
Parallel Smoothers Using Sparse Approximate Inverse�

Wei-Pai Tangy W. L. Wanz

December 7, 1998

Abstract

Sparse approximate inverses' usefulness in a parallel environment has motivated
much interest in recent years. However, the superior capability of an approximate
inverse in eliminating the local error has not yet been fully exploited in multi-grid
algorithms. We propose a new class of sparse approximate inverse smoothers in this
paper and present their analytic smoothing factors for constant coe�cient PDEs. In
particular, by adjusting the quality of the approximate inverse, the smoothing factor
can be improved accordingly. For hard problems, this a useful feature. Our theoretical
and numerical results have demonstrated the e�ectiveness of this new technique.

1 Introduction

In this paper, we propose a new class of smoothers derived from sparse approximate inverse
preconditioners. It has a smoothing e�ciency similar to Gauss-Seidel and it is independent
of ordering. Moreover, for hard problems, we can improve the smoothing e�ciency by
adaptively adjusting the quality of the approximate inverse, for instance, by adding more
nonzeros. Consequently, this new technique is more robust than the commonly used Gauss-
Seidel smoothers. Our numerical testing veri�es this statement.

We remark that Huckle [22] independently experimented with a sparse approximate
inverse smoother for multi-grid by modifying the standard Gauss-Seidel iteration. Specif-
ically, instead of using the exact inverse of the lower triangular matrix, he used a sparse
approximate inverse of it computed by the techniques described in [19]. In our approach, we
replace the Gauss-Seidel smoother entirely by a sparse approximate inverse smoother. The
resulting multi-grid is e�cient, and we have more 
exibility in improving the smoothing
quality for hard problems. Benson and his colleagues[3, 4, 5] also proposed to use an early
version of sparse approximate inveses in multigrid applications. However, the potentials of
the approximate inverse for a smoother was not fully exploited.

In Section 2, we describe the construction of the sparse approximate inverse smoother
and analyze the computational complexity of constructing and applying the SAI smoothers.
In Section 3, we describe how one can improve the SAI smoothers for di�erent problems
such as PDEs with anisotropic coe�cients. In Section 4, we present a classical Fourier and

�This work was supported by the Natural Sciences and Engineering Research Council of Canada, by
the Information Technology Research Centre, which is funded by the Province of Ontario, by Lawrence
Livermore National Laboratory under Contract W07405-Eng-48, by the U.S. Department of Energy under
the Accelerated Strategic Computing Initiative (ASCI), and by the Alfred P. Sloan Foundation as a Doctoral
Dissertation Fellow.

yDepartment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
zScienti�c Computing and Computational Mathematics Program, Stanford University, Stanford, CA

94305-9025, USA.

1



SAI Smoother 2

local mode analysis on the smoothing property of SAI smoothers for constant coe�cient
PDEs. A numerical analysis based on the spectral decomposition is used to verify the
theoretical results. Finally, in Section 5, we show the e�ectiveness of the SAI smoother for
multi-grid by a variety of problems including anisotropic problems, discontinuous coe�cient
problems and unstructured grid problems.

2 SAI smoothers

Various techniques have been proposed for an e�ective sparse approximate inverse precon-
ditioner [2, 6, 11, 14, 19, 23, 26]. However, the goal of constructing an e�ective smoother
is very di�erent from �nding a good preconditioner. For a powerful preconditioner, the
capability of removing both the high and low frequency errors is essential. In contrast, a
good smoother may just damp the high frequency errors e�ectively. In this respect, much
of the weakness [26] of the SAI preconditioners becomes the strength of the SAI smoothers.
Our new proposal is to explore them to construct a powerful smoother.

Most sparse approximate inverse approaches seek a sparse matrixM so that the error of
the residual E = MA�I is minimized in some measure. The sparsity constraint often limits
the e�ectiveness of M as a preconditioner due to the locality of the sparse approximation.
The requirement for a good smoother, however, can take advantage of the superiority in
removing local error of SAI.

The construction of our SAI smoothers is based on a Frobenius norm approach �rst
described by Benson [2]. A (left) SAI M is de�ned as a solution to the minimization
problem: minM kMA� Ik2F ; subject to some constraint on the number and position of the
nonzero entries ofM . This minimization problem can be simpli�ed to n much smaller least
squares problems:

min
mj

kAT
j mj � ejk2; j = 1; : : : ; n;(1)

wheremj are some prescribed (or can be adaptively obtained) sparsity pattern for the given
row j. Our modi�ed approach simpli�es (1) further by selecting a subset of nonzero rows
of AT

j .
In the following, we describe a systematic procedure of constructing submatrices of A

for de�ning the mj 's. In contrast to many other SAI approaches, this modi�ed Frobenius
norm approach has direct control of the number and location of the nonzeros of the mj 's
as well as the complexity of the least squares problems a priori. Our a priori approach
signi�cantly improved the e�ectiveness of a SAI smoother. It also improves the quality of
the smoother over the early proposed local q-operator[5].

A sparse matrix A can be represented by a digraph G = (O; E) [16]. De�ne Lk(oi), the
k-level neighbor set of node oi, the nodes which are a distance k + 1 or less from oi. The
0-level neighbor set L0(oi) contains all the nodes which directly connect to node oi. For
PDE problems with a second order �nite di�erence/�nite discretization, L0(oi) is just the
set of stencil points.

The study of the decay of the elements in an inverse [25] motivates the choice of Lk(oi)
for the sparsity pattern to the SAI at node oi. The computation of these locations is also
inexpensive.

The rectangular submatrix1

Ak;l � A(Lk(oi);Ll(oi))(2)

1The Matlab notation is adopted for extracting a submatrix from a given matrix A



SAI Smoother 3

is de�ned as the (k; l)-level local matrix of node oi. This matrix takes rows corresponding
to nodes Lk(oi) and columns corresponding to nodes Ll(oi) from A.

We introduce the (k; l)-level local least squares approximation of an inverse as follows.
For each node oi, the least squares solution

2 moi of

AT
k;lmoi = eoi(3)

is taken for the nonzero values at the corresponding location Lk(oi) of the sparse
approximation of the discrete Green's function of node oi. More precisely, we inject each
element of the least squares solution moi into a zero vector of size of the matrix A at the
corresponding locations in Lk(oi) and use this sparse row to approximate the row oi of the
inverse A�1.

It is clear that the sparsity pattern of the approximate inverse is determined by the
locations of Lk(oi) and the approximation range by the locations in Ll(oi). A higher level
k implies a denser approximation while a higher level l provides an approximation which
is good for more neighbors. A properly chosen (k; l)-level is crucial to the success of SAI
smoothers.

The relaxation method: xn+1 = xn+M(b�Axn); resulting from the SAIM constructed
by the (k; l)-level local least squares approximation is called the (k; l)-level SAI smoothing.

We illustrate the (0,1)-level local least squares approximation method by a model
constant coe�cient second order elliptic PDE:

w1uxx + w2uyy + sux + tuy = f(x; y); (x; y) 2 
; where uj� = g(x; y)

on a rectangular domain 
. Suppose we use a m� n regular grid. The resulting di�erence
equation can be genearlly written as:

bui�1;j + dui;j�1 + aui;j + cui+1;j + eui;j+1 = h2fi;j ; 1 � i � m; 1 � j � n;

where a; b; c; d and e are constants. The (0; 1)-level local least squares problem for an
interior node is: 0

BBBBBBBBBBBBBBBBBBBB@

a c

a d

a b

a e

b e c d a

c

d c

d

b d

b

e b

e

e c

1
CCCCCCCCCCCCCCCCCCCCA

0
BBBB@

x1
x2
x3
x4
x5

1
CCCCA =

0
BBBBBBBBBBBBBBBBBBBB@

0
0
0
0
1
0
0
0
0
0
0
0
0

1
CCCCCCCCCCCCCCCCCCCCA

(4)

For any constant coe�cient PDE on a regular mesh, we may further simplify the
computations as follows. We observe that the local least squares problems, and hence the
least squares solutions, corresponding to the interior points are identical (cf. (4)). However,
they may be di�erent near the boundary. We simply use the least squares solutions obtained

2In (3), eoi is a unit basis vector of size jLl(oi)j, with one in the position corresponding to oi and zeros
in the rest of the locations in Lk(oi). An example is given for (0,1)-level in (4).



SAI Smoother 4

from the interior points for the solutions at the boundary. Hence, we only need to solve
one small least squares problem to obtain the entire approximate inverse. Our tests and
analysis indicate that this simpli�ed approach does not bring any noticeable penalty in
performance.

As an illustration, consider solving the Poisson equation �u(x; y) = 1, (x; y) 2 
:
on a 20 � 20 retangular grid: In Fig. 1, we present the plots of the eigenvalues of the
iterative matrices associated with the (0,1)-level SAI smoother and its simpli�ed version.
The eigenvalues in Fig 1(a) was calculated by Matlab using the eig function and those in
Fig 1(b) by the analytic formula proved in Section 4. There is no any visible di�erence.
Finally, we would like to mention a number of other techniques which can also be adopted
to save the cost to compute the SAI[27].

Fig. 1. Comparison of the eigenvalue distributions.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eigenvalue distribution for (0,1) local smoother

(a) (0; 1)-level SAI smoother

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eigenvalue distribution for simplified smoother

(b) Simpli�ed smoother

3 Adaptivity and anisotropic problems

In addition to simple construction and easy parallel implementation, SAI smoothers o�er
a capability to improve their quality by adjusting the number of level (i.e. the sparsity
of the approximate inverse) used. Relaxation methods, for instance, Gauss-Seidel, do not
have such feature which means the users have to look for other smoothers whenever the
relaxation smoothers fail to give fast multi-grid convergence. For SAI smoothers, we may
tune a parameter{the number of levels{ to improve the resulting multi-grid convergence.
Thus, SAI smoothers are more robust, 
exible and can be applied to larger class of problems.

For anisotropic problems, they usually have many relatively small entries in both the
matrix A and its inverse. We may signi�cantly reduce the cost by discarding those small
entries. For instace, a simple weighted distance technique may be used to prevent the fast
growth of the size nk corresponding to the sparsity pattern of the SAI. We compute the
power of Ak and use the values as weights to determine the locations of the nonzeros in the
sparse approximate inverse. When a problem is anisotropic, most of the weights are very
small and therefore the corresponding neighbors can be discarded from the sparsity pattern
of the SAI smoother. After the SAI is obtained, we may again discard the small entries in
it. As shown in Section 5, Example 2, the quadratic growth in nk is reduced to linear.



SAI Smoother 5

4 Smoothing factor analysis

We present an analysis of the smoothing factors for constant coe�cient PDEs on two
dimensional rectangular grids in this section. The special Poisson equation case has been
analyzed by Tong [28]. For simplicity, we consider only the simpli�ed (0,1)-level SAI
smoothers. The smoothing factor analysis is based on the following theorem.

Theorem 4.1. Given two tridiagonal matrices B = tridiag(b; a0; c)m�m, and C =
tridiag(d; a00; e)n�n, where b; c; d; e are non-positive. Then the eigenvalues of the matrix

B 
 In�n + Im�m 
 C(5)

are

a� 2
p
bc cos �k � 2

p
de cos �j ; 1 � k � m; 1 � j � n;

where a = a0 + a00, �k =
k�
m+1

, �j =
j�
n+1

. The corresponding eigenvectors are

��c
b

�n�s
2

� e
d

�n�t
2

sin(s�k) sin(t�j)

�
; 1 � s � m; 1 � t � n:

Unlike Fourier analysis for PDEs with periodic boundary condition, Theorem 4.1 shows
that the sine functions fsin(s�k) sin(t�j)g are not the eigenvectors for general constant
coe�cient PDEs with Dirichlet boundary condition; the eigenvectors may depend on the
coe�cients a; b; c; d and e. In the following analysis, we assume that A is symmetric. Thus,
b = c and d = e. Denote by M the simpli�ed sparse approximate inverse of the matrix A.
Then M can also be written in the form of (5).

Theorem 4.2. The eigenvalues of the iterative matrix I �MA are

1� ((x5 + 2x1 cos �k + 2x2 cos �j)(a� 2b cos �k � 2d cos�j));

where 1 � k � m; 1 � j � n.
Remark: This analysis can also be generalized to three dimensional problems.

4.1 Local mode analysis

We carry out the classical local mode analysis [7] to analyze the smoothing e�ciency of the
(0,1)-level SAI smoothers for Poisson equations. By a direct computation and Theorem
4.1, we have the following two lemmas.

Lemma 4.1. Suppose A is the standard Laplacian operator. Then the least squares
solution of (4) is:

x1 = x2 = x3 = x4 =
3

61
; x5 =

17

61
:

Lemma 4.2. Let M be the (0,1)-level sparse approximate inverse of the standard Laplacian
operator. Then the eigenvalues of M are:

17

61
+

6

61
cos �k +

6

61
cos �j :

Remark: Lemma 4.2 shows that M > 0, which implies that M is nonsingular.
As a consequence of Theorem 4.2, we have the following result.
Theorem 4.3. The eigenvalues of the iterative matrix of the (0,1)-level smoother are:

�(�k; �j) = 1� (
17

61
+

6

61
cos �k +

6

61
cos �j)(4� 2 cos �k � 2 cos �j):(6)



SAI Smoother 6

Now, we show the smoothing factor of our SAI smoother. De�ne the high frequencies
in the standard way:

�H = f(�k; �j) : m
2
� k � m or

n

2
� j � ng:

and the smoothing factor as � � maxfj�(�k; �j)j : (�k; �j) 2 �Hg, where �(�k; �j) is given
by Theorem 4.3. Then we have:

Theorem 4.4.

� � 21

61
� 1

3
:

The proof is presented in [27]. Thus, the SAI smoothers reduce the high frequencies by a
factor of almost 1/3, and hence they are e�ective smoothers for smooth coe�cient PDEs.
As a comparison, similar calculations can be carried out for Gauss-Seidel with natural and
red-black ordering. The smoothing factors are 1/2 and 1/4 respectively. In Section 5, we
show that the SAI smoothers are also e�ective for tough PDEs such as anisotropic problems.

The spectral analysis of di�erent smoothers can also be carried out. Out results again
indicated the e�ectiveness of this new class of smoothers[27].

5 Numerical results

The �rst set of three PDE's illustrates that our SAI smoothers perform similarly as the GS
smoothers, if the latter work. It shows that the additional easy parallel implementation
feature of the SAI smoothers do not deteriorate convergence. Besides, for some problems,
SAI smoothers may converge while the Gauss-Seidel smoothers do not.

In all the examples, Dirichlet boundary conditions are used, and the right-hand side
function, f(x) = 1. In the multi-grid procedure, a V-cycle is used with two pre-smoothing
and two post-smoothing. Linear interpolation is used for structured grid problems and a
specialized energy-minimizing interpolation [29, 30] is used for unstructured grid problems.
The number of multi-grid levels is such that the coarsest grid is 3� 3 for structured square
grid problems, and a total of four levels for unstructured grid problems. The iteration
was terminated when the relative residual norm was less than 10�8. We are using zeros
as the initial guess in all cases. Actually, we may report better numbers of iterations if a
random initial guess is used. The results are summarized in table form where the number
of V-cycles and the average convergence rate of the last 10 iterations are shown.

The �rst variable coe�cient problem in this set is:

((1 + x2)ux)x + uyy + tan2 yuy = �100x2:
The second helical spring problem [13] is:

uxx + uyy +
3

5� y
ux � 2G� = 0;

where G and � are some constants. The discontinuous coe�cient PDE is:

(a(x; y)ux)x + (b(x; y)uy)y + ux + uy = sin(�xy);

where the coe�cients a(x; y) and b(x; y) are de�ned as:

a(x; y) = b(x; y) =

8<
:

10�3 (x; y) 2 [0; 0:5]� [0:5; 1]
103 (x; y) 2 [0:5; 1]� [0; 0:5]
1 otherwise:



SAI Smoother 7

Table 1 shows the convergence results. In particular, we observe that the simpli�ed (0,1)-
level SAI performs essentially the same as its original version, while its setup cost only
involves one least squares solve whose corresponding node is taken at the center of the
domain. For the discontinuous coe�cient problem, the two Gauss-Seidel smoothers diverge

Problems Iteration Conv. Rate
GS GS(rb) SAI SSAI GS GS(rb) SAI SSAI

Poisson 9 7 9 9 0.11 0.07 0.11 0.11
Variable coe�. 13 10 12 17 0.22 0.15 0.19 0.35
Helical spring 12 9 12 12 0.20 0.12 0.19 0.20
Discont. coe�. 1 1 22 1 1 1 0.40 1

Table 1

Smooth and rough coe�cient PDEs on a 33�33 mesh. GS: Gauss-Seidel with natural ordering,

GS(rb) Gauss-Seidel with red-black ordering, SAI: (0,1)-level SAI smoother, SSAI: simpli�ed (0,1)-

level SAI smoother. 1 indicates divergence.

while our (0,1)-level SAI smoother converges. In additional to the gain of parallel e�ciency,
our SAI smoothers have the capability of improving themselves by adjusting a parameter.
When the relaxation smoothers do not work, we can do nothing to make them work. For
the SAI smoothers, we may increase the number of levels and selectively adapt the sparsity
pattern to improve their quality for hard problems.

In the second group of testing problems, we consider two model anisotropic coe�cient
PDEs.
Problem 1: The single direction anisotropic problem:

100uxx + uyy = 1; (x; y) 2 
; where uj� = 0:

Problem 2: It has a more sophisticated anisotropy structure in both the x and y directions:

a(x; y)uxx + b(x; y)uyy = 1;

where the coe�cients a(x; y) and b(x; y) are de�ned as:

a(x; y) =

�
100 (x; y) 2 [0; 0:5]� [0; 0:5] or [0:5; 1]� [0:5; 1]
1 otherwise:

b(x; y) =

�
100 (x; y) 2 [0; 0:5]� [0:5; 1] or [0:5; 1]� [0; 0:5]
1 otherwise:

The results are shown in Table 2 and 3. The �rst three rows show the convergence results
for problem 1 on 64 � 64, 128 � 128 and 256 � 256 grids, respectively. Similarly, row 4
to 6 show the results for problem 2. The last two rows show the results for problem 1 on
two unstructured grids shown in Fig 2. As it is well-known, multi-grid with Gauss-Seidel
smoother is not very e�ective for this kind of problems. Similar results are also observed
for Gauss-Seidel with red-black ordering, and hence they are omitted. For problem 1 on
regular grids, a standard technique3 to improve the multi-grid convergence is to use line
(block) relaxation methods. As indicated in the table, the performance of a block Jacobi
smoother (BJ) is deteriorated when grid gets larger. Moreover, BJ smoother for problem
1 does not work for problem 2 due to two di�erent orientations of the anisotropy. We

3Another technique is to use semi-coarsening. Since this approach uses a di�erent coarsening rather than
an improved smoother, we do not compare this method with our SAI smoother.



SAI Smoother 8

substitute the two line relaxation smoothings in the x direction by one line relaxation in
the x direction and one line relaxation in the y direction. The results are still shown under
the column BJ. For unstructured grid problems, blocks de�ned along the direction of the
anisotropy are hard to determine, if possible. Thus we do not test the BJ smoother in this
case. In any case, either the BJ smoother is not applicable, or it is slow.

Fig. 2. The unstructured grids for Example 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) parc

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) spiral

The previous (0,1)-level SAI smoother is not very e�ective in this case. We improve the
performance by using higher level SAI smoothers (Section 2). We adopt the drop tolerance
strategy described in Section 3 to maintain low computational complexity. Speci�cally,
we drop entries in the matrix A whose absolute value is smaller than 2 before the sparse
approximate inverse is computed. Then entries in the approximate inverse smaller than �

are also dropped. SAI(k; �) denotes the (k; k + 1)-level SAI smoother with �=0.0008 for
structured grid problems and �=0.0004 for unstructured grids. Table 2 show that the higher

Grids Iteration and Conv. Rate
GS BJ SAI(3,�) SAI(4,�)

problem 1 (64� 64) > 100 0.91 31 0.62 33 0.61 24 0.50
problem 1 (128� 128) > 100 0.92 > 100 0.88 37 0.64 27 0.53
problem 1 (256� 256) > 100 0.92 > 100 0.96 39 0.65 29 0.55
problem 2 (64� 64) > 100 0.89 29 0.57 28 0.55 22 0.47
problem 2 (128� 128) > 100 0.91 67 0.76 39 0.66 32 0.60
problem 2 (256� 256) > 100 0.92 > 100 0.92 48 0.70 40 0.66
parc 92 0.86 � � 27 0.55 22 0.47
spiral 74 0.79 � � 18 0.37 14 0.27

Table 2

Convergence results for anisotropic problems on di�erent grids. GS: Gauss-Seidel with natural

ordering, BJ: Block Jacobi. See text for the de�nitions of SAI(3,�) and SAI(4,�). �= 0.0008 for the

regular grid problems and 0.0004 for the unstructured grid problems.

level SAI smoothers outperform the Gauss-Seidel and the block Jacobi smoothers. More
importantly, in contrast to line relaxation smoothers, the construction of the SAI smoothers
does not require any information about the lines of di�erent isotropy. Hence the exact same
construction procedure can be applied to both problem 1 and 2. The higher level SAI allows



SAI Smoother 9

us to capture the anisotropy easily by adjusting only one number{the level of �ll-in, with no
need to track geometrically the anisotropic directions which are often hard to determine.
Furthermore, it does not matter whether it is a regular grid or irregular grid problem.
For the two unstructured grid problems, the SAI smoothers converge much faster than the
Gauss-Seidel smoother. Table 3 shows the costs of di�erent smoothers relative to Gauss-

Grids GS BJ SAI(3,�) SAI(4,�)
problem 1 (64� 64) 1 > 100 2 62 1.75 58 1.79 43
problem 1 (128� 128) 1 > 100 2 > 100 1.78 66 1.80 48
problem 1 (256� 256) 1 > 100 2 > 100 1.79 70 1.80 52
problem 2 (64� 64) 1 > 100 2 58 1.79 50 1.95 43
problem 2 (128� 128) 1 > 100 2 > 100 1.80 70 1.88 60
problem 2 (256� 256) 1 > 100 2 > 100 1.80 86 1.84 74
parc 1 92 � � 2.62 73 3.06 67
spiral 1 74 � � 2.09 38 2.32 32

Table 3

Cost of applying di�erent smoothers relative to Gauss-Seidel. Under each smoother, the �rst

column shows the cost per iteration relative to one GS iteration, and the second column shows the

total cost=cost per iteration � total number of iterations.

Seidel. Under each smoother, the �rst column shows the cost per iteration of the smoother
relative to one Gauss-Seidel iteration; the second column shows the total cost=cost per
iteration � total number of iterations. The cost of each smoother is estimated as follows.
The cost of one Gauss-Seidel iteration is estimated by the number of nonzeros in the matrix
A. Thus, the relative cost of the SAI smoothers is estimated by the ratio of the number
of nonzeros in the sparse approximate inverse to the number of nonzeros in the matrix A.
The cost of inverting the diagonal block is about 8n, assuming each block is a symmetric
positive de�nite tridiagonal matrix [17]. Thus the cost of the block Jacobi smoother is
about twice that of Gauss-Seidel.

By doubling the cost of applying a higher level SAI smoothers, we reduced more
than half of the number of iterations. Moreover, the SAI smoothers also work well
for unstructured grid problems where the standard multi-grid techniques for anisotropic
problems on regular grids may not apply. Hence our SAI smoothers are more robust.

The setup cost of constructing the higher level SAI smoothers is kept low by the
dropping strategy applied before and after computing the sparse approxiamte inverse. On
the average, a size of 11� 9 least sqaures problem is to be solved per row for the (3,4)-level
SAI and a size of 13� 11 for the (4,5)-level SAI. As a result, the quadratic growth in nk is
reduced to linear, which signi�cantly reduce the overall computational cost.

References

[1] R. E. Bank, and C. C. Douglas, Sharp Estimates for Multigrid Rates of Convergence with
General Smoothing and Acceleration, SIAM J. Num. Anal., 22:617{633, 1985.

[2] M. W. Benson, Iterative solution of large scale linear systems, M. Sc. Thesis, Lakehead
University, Thunder Bay, Ontario, 1973.

[3] M. W. Benson, Frequency Domain Behavor of a Set of Parallel Multigrid Smoothing
Operators, Intern. J. Computer Math., 36:77{88, 1990.

[4] M. W. Benson and R. N. Banerjee, An Approximate Inverse Based Multigrid Approach
to the Biharmonic Problem, Intern. J. Computer Math., 40:201{210, 1991.



SAI Smoother 10

[5] M. W. Benson, An Approximate Inverse Based Multigrid Approach to Thin Domain
Problems, Utilitas Mathematica, 45:39{51, 1994.

[6] M. Benzi, C. D. Meyer, and M. T�uma, A sparse approximate inverse preconditioner for
the conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135{1149.

[7] A. Brandt, Multi-Level Adaptive Solutions to Boundary-Value Problems, Math. Comp.,
31:333{390, 1977.

[8] R. Bridson, and W.-P. Tang, Ordering, Anisotropy and Factored Sparse Approximate
Inverses, submitted to SIAM J. Sci Comput. .

[9] R. H. Chan, T. F. Chan and W. L. Wan, Multigrid for Di�erential-Convolution Problems
Arising from Image Processing, CAM Report 97-20, Department of Mathematics, UCLA,
1997.

[10] T. Chan, W. -P. Tang and W. L. Wan, Wavelet Sparse Approximate Inverse Precondi-
tioners BIT, 37, pp. 644{650, 1997.

[11] E. Chow and Y. Saad, Approximate inverse techniques for block-partitioned matrices. SIAM
J. Sci Comput., 18, pp. 1657{1675, 1997

[12] S. S. Clift, and W.-P. Tang, Weighted graph based ordering techniques for preconditioned
conjugate gradient methods, BIT Vol. 35, No. 1, pp. 30-47, 1995 .

[13] L. Collatz, The numerical treatment of di�erential equations, Springer-Verlag, New York,
3rd ed., 1966.

[14] J. Cosgrove, J. Diaz, and A. Griewank, Approximate inverse preconditionings for sparse
linear systems, Intern. J. Computer Math, 44 (1992), pp. 91{110.

[15] D. F. D'Azevedo, P. A. Forsyth and W.-P. Tang, Towards a cost e�ective ILU
preconditioner with high level �ll, BIT 32, pp. 442-463, 1992.

[16] A. George and J. Liu, Computer solution of large sparse positive de�nite systems, Prentice-
Hall, Englewood Cli�s, NJ, 1981.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins, Baltimore and
London, 1989.

[18] N. I. M. Gould and J. A. Scott, On approximate-inverse preconditioners, Tech. Rep. RAL-
TR-95-026, June, 1995. Computing and Information System Dept., Atlas Center, Rutherford
Appleton Lab., Osfordshire OX11 0QX, England.

[19] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses. SIAM
J. Sci. Comput., 18, pp. 838-854, 1997.

[20] W. Hackbusch, Multi-grid Methods and Applications. Springer-Verlag, Berlin, 1985.
[21] T. Huckle and M. Grote, A new approach to parallel preconditioning with sparse

approximate inverses, SCCM report, 1994.
[22] T. Huckle, Sparse approximate inverses and multigrid methods, Sixth SIAM Conference on

Applied Linear Algebra, Snowbird, October29{November 1, 1997.
[23] L. Y. Kolotilina and A. Y. Yeremin, Factorized Sparse Approximate Inverse Precondi-

tionings I. Theory, SIAM J. Matrix Anal. Appl., 14, 1993, pp. 45-58.
[24] J. Rice and R. Boisvert, Solving Elliptic Problems Using ELLPACK, Spring-Verlag, New

York, 1985.
[25] W.-P. Tang, Schwarz splitting and template operators, PhD thesis, Stanford University,

Computer Science Dept., Stanford, CA94305, 1987.
[26] W.-P. Tang, Towards an e�ective approximate inverse preconditioner, SIAM J. Sci. Comp.,

vol. 19, 1998.
[27] W.-P. Tang, and W. L. Wan , Sparse Approximate Inverse Smoother for Multi-grid ,

Submitted to SIMAX, 1998.
[28] C. H. Tong, Analysis of Some Approximate Inverse Preconditioners for Sparse Linear

Systems, unpublished manuscript, 1995.
[29] W. L. Wan, An Energy-Minimizing Interpolation for Multigrid, CAM Report 97-18,

Department of Mathematics, UCLA, 1997.
[30] W. L. Wan, T. F. Chan and B. Smith, An Energy-Minimizing Interpolation for Robust

Multigrid, CAM Report 98-6, Department of Mathematics, UCLA, 1998.


