to be 1:4 as closely as possible. The idea is as follows. We first identify the points where
the interfaces are located. Then we apply standard coarsening to these points and then to the remaining
points. We convert some of the non-coarse grid points near the interfaces to coarse grid points so that
the shapes of the interfaces are better resolved.

The above procedures can be described mathematically as follows. For simplicity, we describe the
two-regions case only. Let�+,�− be disjoint open subsets of� such that� = �+∪�−. Let0 = ∂�+
be the interface and0 ∩ ∂� = ∅. Let a(x, y) ≡ a+ in �+ anda(x, y) ≡ a− in �− anda− � a+.
The case of multiple interfaces is treated similarly and hence is omitted. The two-dimensional irregular
interface preserving coarsening is given in Algorithm 3.

Algorithm 3. 2D irregular interface preserving coarsening

Step 1. Determine the set of fine grid pointsN+ in �+, fine grid pointsN− in �−, and the set of
interface pointsI=�+ ∩ �−.

Step 2. Full coarsening onI .
Step 3. Full coarsening onN+.
Step 4. Full coarsening onN−.
Step 5. Change a non-coarse grid pointxh

i to a coarse grid point if any of the following conditions is
satisfied:

(i) xh
i [ N− and no coarse grid pointxH

j [ N− is connected toxh
i ;

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:727–741
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Figure 9. (a) A non-coarse gridxh
i [ �− has no coarse grid neighbours in�−. (b) A non-coarse gridxh

i [ �−

has a neighbourxh
l [ �+ that is not a coarse grid. (b) A non-coarse gridxh

i [ �+ is connected to one coarse
grid xH

k [ �+ only.

(ii) xh
i [ N− has neighbours inN+ but none of them is a coarse grid point;

(iii) xh
i [ N+ is connected to one coarse grid point inN+;

(iv) xh
i is connected to one coarse grid point only.

Note. During interpolation, coarse grid points inN− do not interpolate the non-coarse grid points in
N+.

Remark 1
Step 1.Notice that the diagonal entries of the stiffness matrix! are

!h
ii = a+

∫
�

|∇φh
i |2 dx

for all xh
i [ N+. If a+ � a−, the set of points inN+ can be easily identified by the large diagonal

entries of!h
ii .

Steps 2, 3, 4.In full/standard coarsening, if a fine grid point is selected as a coarse grid point, its
non-coarse grid point neighbours will not be selected as coarse grid points.

Step 5.The coarsening steps 2–4 may give rise to bad connectivities of non-coarse grid points to coarse
grid points, which can lead to poor interpolation since non-coarse grid points are interpolated only by
their neighboring coarse grid points. Criteria (i)–(iv) are used to eliminate such unwanted situations.
(i) As shown in Figure 9(a), ifxh

i [ �− is connected to coarse grids (e.g.xH
j , xH

k ) in �+ only, the
interpolated value can be poor since the solution values in�+ are usually much larger than those in
�−. (ii) If xh

i [ �− has neighbours in�+, it must be close to the interface and hence the interpolated
values given by the coarse grid neighbors (e.g.xH

j , xH
k ) in �− may underestimate the true value; see

Figure 9(b). (iii) Since the values in�+ including the boundary∂�+ are typically larger, non-coarse
grid points in�+ are only interpolated by coarse grid points in�+. (iv) Finally, if xh

i connected to one
coarse grid pointxH

j only, the interpolated value will be the same as the value atxH
j if the interpolation

operator preserves constants. In other words, it is just piecewise constant interpolation which is not
accurate enough for solving second order PDEs.

The note at the end of Algorithm 3 requires that, during interpolation, the coarse grid values on�− do
not interpolate the non-coarse grid points in�+. However, the opposite is permissible. This is because
steps 2–5 guarantee that the non-coarse grid points in�+ are connected to at least two coarse grid

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:727–741
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Figure 10. Irregular interface preserving coarsening for an irregular interface. Coarse grid points are denoted
by ◦.

points in�+ while the non-coarse grid points in�− are allowed to connect to one coarse grid point in
�+ and another one in�−.

Figure 10 is obtained by applying Algorithm 3 to the irregular interface shown in Figure 7. Here,
we consider a triangular mesh. Compared with Figure 8(b), we need many fewer coarse grid points.
Moreover, within each constant coefficient region, the coarse grid points are selected as if in standard
coarsening.

3.2.3. Complexity issue.Resolving the interface, in general, increases the total number of coarse grid
points, which in turn increases the overall computational cost. However, if the interface forms a simple
piecewise smooth curve, the increase in the number of coarse grid points is at most the total number of
grid points on the interface, which is onlyO(1/h) compared toO(1/h2) total number of coarse grid
points. Suppose the complexity,η0, of one V-cycle multigrid with standard coarsening is estimated to
be

η0 = O

(
1

h2
+ 1

4h2
+ 1

16h2
+ · · ·

)
= O

(
4

3h2

)
.

Then the complexityη1 of one V-cycle multigrid with our special coarsening is

η1 = O

(
1

h2
+

(
1

4h2
+ 1

h

)
+

(
1

4

(
1

4h2
+ 1

h

)
+ 1

2h

)

+
(

1

4

(
1

4

(
1

4h2
+ 1

h

)
+ 1

2h

)
+ 1

4h

)
+ · · ·

)

= O

(
4

3h2
+ 8

3h

)

Thus the extra amount of work due to the increase in the number of coarse grid points is asymptotically
small compared with the standard one.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:727–741
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Table I. Convergence of multigrid methods for a 1D discontin-
uous coefficient problem. Method 1 uses interface preserving
coarsening and linear interpolation. Method 2 uses standard

coarsening and flux preserving interpolation.

h MG Method 1 MG Method 2 Standard MG

1/32 6 6 16
1/64 6 6 17
1/128 6 6 20
1/256 6 6 24

4. NUMERICAL RESULTS

We demonstrate the effectiveness of the interface preserving coarsening by three examples. The multigrid
settings are standard. We apply two pre- and post- Gauss–Seidel smoothings. Linear interpolation is used
for the one-dimensional problem and the two-dimensional regular interface problem. For the irregular
interface problem, since the tensor product grid structure is destroyed after one level of coarsening,
we have to use unstructured grid multigrid techniques for the subsequent coarser grids. We could use
sophisticated interpolation such as that of Reference [22]. However, since we do no need to interpolate
values across the interface we can use a simpler and more naive approach. In particular, we use the
graph distance to define the interpolation weighting, which resembles linear interpolation on Cartesian
grids. A more precise definition is described in Example 3. The Galerkin method is used to construct
the coarse grid matrices. The multigrid iteration was terminated when the relative residual norm was
less than 10−6.

Example 1.We compare the convergence results of the multigrid method with one-dimensional inter-
face preserving coarsening and linear interpolation and with that of the standard coarsening and flux
preserving interpolation [4]. The model equation is

− d

dx
a(x)

d

dx
u(x) = 1 in (0,1),

u = 0 atx = 0 andx = 1

where

a(x) =



104 if x ≤ 1/4 + h

1 if 1/4 + h < x ≤ 1/2 + h

102 if x > 1/2 + h

Here,h is the size of the fine grid. The coefficienta(x) is so designed that the interfaces are not aligned
with any standard coarse grids. The convergence results of the two multigrid methods are shown in Table
I. There is no difference in performance for between these two methods. Specifically, both convergence
results are independent of the mesh sizeh and the jump in the coefficient. Thus, once the coarse grid
points are aligned with the interfaces, we do not need a sophisticated interpolation to capture the jumps
in the derivative of the approximate solution.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:727–741



738 INTERFACE PRESERVING COARSENING MULTIGRID METHOD

Table II. Convergence of multigrid methods for a 2D discontinuous
coefficient problem. Method 1 uses interface preserving coarsening
and linear interpolation. Method 2 uses AMG coarsening and AMG
interpolation. The numbers 10, 102, 104 indicate the values ofa+,

and∗ denotes convergence more than 100 iterations.

MG Method 1 MG Method 2 Standard MG

h 10 102 104 10 102 104 10 102 104

1/16 5 5 6 7 7 7 14 ∗ ∗
1/32 5 6 6 7 7 8 14 ∗ ∗
1/64 6 6 6 8 9 9 14 ∗ ∗
1/128 6 6 6 8 9 10 14 ∗ ∗

Example 2.We show the effectiveness of the two-dimensional tensor product interface preserving
coarsening for regular interfaces. The problem is a modification of Example I in Reference [9]:

−∇ · a(x, y)∇u = 1

where

a(x, y) =
{

a+ 0.25− h ≤ x ≤ 0.75− h and 0.25− h ≤ y ≤ 0.75− h

a− otherwise

We fix a− = 1 and varya+ from 10 to 104. The square interface is shifted by one fine grid point
so that the interface does not align with any coarse grid if standard coarsening were used. Finite
element method with bilinear elements is used to discretize the equation. In this example, we compare
our method with AMG [33] which utilizes strong/weak coupling for algebraic coarsening instead of
interface location. Convergence results of the multigrid method with interface preserving interface and
linear interpolation are compared with those of AMG coarsening and AMG interpolation in Table II.
We see that the performance of the proposed method is essentially the same as in the one-dimensional
case and compares favourably with the AMG method. Here, we do not need a setup phase for the
construction and storage of a sophisticated interpolation operator.

To illustrate the difference between the interface preserving coarsening and AMG coarsening, we
show the two set of coarse grid points in Figure 11. The coarse grid points of the first and second coarse
grids are denoted by◦ and2, respectively. We see that the interface preserving coarsening resolves
the shape of the square interface nicely by the coarse grid points whereas AMG coarsening roughly
resolves the square shape by a set of irregularly placed coarse grid points of the first grid and only barely
identifies the square interface by the coarse grid points of the second grid.

Example 3.Finally, we present the results of an irregular interface problem. The star-shaped interface is
shown in Figure 12(a), and the irregular interface coarsening on the 16×16 triangular mesh is shown in
Figure 12(b). Since the coefficient is assumed to be constant on each triangle, a wrinkleyness results on
the interface. We can see that more coarse grid points are selected near the interface and the remaining
parts are coarsened as in full coarsening.
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Figure 11. The coarse grid points of the first and second coarse grid are denoted by◦ and2, respectively. (a)
Interface preserving coarsening. (b) AMG coarsening.
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Figure 12. (a) A star-shaped interface is formed by:(x, y), x = 0.5 + r cosθ , y = 0.5 + r sinθ wherer =
0.3 + 0.1 sin(5θ), 0 ≤ θ ≤ 2π . (b) The star-shaped interface in (a) on a 16× 16 triangular mesh.

In this example, both multigrid methods are used as a preconditioner for the conjugate gradient
method. Four, five, six and seven grids are used for 16× 16, 32× 32, 64× 64 and 128× 128 grids,
respectively. In this irregular interface case, we cannot use the usual linear interpolation since the
Cartesian grid structure is destroyed after one level of coarsening. We use the graph distance to define
the interpolation weighting, which mimics linear interpolation on Cartesian grids. More precisely, if a
non-coarse grid point is connected toK coarse grid points, then the interpolation weighting from each
coarse grid point is 1/K. Since the interpolation is defined by the connectivity graph of the coarse grid
matrices, we need neither construct nor store the interpolation operators, as opposed to AMG.

The convergence results of the multigrid method using the irregular interface preserving coarsening
and AMG are given in Table III. We see that the convergence rates of both methods are independent of
the jump and the mesh size. Apparently, AMG takes fewer iterations. However, we note that the coarse-
to-fine grid point ratio of AMG coarsening is between 1:2 and 1:3, whereas the interface preserving
coarsening maintains a ratio of between 1:3 and 1:4. Hence, AMG takes about 25 per cent more coarse
grid points and the number of non-zeros in the coarse grid matrices are also 2 to 4 times denser than
ours. If we measure the efficiency by the total number of flops, both methods are essentially the same.
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Table III. Convergence of multigrid methods for
the star-shaped interface problem. Method 1 uses
interface preserving coarsening and linear inter-
polation. Method 2 uses AMG coarsening and
AMG interpolation. The numbers 10, 102, 104

indicate the values ofa+.

MG Method 1 MG Method 2

h 10 102 104 10 102 104

1/16 7 7 7 5 5 5
1/32 9 9 10 5 5 6
1/64 11 11 12 6 6 6
1/128 13 14 14 8 8 8

But notice that the proposed method does not require the setup phase for the construction and storage
of the interpolation operators.

5. CONCLUDING REMARKS

We have demonstrated numerically that coarsening can be an efficient alternative for robust interpolation
to solve discontinuous coefficient problems using multigrid. In fact, we have shown by an example
that special coarsening is sometimes mandatory, no matter what the interpolation is. We have shown
that multigrid with the proposed interface preserving coarsening and simple linear interpolation is an
effective solution method for discontinuous coefficient problems on structured grids. In general, we
need to combine the interface preserving coarsening and an unstructured grid interpolation for irregular
interface problems on general domains, and we have shown by an example how this can be done.
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