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Abstract. Various forms of sparse approximate inverses (SAI) have been shown to be useful for
preconditioning. Their potential usefulness in a parallel environment has motivated much interest
in recent years. However, the capability of an approximate inverse in eliminating the local error has
not yet been fully exploited in multigrid algorithms. A careful examination of the iteration matrices
of these approximate inverses indicates their superiority in smoothing the high-frequency error in
addition to their inherent parallelism. We propose a new class of SAI smoothers in this paper and
present their analytic smoothing factors for constant coefficient PDEs. The following are several
distinctive features that make this technique special:

• By adjusting the quality of the approximate inverse, the smoothing factor can be improved
accordingly. For hard problems, this is useful.

• In contrast to the ordering sensitivity of other smoothing techniques, this technique is
ordering independent.

• In general, the sequential performance of many superior parallel algorithms is not very
competitive. This technique is useful in both parallel and sequential computations.

Our theoretical and numerical results have demonstrated the effectiveness of this new technique.
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1. Introduction. The effectiveness of multigrid is based on two main compo-
nents: smoothing and coarse grid correction. The smoothing process, usually car-
ried out by a relaxation method, dampens the high-frequency error components. The
coarse grid correction process, carried out by an interpolation, approximates the low-
frequency components on the coarser grids. The idea is that the combination of the
two will result in a significant error reduction independent of the problem size [22]
and hence lead to an efficient solution procedure.

Relaxation methods such as Richardson, Jacobi, and Gauss–Seidel are often used
as smoothers for multigrid, although other iterative methods, for instance, incomplete
LU factorization (ILU) [23, 41] and (preconditioned) conjugate gradient [1, 7] meth-
ods, or even ODE solvers [26] such as Runge–Kutta methods, have also been used for
specific problems. Relaxation methods are particularly useful for multigrid since they
are simple, and they all have the common property of removing the high-frequency
error components [5, 22].
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In practice, Gauss–Seidel is usually the most effective smoother among relaxation
methods. A drawback, however, is that Gauss–Seidel is a very sequential algorithm.
A parallel version may be obtained by a special ordering of the unknowns, for ex-
ample, red-black ordering for the five-point stencil operator on a square grid. The
Jacobi method, on the other hand, is a very parallel method, but its smoothing effi-
ciency is not as good as that of the Gauss–Seidel method. It is also well known that
Gauss–Seidel smoothers do not work well for anisotropic problems and discontinuous
coefficient problems. In this paper, we propose a new class of smoothers derived from
sparse approximate inverse (SAI) preconditioners. It has a smoothing efficiency sim-
ilar to Gauss–Seidel and it is independent of ordering. Moreover, for hard problems,
we can improve the smoothing efficiency by adaptively adjusting the quality of the
approximate inverse, for instance, by adding more nonzeros. Consequently, this new
technique is more robust than using Gauss–Seidel smoothers. Our numerical tests
verify this statement.

We remark that Huckle [25] independently experimented with an SAI smoother
for multigrid by modifying the standard Gauss–Seidel iteration. Specifically, instead
of using the exact inverse of the lower triangular matrix, he used an SAI computed
by the techniques described in [20]. In our approach, we do not restrict ourselves
only to Gauss–Seidel. Indeed, we replace the Gauss–Seidel smoother entirely by an
SAI smoother. The resulting multigrid is efficient, and we have more flexibility in
improving the smoothing quality for hard problems.

In section 2, we describe the construction of the SAI smoother. In section 5,
we analyze the smoothing property of the proposed smoother both analytically and
numerically for constant coefficient PDEs. Comparison to the Gauss–Seidel smoother
is also given. Some techniques to improve the smoothing character for anisotropic
problems are presented. Finally, in section 6, we show the effectiveness of the SAI as
a smoother for multigrid on a variety of problems, including anisotropic problems,
discontinuous coefficient problems, and unstructured grid problems.

2. SAI smoothers. Various techniques have been proposed for an effective SAI
preconditioner [2, 4, 9, 11, 18, 20, 29, 30, 37]. However, the goal of constructing an
effective smoother is very different from finding a good preconditioner. For a powerful
preconditioner, the capability for removing both the high- and low-frequency errors
is essential. In contrast, a good smoother may just dampen the high-frequency errors
effectively. In this respect, much of the weaknesses [37] of SAI preconditioners become
the strengths for SAI smoothers. Our proposal is to explore this to construct a powerful
smoother.

Most SAI approaches seek a sparse matrix M so that the error of the residual

E = MA− I
is minimized in some measure. The sparsity constraint often limits the effectiveness
of M as a preconditioner due to the locality of the sparse approximation. This lack
of global approximation has created many difficulties for a powerful preconditioner.
Various additional techniques are required to improve the quality of an SAI precon-
ditioner [8, 37]. The requirement for a good smoother, however, can take advantage
of the locality of the sparse approximation. In the following sections, we propose a
systematic approach for constructing sparsity patterns and a modified least squares
formulation for SAI smoothers. The cost of this simpler form of approximate inverse–
local least squares approximation is much less expensive than other typical SAI ap-
proaches, and yet it possesses a very effective smoothing property which we will show
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in section 5.

2.1. Modified Frobenius norm construction. The construction of our SAI
smoothers is based on the Frobenius norm approach described by Benson [2] and
Benson and Frederickson [3]. Consider the left preconditioned linear system

MAy = Mb,

where M is a left preconditioner. An SAI preconditioner M is defined as a solution
to the following minimization problem:

min
M

‖MA− I‖2
F

subject to some constraints on the number and position of the nonzero entries of
M . The minimization problem is equivalent to n independent least squares problems
which can be solved in parallel:

min
mj

‖ATmj − ej‖2, j = 1, . . ., n,(2.1)

where mj is the jth row of M and ej is the jth column of I.
In practice, the size of the matrix A may be too large for an effective solution of

(2.1). However, since we are looking for a sparse solution M, the number of nonzeros
of mj is small and can be bounded. Thus, the matrix A in (2.1) can be replaced by a
submatrix of itself, Aj , whose columns correspond to the nonzero entries of mj . Let
the compressed dense vector of mj be m′

j , which contains only the nonzeros of mj .
The least squares problem (2.1) becomes

min
mj

‖AT
j m

′
j − ej‖2, j = 1, . . ., n.(2.2)

Our modified approach simplifies (2.2) further by selecting a subset of nonzero rows of
Aj . In the following, we describe a systematic procedure of constructing submatrices
of A for defining the mj ’s. In contrast to many other SAI approaches, this modified
Frobenius norm approach has direct control of the number and location of the nonzeros
of the mj ’s as well as the complexity of the least squares problems a priori.

2.2. Algorithm. The submatrix construction algorithm is described by using
graph theory notation. A sparse matrix A can be represented by a digraph G =
(O, E) [14]. For multigrid methods, the graph often is the mesh of the PDE solution
domain. Define Lk(oi), the k-level neighbor set of node oi, the nodes of which are a
distance k+1 or less from oi. The use of the level concept to define the sparsity pattern
for incomplete factorizations is widely present in ILU preconditioning [21, 12]. The
0-level neighbor set L0(oi) contains all the nodes which directly connect to node oi.
For PDE problems with a second-order finite difference/finite element discretization,
L0(oi) is just the set of stencil points. Similarly, define Wk(oi), the kth wavefront of
node oi, as the set of nodes which are a distance k + 1 from node oi.

Remark. It is known that the inverse of a matrix arising from a PDE problem is
an approximation of the Green’s function for that PDE. A row of this inverse for the
grid node oi would be an approximation of the Green’s function when one variable is
fixed at the given location. For many two-dimensional elliptic PDEs, this row can be
portrayed as a decay surface with a singularity at node oi. This leads to the wavefront
decay behavior where the wavefront center is the corresponding node oi. Let A−1

ij be
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the element of the inverse A−1 at location (i, j). The size of A−1
ij is then associated

with the unit contribution from node oj to node oi. With the wavefront decay, the set
Lk(oi) includes the k most influential wavefronts for oi. This motivates us to choose
Lk(oi) for the sparsity pattern to approximate the discrete Green’s function at node
oi. The computation of these locations is also inexpensive. An effective choice of the
sparsity pattern can have a significant impact on the quality and the cost of the SAI.

In section 2.1, we mentioned that further saving is required to yield an effective
approximate inverse. The least squares problems (2.2) have to be replaced by some
much smaller tasks. Different algorithms for constructing an approximate inverse lead
to different approaches for choosing the sparsity pattern of mj and a submatrix of Aj

in (2.2). After the submatrix Ãj is chosen, (2.2) is replaced by a smaller least squares
problem,

min
mj

‖ÃT
j m

′
j − ej‖2.

In constructing an effective SAI smoother, two important issues arise:

• The sparsity pattern of mj . Based on the wavefront decay observation, we
will choose Lk(oj). A larger k is related to the higher cost for constructing
the SAI smoother. For a regular problem, k = 0 is often good enough.

• What kind of local error should be removed effectively with this smoother?
If we choose the submatrix of AT

j corresponding to the rows for the near-
est neighbors Ll(oj), the resulting smoother will remove the error in this
neighborhood more effectively, since the errors of this particular SAI on these
locations are optimized by the least squares problem. For anisotropic prob-
lems, the error is not distributed evenly. This neighborhood measuring by a
simple distance is not physically correct, and a more sophisticated technique
should be introduced (see section 4). It is clear that a higher level l provides
an approximation which is good for more neighbors. Notice that l is usually
larger than k. Our experience indicates that k = l is not a good choice.

Now, we define the rectangular submatrix1

Ak,l ≡ A(Lk(oj),Ll(oj))(2.3)

as the (k, l)-level local matrix of node oj . This matrix takes rows corresponding to
nodes Lk(oj) and columns corresponding to nodes Ll(oj) from A.

We introduce the (k, l)-level local least squares approximation of an inverse as
follows. For each node oj (row) of the approximation, the least squares solution moj

of

AT
k,lm

′
oj = eoj(2.4)

is taken for the nonzero values at the corresponding location Lk(oj) of the sparse
approximation of the discrete Green’s function corresponding to node oj . Here, eoj is
a unit basis vector of size |Ll(oj)|, with one in the position corresponding to oj and
zeros elsewhere. In other words, we inject each element of the least squares solution
m′

oj back into a zero vector moj at the corresponding locations in Lk(oj) and use this

sparse row to approximate the row oj of A−1.

1The MATLAB notation is adopted for extracting a submatrix from a given matrix A.



1240 WEI-PAI TANG AND WING LOK WAN

Remark. The first SAI approach proposed by Benson [2] is precisely the (0, 0)-
level local least squares approximation. However, it was not a good choice for either
preconditioner or smoother.

The relaxation method

xµ+1 = xµ +M(b−Axµ)

resulting from the SAI M constructed by the (k, l)-level local least squares approxi-
mation is called the (k, l)-level SAI smoothing.

2.3. Example: Constant coefficient PDEs. We illustrate the (0,1)-level local
least squares approximation method by a model constant coefficient second-order
elliptic PDE:

w1uxx + w2uyy + sux + tuy = f(x, y), (x, y) ∈ Ω,

u|Γ = g(x, y)

on a square domain Ω. Suppose we use a p × q regular grid. The discretization
matrix A is penta-diagonal and of size (p× q)2, using the conventional 5-point stencil
finite difference method. Moreover, the resulting difference equation can be generally
written as

bui−1,j + dui,j−1 + aui,j + cui+1,j + eui,j+1 = h2fi,j , 1 ≤ i ≤ p, 1 ≤ j ≤ q,
where a, b, c, d, and e are constants. Here we present the picture of the stencil and the
construction of a (0, 1)-level submatrix corresponding to the center node on a 5×5 grid
in Figure 2.1. The vertical (horizontal) dashed lines indicate the columns (rows) to
be extracted from the original matrix to form the (0, 1)-level submatrix. The arrows
indicate the position of the center node. The circulated nonzeros on the cross points
of the dashed lines will appear in the submatrix. In Figure 2.1, the (0, 1)-level local
least squares problem for the center node oj is



a c
a d
a b
a e

b e c d a
c
d c
d
b d
b
e b
e

e c






xW
xN
xE
xS
xC


 =




0
0
0
0
1
0
0
0
0
0
0
0
0




,(2.5)

which yields

(moj )i =




xW if i = oj − 1,
xN if i = oj + 5,
xE if i = oj + 1,
xS if i = oj − 5,
xC if i = oj ,
0 otherwise.
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Fig. 2.1. A stencil and the construction of a submatrix.

2.4. Simplified SAI smoothers. Computing these local least squares solutions
is an easy task and can be implemented in parallel effectively. For any constant coef-
ficient PDE on a regular mesh, we may further simplify the computations as follows.
We observe that the local least squares problems, and hence the least square solu-
tions, corresponding to the interior points are identical (cf. (2.5)). However, they may
be different near the boundary. We simply use the least squares solutions obtained
from the interior points for the solutions at the boundary. Hence, we need to solve
only one small least squares problem to obtain the entire approximate inverse. Our
tests indicate that this simplified approach does not bring any noticeable penalty in
performance for regular PDEs.

As an illustration, consider solving the following Poisson equation on a 20 × 20
rectangular grid:

∆u(x, y) = 1, (x, y) ∈ Ω.

In Figure 2.2, we present the plots of the eigenvalues of the iteration matrices asso-
ciated with the (0,1)-level SAI smoother and its simplified version. The eigenvalues
in Figure 2.2(a) were calculated by MATLAB using the eig function and those in
Figure 2.2(b) by the analytic formula (5.2) derived in section 5. There are no visible
differences.

Finally, we would like to mention a number of other techniques which can also be
adopted to save the cost in computing the SAI. A follow-up paper will discuss these
in lengths. For example,

• the shape of the Green’s function for different positions inside the solution
region does not vary much for a PDE with constant coefficients; when an
unstructured mesh is used, we may compute one approximation of the discrete
Green’s function accurately and use interpolation to obtain the approximation
for all other mesh points;
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(a) (0, 1)-level SAI smoother
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Fig. 2.2. Comparison of the eigenvalue distributions.

• for smooth variable coefficient PDEs, the use of one local least squares solution
for several of its neighbors is feasible;

• for anisotropic problems, a higher level SAI smoother is required; however,
the cost of the local least-squares problems grows rapidly; an a priori drop
tolerance technique [37] can significantly reduce the computations.

3. Computation complexity. The use of SAI smoothers consists of two phases:
the setup phase for constructing the sparse approximate inverse by solving the n
independent least squares problems (2.2) and the application phase, which applies
the SAI matrix to a vector. We analyze the complexity of each phase in the following
sections.

3.1. Setup phase. The computational cost involved depends on the size of the
least squares matrix Ak,l, which in turn depends on the size of |Lk(oj)| and the number
of levels k used. In general, it is hard to estimate |Lk| for a general sparse matrix A.
Thus, we restrict our discussion to matrices arising from 5-point stencil discretizations
on rectangular grids. First, we have the formula for |Lk|.
Theorem 3.1. For nodes oj away from the boundary, the number of the first k

level nodes is

|Lk(oj)| = 2k2 + 6k + 5.

Proof. The formula can be easily derived by examining the first few levels of
neighboring nodes as shown in Figure 3.1. First, we observe that there are 2k+3 rows
for the level k pattern. Second, the number of nodes in the central row increases by
2 for each increasing level, and hence is equal to 2k + 3. The number of nodes in the
upper k + 1 rows starts from 1 and increases by 2 for each row below, and hence it
has a total of (k + 1)2 nodes. Thus, altogether, we have

|Lk(oj)| = 2(k + 1)2 + (2k + 3) = 2k2 + 6k + 5.

Although |Lk| grows quadratically with respect to k, we remark that our numer-
ical experiments in section 6 show that small values of k are sufficient to give rise to
an effective SAI smoother. In fact, k = 1 is good enough for smooth coefficient PDEs.
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(a) level=0 (b) level=1 (c) level=2

Fig. 3.1. Different level of stencil nodes.

The following is a well-known result [16] for estimating the complexity of the QR
factorization method for solving least squares problems. For simplicity, we assume
that |Lk(oj)| ≡ |Lk| is constant for all oj .
Theorem 3.2. The complexity of solving (2.4) is

2|Ll||Lk|2 − 2

3
|Lk|3.

For general purpose, (0,1)-level SAI smoother is sufficient. In that case, |L0| = 1
and |L1| = 5. Thus we need about 10 flops to solve each least squares problem (2.4),
and hence the total cost is about 2 Gauss–Seidel iterations.

There are several ways to reduce the cost of the setup phase. For instance, we may
employ the simplified version of SAI smoothers described in section 2.4 for constant
coefficient PDEs. We need to solve only one least squares problem to obtain the entire
approximate inverse, and its cost is clearly negligible.

In many applications where we may have to solve the linear system Ax(i) = b(i)

repeatedly with different right-hand sides, the setup cost becomes less significant.
Moreover, in a parallel computation environment, the setup phase can be implemented
easily in parallel.

3.2. Application phase. Applying an SAI to a vector is simply a matrix-vector
multiplication. Thus, its complexity depends on the number of elements per row, which
is determined by |Lk|.
Theorem 3.3. The complexity of applying the SAI smoother is

n(2k2 + 6k + 5).

Remark. For the recommended (0,1)-level SAI smoother, the complexity is the
same as one step of Gauss–Seidel iteration. In a parallel computation environment, the
application of the SAI smoother can be done in parallel easily, whereas Gauss–Seidel
is a very sequential process.

4. Adaptivity and anisotropic problems. In addition to simple construction
and easy parallel implementation, SAI smoothers offer the capability to improve their
quality by adjusting the number of levels (i.e., the sparsity of the approximate inverse)
used. Relaxation methods, for instance, Gauss–Seidel, do not have such a feature,
which means users have to look for other smoothers whenever relaxation smoothers fail
to give fast multigrid convergence. For SAI smoothers, we may tune a parameter—the
number of levels—to improve the resulting multigrid convergence; in the extreme case
when the number of levels equals the matrix size, the SAI is the exact inverse, yielding
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one step multigrid convergence. Thus, SAI smoothers are more robust, flexible and
can be applied to a larger class of problems.

The potential disadvantage of using higher level SAI smoothers is the higher cost
involved. However, like ILU(k) methods, the issue is not just cost per iteration but
also whether the resulting multigrid iteration converges. After all, a costly convergent
method is still better than inexpensive nonconvergent methods. Anisotropic problems
usually have many relatively small entries in both the matrix A and its inverse. We
may significantly reduce the cost by discarding these small entries to obtain a sparser
approximate inverse. The resulting higher level SAI smoothers can be shown to be
inexpensive and yet very effective for anisotropic problems (section 6).

We remark that there are two typical techniques for multigrid to solve anisotropic
problems. One technique, similar to ours, is to use a better smoother, for instance,
block relaxation methods. Another approach is to use semicoarsening, a special coars-
ening technique. Both techniques are usually used for regular grids only and are most
effective if the direction of isotropy is in either the x or y direction. Special tech-
niques are needed to handle variable anisotropic problems. Our SAI smoothers, on
the other hand, are algebraic and do not require any information about the direction
of isotropy. Exactly the same procedure can be applied to variable anisotropic prob-
lems as well as to irregular grids. We also mention that there exist counterparts of
block relaxation smoothers and semicoarsening for irregular grids. They are generally
more complicated in that they require heuristic algorithms to determine the lines of
different isotropy. Finally, we remark that our SAI smoothers are not meant to be the
ultimate method for solving constant coefficient anisotropic problems on regular grids
where standard techniques work well. Rather, they are proposed as robust smoothers
which are simple to use, applicable to both regular and irregular grids, effective for
both simple and tough (e.g., anisotropic) PDE problems, and easily parallelizable.

5. Smoothing factor analysis. We present an analysis of the smoothing fac-
tors for constant coefficient PDEs on two-dimensional rectangular grids (equispaced)
in this section. For simplicity, we consider only the simplified (0,1)-level SAI smoothers,
which have been shown in section 2.4 to be only a small perturbation of the original
(0,1)-level SAI smoothers.

The smoothing factor analysis is based on the following theorem.
Theorem 5.1. Given two tridiagonal matrices

B = tridiag(b, a′, c)p×p, C = tridiag(d, a′′, e)q×q,

where b, c, d, e are nonnegative. Then the eigenvalues of the matrix

B ⊗ Iq×q + Ip×p ⊗ C(5.1)

are

a+ 2
√
bc cos θk + 2

√
de cos θj , 1 ≤ k ≤ p 1 ≤ j ≤ q,(5.2)

where a = a′ + a′′, θk = kπ
p+1 , θj = jπ

q+1 . The corresponding eigenvectors are{(c
b

)n−s
2

( e
d

)n−t
2

sin(sθk) sin(tθj)

}
, 1 ≤ s ≤ p, 1 ≤ t ≤ q.

Proof. This result can be shown by using the well-known analysis for the eigen-
values and eigenvectors of a tridiagonal matrix; for example, see [42, 34].
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Unlike Fourier analysis for PDEs with periodic boundary condition, Theorem 5.1
shows that the sine functions {sin ksπ

m+1 sin jtπ
n+1} are not the eigenvectors for general

constant coefficient PDEs with Dirichlet boundary condition; the eigenvectors may
depend on the coefficients a, b, c, d, and e. To give further insight into Theorem 5.1,
we continue the analysis further with the assumption that A is symmetric; i.e., b = c
and d = e.

Denote by M the simplified SAI of the matrix A. Then M can also be written in
the form of (5.1).
Theorem 5.2. The eigenvalues of the iteration matrix I −MA are

1 − ((xC + 2xW cos θk + 2xN cos θj) (a+ 2b cos θk + 2d cos θj)) ,

where 1 ≤ k ≤ p, 1 ≤ j ≤ q.
Proof. Consider the left-hand side of (2.5). By the symmetry of A, if we switch xW

and xE , we will get exactly the same coefficient least squares matrix. Thus xE = xW .
Similarly, we also have xN = xS . HenceM is also symmetric. By Theorem 5.1, both A
and M have the same set of eigenvectors and so they can be diagonalized at the same
time. The eigenvalues of the iteration matrix are then given by Theorem 5.1.

Remark. This analysis can also be generalized to three-dimensional problems.

5.1. Local mode analysis. We carry out the classical local mode analysis [5]
to analyze the smoothing efficiency of the (0,1)-level SAI smoothers for Poisson equa-
tions. By a direct computation and Theorem 5.1, we have the following two lemmas.
Lemma 5.3. Suppose A is the standard Laplacian operator. Then the least squares

solution of (2.5) is

xW = xN = xE = xS =
3

61
, xC =

17

61
.

Lemma 5.4. Let M be the (0, 1)-level sparse approximate inverse of the standard
Laplacian operator. Then the eigenvalues of M are

−17

61
− 6

61
cos θk − 6

61
cos θj .

Remark. Lemma 5.4 shows that M < 0, which implies M is invertible.
As a consequence of Theorem 5.2, we have the following result.
Lemma 5.5. The eigenvalues of the iteration matrix of the (0, 1)-level smoother

are

λ(θk, θj) = 1 −
(

17

61
+

6

61
cos θk +

6

61
cos θj

)
(4 − 2 cos θk − 2 cos θj).(5.3)

Now, we show the smoothing factor of our SAI smoother. Define the high fre-
quencies:

ΘH =
{

(θk, θj) :
p

2
≤ k ≤ p, q

2
≤ j ≤ q

}
.

We have the following smoothing factor result.
Theorem 5.6. Let ρ be the smoothing factor defined as

ρ ≡ max{|λ(θk, θj)| : (θk, θj) ∈ ΘH},
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Fig. 5.1. Errors after two smoothing steps of different smoothers. The dotted line denotes the
initial error.

where λ(θk, θj) is as in Lemma 5.5. Then ρ ≤ 21
61 ≈ 1

3 .
Proof. Write ck = cos θk and cj = cos θj . For (θk, θj) ∈ ΘH , we have

−1 < ck, cj < 0.(5.4)

Expand the formula in (5.3) and obtain

λ(θk, θj) =
12

61
(ck + cj)

2 +
10

61
(ck + cj) − 7

61
.

Let x = ck + cj . By (5.4), −2 < x < 0. By a simple calculation, the polynomial
p(x) = 12

61x
2 + 10

61 − 7
61 has a maximum in absolute value at x = −2 for −2 ≤ x ≤ 0.

Thus

ρ ≤ max{|p(x)| : −2 ≤ x ≤ 0} = |p(−2)| =
21

61
.

Thus, the SAI smoothers reduce the high frequencies by a factor of almost 1/3,
and hence they are effective smoothers for smooth coefficient PDEs. As a comparison,
similar calculations can be carried out for Gauss–Seidel with natural and red-black
ordering [22, 40]. The smoothing factors are 1/2 and 1/4, respectively. In section 6,
we show that the SAI smoothers are also effective for tough PDEs such as anisotropic
problems.

5.2. Spectral analysis. In addition to the above Fourier analysis, we compare
the smoothing efficiency of our SAI smoothers and the Gauss–Seidel smoother using
a spectral analysis. Figure 5.1 shows the errors after two smoothing steps of different
smoothers. The x-axis represents the eigencomponents with respect to the Laplacian
matrix, and the y-axis represents their magnitudes. For Laplacian matrices, the small
and large eigenvalues correspond to the low and high frequencies, respectively. From
the plots, there is no significant difference between the (0,1)-level local smoother
and the simplified smoother. Moreover, they both dampen high frequencies more
effectively than the Gauss–Seidel smoother.

6. Numerical results. In this section, we demonstrate the effectiveness of the
proposed SAI smoothers. Example 1 illustrates that our SAI smoothers perform essen-
tially the same as GS smoothers, if the latter work. It shows that the additional easy
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parallel implementation feature of the SAI smoothers do not affect convergence. Be-
sides, for some problems, SAI smoothers may converge while Gauss–Seidel smoothers
do not.

In addition to the gain of parallel efficiency, our SAI smoothers have the capabil-
ity of improving themselves by adjusting a parameter. When relaxation smoothers do
not work, we can do nothing to make them work. For SAI smoothers, we may increase
the number of levels, which in turn increases the density of the sparse approximate
inverse, improving their quality for hard problems. We illustrate this point by solving
anisotropic coefficient PDE problems in Example 2. We show that the cost of higher
level SAI smoothers is only about twice as expensive per iteration, whereas the re-
duction in the number of iterations is much more than double. Moreover, the SAI
smoothers also work well for unstructured grid problems where the standard multi-
grid techniques for anisotropic problems on regular grids cannot be applied. Thus our
SAI smoothers are more robust.

In all the examples, Dirichlet boundary conditions are used, and the right-hand-
side function is f(x) = 1. In the multigrid procedure, a V-cycle is used with two
presmoothing and two postsmoothing steps. Linear interpolation is used for struc-
tured grid problems, and a specialized energy-minimizing interpolation [38, 39] is
used for unstructured grid problems. The number of multigrid levels is such that the
coarsest grid is 3× 3 for structured square grid problems and a total of four levels for
unstructured grid problems. The iteration was terminated when the relative residual
norm was less than 10−8. We are using zeros as the initial guess in all cases. Actually,
we may report better numbers of iterations if a random initial guess is used. The
results are summarized in table form, where the number of V-cycles and the average
convergence rate of the last 10 iterations are shown.

Example 1. We compare the performance of two Gauss–Seidel smoothers with
the (0,1)-level SAI smoother and its simplified version, the simplified (0,1)-level SAI
smoother by several smooth and rough coefficient PDEs on a 33×33 square grid. The
equation for the variable coefficient problem is

((1 + x2)ux)x + uyy + tan2 yuy = −100x2.

The equation for the helical spring problem [15] is

uxx + uyy +
3

5 − yux − 2Gλ = 0,

where G and λ are some constants. The discontinuous coefficient PDE is

(a(x, y)ux)x + (b(x, y)uy)y + ux + uy = sin(πxy),

where the coefficients a(x, y) and b(x, y) are defined as

a(x, y) = b(x, y) =




10−3 (x, y) ∈ [0, 0.5] × [0.5, 1],
103 (x, y) ∈ [0.5, 1] × [0, 0.5],
1 otherwise.

Table 6.1 shows the convergence results. For smooth coefficient problems, all the
methods have similar convergence behavior. Since the (0,1)-level is used, the cost per
iteration is also the same for all the methods. Besides, we observe that the simplified
(0,1)-level SAI performs essentially the same as its original version, while its setup
cost involves only one least squares solve.
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Table 6.1
Smooth and rough coefficient PDEs on a 33×33 mesh. GS, Gauss–Seidel with natural ordering;

GS(rb), Gauss–Seidel with red-black ordering; SAI, (0, 1)-level SAI smoother; SSAI, simplified (0, 1)-
level SAI smoother. ∞ indicates divergence.

Problems Iteration Convergence rate
GS GS(rb) SAI SSAI GS GS(rb) SAI SSAI

Poisson 9 7 9 9 0.11 0.07 0.11 0.11
Variable coeff. 13 10 12 17 0.22 0.15 0.19 0.35
Helical spring 12 9 12 12 0.20 0.12 0.19 0.20
Discont. coeff. ∞ ∞ 22 ∞ ∞ ∞ 0.40 ∞

For the discontinuous coefficient problem, the two Gauss–Seidel smoothers di-
verge while our (0,1)-level SAI smoother converges. The failure of the simplified SAI
smoother is expected since the Green’s function of a single point in the interior may
not be a good approximation to those with a region of totally different coefficients.

Example 2. We show how we may improve the quality of SAI by using a higher
level SAI when (0,1)-level SAI does not work well. We consider two model anisotropic
coefficient PDEs.

Problem 1: The single direction anisotropic problem is

100uxx + uyy = 1, (x, y) ∈ Ω,

u|Γ = 0.

Problem 2: This has a more sophisticated anisotropy structure in both the x and
y directions:

a(x, y)uxx + b(x, y)uyy = 1,

where the coefficients a(x, y) and b(x, y) are defined as

a(x, y) =

{
100 (x, y) ∈ [0, 0.5] × [0, 0.5] or [0.5, 1] × [0.5, 1],
1 otherwise,

b(x, y) =

{
100 (x, y) ∈ [0, 0.5] × [0.5, 1] or [0.5, 1] × [0, 0.5],
1 otherwise.

The results are shown in Tables 6.2 and 6.3. The first three rows show the convergence
results for Problem 1 on 32× 32, 64× 64, and 128× 128 grids, respectively. Similarly,
rows 4 to 6 show the results for Problem 2. The last two rows show the results for
Problem 1 on two unstructured grids shown in Figure 6.1.

As is well known, multigrid with Gauss–Seidel smoother is very slow for these
kinds of problems. Similar results are also obtained for Gauss–Seidel with red-black
ordering, and hence they are omitted. For Problem 1 on regular grids, a standard
technique2 for improving the multigrid convergence is to use line (block) relaxation
methods. As indicated in the table, the block Jacobi smoother is quite effective for
small grids but eventually slows down for bigger grids. Moreover, the block Jacobi
smoother for Problem 1 does not work for Problem 2 since the latter has different
isotropies in both the x and y directions. We have to manually change the two line
relaxation smoothing in the x direction into one line relaxation in the x direction and

2Another technique is to use semicoarsening. Since this approach uses a different coarsening
rather than an improved smoother, we do not compare this method with our SAI smoother.
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Table 6.2
Convergence results for anisotropic problems on different grids. GS, Gauss–Seidel with natural

ordering; BJ, Block Jacobi. See text for the definitions of SAI(3, ε) and SAI(4, ε). ε = 0.0008 for the
regular grid problems and 0.0004 for the unstructured grid problems.

Grids Iteration
GS BJ SAI(3,ε) SAI(4,ε)

Problem 1 (32× 32) > 100 9 25 18
Problem 1 (64× 64) > 100 31 33 24
Problem 1 (128× 128) > 100 > 100 37 27
Problem 2 (32× 32) 81 16 15 12
Problem 2 (64× 64) > 100 29 28 22
Problem 2 (128× 128) > 100 67 39 32
Parc 92 − 27 22
Spiral 74 − 18 14

Table 6.3
Convergence rates for anisotropic problems on different grids. GS, Gauss–Seidel with natural

ordering; BJ, Block Jacobi. See text for the definitions of SAI(3, ε) and SAI(4, ε). ε = 0.0008 for the
regular grid problems and 0.0004 for the unstructured grid problems.

Grids Convergence rate
GS BJ SAI(3,ε) SAI(4,ε)

Problem 1 (32× 32) 0.89 0.13 0.52 0.40
Problem 1 (64× 64) 0.91 0.62 0.61 0.50
Problem 1 (128× 128) 0.92 0.88 0.64 0.53
Problem 2 (32× 32) 0.82 0.34 0.32 0.23
Problem 2 (64× 64) 0.89 0.57 0.55 0.47
Problem 2 (128× 128) 0.91 0.66 0.60 0.54
Parc 0.86 − 0.55 0.47
Spiral 0.79 − 0.37 0.27
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Fig. 6.1. The unstructured grids for Example 2.

one line relaxation in the y direction. The results are still shown under the column BJ.
For unstructured grid problems, blocks defined along the direction of the anisotropy
are hard, if not impossible, to determine. Thus we do not test the block Jacobi
smoother in this case. On the whole, the convergence of the block Jacobi smoother is
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Table 6.4
Cost of applying different smoothers relative to Gauss–Seidel. Under each smoother, the first

column shows the cost per iteration relative to one GS iteration, and the second column shows the
total cost = cost per iteration × total number of iterations.

Grids GS BJ SAI(3,ε) SAI(4,ε)
Problem 1 (32× 32) 1 > 100 2 18 1.50 38 1.57 28
Problem 1 (64× 64) 1 > 100 2 62 1.65 54 1.68 40
Problem 1 (128× 128) 1 > 100 2 > 100 1.72 64 1.74 47
Problem 2 (32× 32) 1 81 2 32 1.64 25 2.02 24
Problem 2 (64× 64) 1 > 100 2 58 1.72 48 1.92 42
Problem 2 (128× 128) 1 > 100 2 > 100 1.76 69 1.86 60
Parc 1 92 − − 1.58 43 1.90 42
Spiral 1 74 − − 1.19 21 1.30 18

quite reasonable; but it is essentially a regular grid technique.
The previous (0,1)-level SAI smoother is not very effective in this case. We im-

prove the performance by using higher level SAI smoothers (section 2). For higher level
SAI, however, the approximate inverse is much denser. We control the amount of fill-
in by dropping small elements. SAI(k, ε) denotes the (k, k + 1)-level SAI smoother
where the elements in the approximate inverse whose absolute values are below ε are
dropped. We remark that we may also drop small elements in the matrix A before
we compute the approximate inverse. Our experience indicates that the difference
between the two dropping strategies is small and hence we consider only the former
approach.

Tables 6.2 and 6.3 show that the higher level SAI smoothers perform essentially
the same as the block Jacobi smoother for small grids and better for larger grids.
More importantly, in contrast to line relaxation smoothers, the construction of the
SAI smoothers does not require any information about the lines of different isotropy.
Hence the exact same construction procedure can be applied to both Problems 1 and
2. The higher level SAI allows us to capture the anisotropy easily by adjusting only
one number, the level of fill-in, with no need to track geometrically the anisotropic di-
rections, which are often hard to determine. Furthermore, it does not matter whether
it is a regular grid or irregular grid problem. For the two unstructured grid problems,
the SAI smoothers converge much faster than the Gauss–Seidel smoother. We remark
that the apparent increase in the number of multigrid iterations with respect to the
mesh size is probably due to the fact that the multigrid preconditioner used in each
grid size problem is slightly different since the entries dropped in constructing the
SAI smoothers are different. Mesh size independent convergence should be observed
if no dropping strategy is used.

Table 6.4 shows the costs of different smoothers relative to Gauss–Seidel. Under
each smoother, the first column shows the cost per iteration of the smoother relative
to one Gauss–Seidel iteration; the second column shows the total cost = cost per iter-
ation × total number of iterations. The cost of each smoother is estimated as follows.
The cost of one Gauss–Seidel iteration is estimated as the number of nonzeros in the
matrix A. Thus, the relative cost of the SAI smoothers is estimated as the ratio of
the number of nonzeros in the sparse approximate inverse to the number of nonzeros
in the matrix A. The cost of inverting the diagonal block is about 8n, assuming each
block is a symmetric positive definite tridiagonal matrix [16]. Thus the cost of the
block Jacobi smoother is about twice that of Gauss–Seidel.

From the table, it is clear that the higher cost of higher level SAI smoothers re-



SPARSE APPROXIMATE INVERSE SMOOTHER FOR MULTIGRID 1251

sults in a lower total cost due to the much better improvement in the total number of
iterations. Hence it is worth the effort to use higher level SAI smoothers for difficult
problems such as anisotropic coefficient PDEs.

We note that we may adjust/improve the SAI smoothers locally according to the
local behavior of the PDE coefficients. For instance, we may use a higher level SAI
approximation on the subdomains with anisotropic PDE coefficients and a simple
SAI approximation on the subdomains with isotropic coefficients. This local adap-
tivity feature is another advantage over methods based on incomplete factorizations.
However, for Example 2, the coefficient is anisotropic throughout the entire domain,
and higher level SAI approximation is needed everywhere.
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