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Abstract

The paper considers a one-dimensional particle-continuum model, with impulsive interaction between the fluid
and a number of pointwise particles. A simplification results in a system of ODEs coupled with a parabolic PDE
forced by a nonlinear term involving a sum of Dirac delta functions. The existence of a mild solution is proved using
a combination of energy estimates and semigroup theory. However, the regularity of these solutions is shown to be
limited to %1 by the impulsive terms. The convergence of a Galerkin method is established simultaneously with a
proof of continuous dependence, and thagjueness, of solutions for the undenlg system. The peculiarities of
the system imply this analysis must be performed ip. The C%* regularity of the solution determines a subop-
timal rate of convergence for the Galerkin method. The theoretical results are verified by MATLAB computations.

0 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Particle-continuum models arise in a variety of applications. Amsden et al. [2], for example, model
spray combustors in gas turbine engines as a collection of particles exchanging mass, momentum anc
energy with the surrounding gas. The resulting equations raise a number of issues in analysis and
numerical approximation, some of which were explored by Hill et al. [5].

A typical model, based on the Navier-Stokes equations, is as follows:

ou

+w.Vu= lAu+vp+f— yiS(x — ;D)) F;,
ot R

j=1
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dZyj
2L

dr?
Here,u is the fluid velocity, p is the pressurey; is the particle positionf is a non-dimensionalised
external forceR is the Reynolds numbet,andy are non-dimensional constants, and

Fi=u(y;j(n),1) — %, je{l, ..., n},

is a non-dimensionalised force due to Stokes’ Law. Related equations have been considered by Verwel
and Sommeijer [11] and Krottje [6] in models of the outgrowth of axons in a developing nervous system.

The validity of such models, in terms of the derivation from the physics, and comparison with
experimental data, is considered in the papers already mentioned. The purpose of this paper, on the othe
hand, is to investigate some of the mathematical difficulties posed by the impulsive forces, as a baseline
and guide for more practical investigations. In particular, we are interested in the well-posedness of such
equations, as well as the convergence behaviour to be expected of a standard numerical method. In orde
to address these questions, we reduce to a simplified situation, in which we consider a one-dimensional
problem. The qualities we seek in the simplified model are

V.u=0, =F;, je{l,...,n} (1.2

(i) A sufficiently close relationship with the main model (1.1);
(i) A sufficiently simple system to be mathematically tractable.

The gualities we seek in the numerical method are

(i) Basic feasibility;
(i) Sufficient sophistication to deal with known difficulties, such as stiffness, but no special features,
such as particle tracking by the mesh, to anticipate the new problems raised by impulsive forces.

With these mathematical objectives in mind, we do not claim that the simplified problem models any
particular physical system, nor do we recommend our numerical method, even for this simplified case.

In Section 2, we rigorously state the simplified model problem, and derive a sequence of boot-strap
bounds on a mild solution, leading to an existence theorem and a proof of Lipschitz continuity.

In Section 3, we simultaneously establish the well-posedness of the simplified model problem and the
convergence of a piecewise linear Galerkin approximation.

In Section 4 the results of a fully discrete implementation of the Galerkin method are presented,
computationally verifying the feature of suboptimal convergence proved in Section 3. In particular, it is
observed that the accuracy of the method.yis2) is the same as that ib,,(£2), due to the appearance
of pointwise values ofi on the right side of the equation. This property of the Galerkin approximation
may be compared with other cases of nonlinearly induced suboptimality: see the list of Wahlbin [12].

2. Existence and regularity of solutions

2.1. Simplified model problem

Let 2 = Sy, the periodic domairiO, 1], with O identified with 1. Fon € N ands > 0, lety;(7) € £2,
1 < j < n, denote the positions of particles. The corresponding velocities of these particles are
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zj =dy;/dt, 1< j < n. The underlying velocity field is: 2 — R. The simplified model equations
are then given by

du  10% ‘

5=E@+f—VJ§:15(x—yj(t))[”(yj(f)’f)—Zj(l)]a (2.1)
de .

Tyzu(yj(t),t)—zj(t), jefl,...,n}, (2.2)
dy; .

%:zj(t), jel{l,...,n}, (2.3)

for (x,1r) € 2 x (0, T], T > 0, where derivatives are intended in a weak sense. NoteftlmaL,(£2);
R, y andr are positive constants. The initial data is

ug € L2(82), Zo € R", yoe.Q". (24)

As the system is defined a2 = S1, y;(¢) is identified withy; (1) — |y;(¢)], 1< j < n, where we use
Lx] to denote the greatest integer strictly lasdor x € R. Below, we comment on the reasons for the
simplifications made in going from (1.1) to (2.1)—(2.3).

The pressure term in (1.1) is essentially coupled with the incompressibility condition. As the latter
makes little sense in one dimension, pressure is left out of the simplified model. The convective term
uu, is also omitted in (2.1), this time merely for ease of presentation, since this term is more regular
thanu,, or §(x — y;) and may be analysed even in several space dimensions using standard semigroup
techniques; see Henry [4]. In a final simplification, the domain is chosen to be periodic. If (2.1) were
instead defined with Dirichlet conditions, particles would collide with the domain boundary, and would
thus have discontinuous velocities, creating additional problems.

2.2. Mild solution

Initially, we seek to prove the existence of a type of weak solution for problem (2.1)—(2.4) called a
mild solution. To define a mild solution, we introduce following operator indicated by Eq. (2.1).

Definition 2.1. For D(A) = H?($2), we define operatod : D(A) — Lo(£2) by

aue ¥ torue D(A)
U= R 2 u, u .
Definition 2.2. Let D(A) be a dense subspace of a complex Banach sgadéhenA: D(A) — X is
a sectorial operator, if it is linear and there exist constéamsa, 6) € [1, c0) x R x (0, 7/2) such that
(zI —A) e L(X)and
M

_ -1
[t =7 <=

for all z  a such thafargz — a]| > 6.

Sectorial operators are introduced in the books of Henry [4], Lunardi [8] and Mikid9]. There,
it is shown thatA is indeed sectorial, and that the operatof’ : L,(£2) — L»(£2) is defined forr > 0.
However, the contraction mapping arguments used in those books to prove existence and uniqueness ar
inapplicable to our simplified model equations, since the nonlinearity fails to satisfy a Lipschitz condition
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between suitable Sobolev spaces. The following is an adaptation of a definition stated in Lunardi [8]
which includes the auxiliary ODEs (2.2) and (2.3):

Definition 2.3. A mild solution of (2.1)—(2.4) satisfiese C[0, T; L,(£2)] N Ly [(0, T]; D(A%)], for
somex € (1/4, 3/4), and for allr € (0, T'],

u(@) = e Mug + / oAl |:f +u(s) —y Z Sj(s):|ds, (2.5)
0 =1

where S;(s)(x) = 8(x — y;(s)u(y;(s),s) —z;(s)], j € {1,...,n}. Furthermore, forj € {1,...,n},
zj,yj € C[O, T satisfy

1 t
zj(t)y=e""7;(0) + - / e_(t_s)/fu(yj (s),s)ds, 1€[0,T], (2.6)

0
t

yj(t)=yj(0)+/zj(s)ds, te[0,T]. (2.7)
0

2.3. Spectral Galerkin spatial semidiscretisation

This discretisation is introduced purely as a theoretical tool. It is well known that the set of eigenpairs
of Ais (v, Y ()2 . = (L +k?72/R, ") . Let N € N be fixed, and leV" = Spar{y,}I__,

be a(2N + 1)-dimensional Galerkin subspace BiA). Let PV : H~1(£2) — Vy denote the projection
defined by

(PNu,¢")=(u, "), forallp” e V¥,
In the subspac& ", functions ofA take on a particularly simple form. For analyticG — C, G € C,
andv" e V¥,

N
gAY =Y 20", vy,
k=—N
where(-, -) is the L,(£2) inner product.
Given f, R, y, t,up, Yo and zy from (2.1)—(2.4), considetu™ (¢), zZV(t),y¥ (1)) € VN x R* x 2",
satisfying forr € [0, T'],

u) + AuN =PV f+uN —y Y sV, (2.8)
j=1
dZ;V N(, N N .
dyy .
T:zj ), Jje{l,...,n}, (2.10)
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whereSY (1) = [u™ (y¥ (@), 1) =2V O] PV (- = y¥ (1), j (L, ..., n},
w0 =PYup,  Z'O)=2, y'(O)=Yo (2.11)

As it is stated, (2.8) represents a sectorial evolution equatioh,0f2). However, by the above remark
on functions ofA on V¥, it is also a system of 2 + 1 ODEs. This system is coupled with the
further 2: ODEs forz" andy” . Since the nonlinearities of the system are locally Lipschitz continuous,
classical Cauchy-Lipschitz ODE theory implies that, for sdffie- 0, there exists a unique solution to
(2.8)—(2.11),

", 2V,y¥)ec[0,T* VN x R" x "],

which may be continued in time as long as the variables remain bounded.
2.4. Proof of existence of a mild solution
Before we proceed further, some technical results are required. We shall use the rjptgtierand
| - llcox to respectively denote the norms || 1) and|| - [|coa(e) €tc. This should cause no confusion,

as we shall not use Sobolev norms defined on any domain apart#.om

Lemma2.1. For § > 0, there is a constant > 0 such that

lulloo < C|AY2u|31ully?, foru e D(AY?),
[ulls < CJ|AY*ul,, foru € D(AY4+),
| A=Ay ||, < Cllulls, foru € L1(£2),
lullcor < CllAully?| AY2u|;%,  foru € D(A),
lullcor < C||A¥4u,, for u € D(A%4+),
lullcz < C||A>*ul,, for u € D(AS4+).

Proof. The equivalence of the normig\*(-) ||, and|| - || yz., @ > 0 is shown, for example, in Henry [4].
The first, second, fourth and sixth results are then standard results; see Adams [1]. For the third inequality,
the density ofD (AY4+?) in L. (£2) implies that foru € L1(£2),

(u, ¢)
peD(AY4) |||l oo
u,
2 ma i
penal4) C|| AV,

= A~ YDy, C.

llulls =

[by the second inequality]

For the fifth inequality, let: € D(A) C C(£2). Then, by the first inequality,

1/2 1/2 1/2
lullcor = llee'lloo + llutlloo < € (laell 3> + el ) luell 32

1/2 1/2 1/2
< ClAul?1AY2u)5%. O
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Over the next three lemmasy”, zV,y")(r) are shown to be bounded and Holder continuous,
uniformly in N. The chosen spaces reflect those in the definition of the mild solution, in preparation
for a weak convergence existence argument.

Lemma 2.2. Let the conditions hold which were stated in defining the spectral Galerkin prof@&)-
(2.11) Then, for alle € (1/4, 3/4), there exists a constaudt, such that for allV € N,

|A*u™ (@0)|, < Cr, forie(0,T],

|u¥ @], < Ct74, forie (0, T],

lz; @), |y <€, forte(0,T1, jefl,....n}.

Proof. Below, C will, as in the statement of the lemma, denote a generic constant, possibly dependent
on initial data andr’, but independent oV and:. Initially, assumer € (0, T*]. Integrating (2.9) and
applying Lemma 2.1,

ol <l O+ [ (5 0.)|ds
0

< |z, (0| +C/||A°‘uN(s)H2ds, jell,... n}. (2.12)
0

Operating on (2.8) by*’, (which is permitted on/ "), integrating ovenr(0, r), and then operating
by e~4’, we obtain

uV (1) = e MuMN(0) + f e A=) |:PNf +u¥ —y Z Sj.v(s)i| ds. (2.13)

0 =1

Fixing § = (3/4 — «)/2, operating on (2.13) by* and taking norms,

|47 )], < € @+ € [ AT A a0 )
0

Ty / asstsrem e 3 ATHEIs( =y @) ,C (A @]+ [ ()] ds
0 j=1

< Cr* fluoll2 + C/(r —s)<“+5+1/4><||f||z +]au™ )|, + Z|Z§V<S>|>ds-
0

j=1

We note that the way in which we have defired’ and other functions af on V", extends naturally to
L»(£2) and other spaces for whigly }2 . are a basis, see Henry [4, Chapter 1]. Hence, are able to use
standardV-independent estimates on terms such 4% ~4/||», which may be also found in Henry [4].
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Recalling that|uoll2, || fll2 and{|zj(0)|};%:l are bounded independently 8f and applying (2.12), we
obtain

t
|A“u ()|, <Ccr+C f(t — ) PN A%y N (5)|| ,ds, 1€ (0, T*].
0

Thanks to a variant of the Gronwall lemma; see Henry [4, Lemma 7.1.1],
|A“u™@0)|, < Ccr, e (0, T

The stated bounds ar(¢) andy(z) may be obtained for € [0, T*], by substituting this estimate back
into (2.12) and (2.7). These bounds imply that the solution of the spectral Galerkin problem may be
continued up to timé&".

Sinceu® (t) e HY(2), for t € (0, T], Lemma 2.1 implies

[« @), <cl|a2¥ o] * ¥ o] F<cr Y o

Lemma 2.3. Under the assumptions of Lemr@&, supposex € [0, 3/4) and6 € (0,3/4 — «). Then
there is a constant > 0 such that

A% (@)~ 0) ], < Cater),
forallr € (0, T),he (0, T —t]andN € N.

Proof. Lets = (3/4 —«a — 6)/2 > 0. Taking the difference of (2.13) at+ » and¢, operating withA*
and taking norms,

|4 @ @+ —u" D),

< H Aae—At/ZHZHe—A(t/2+h) _ e—At/ZHZHMN(o) Hz
t
+/H Aa+8+l/4efA(tfs)/2||ZHefA((tfs)/2+h) . efA(tfs)/ZHZ

0

ds
2

X

A_(1/4+3) |:f + MN(S) —y Z S}N (S):|

j=1

h

+f}| Aa+6+l/4e—A(h—s) HZ
0

ds.
2

A_(l/4+5)[f+u]\’(s+t)_VZSjV(S_i_t)}

j=1

In addition to the estimates used in the proof of Lemma 2.2, we also use (see Henry [4, Section 1.4]) that
there is aC such that for alk € [0, 1], i, € (O, T),

”e—At _ e—A(H—h) H < C(ﬁ)s.
2 P

We obtain,
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|4 @ @+ —u" D),

h 0
< Clluollzf_‘)’(?)

t

ny’ !
e [eumoen(Z) [”f lo+ [ @), + (A% @, |2 o)) fas
j=1

t—s
0

h -

+/C(h—s)<°‘+5+l/4>[||f||2+ s +0),+ ||AﬁuN(s+r)||2+2|z§v(s+r)| ds,
0 j=1 h

for someg € (1/4, 3/4). Applying Lemma 2.2,
|A (™ 4+ h) —u™ ()], < ChOt™ @O + Ch? + Ch¥* %> < Ch%1~ 9,
for C a constant independent of, » andr. O
Lemma 2.4. Under the assumptions of Lemi&, supposex € (1/4, 3/4). Then there exist§ > 0 such
that, forallz € (0,7),h€ (0, T —¢],j€{l,...,n}andN €N,
Y +m - <che, |y +n) —yY@)|<Ch
Proof. By Lemma 2.2,zj.V is bounded inCI[O, T], uniformly in N, for eachj € {1, ..., n}. Integrat-

ing (2.9), one obtains the Galerkin form of (2.7). Taking the difference of solutions at timésandt
(forr € (0,T) andh € (0, T — 1)),

S+ -

h
< |e*(t+h)/r _ eft/r||zj(0)| + % / Cef(hfs)/r(t +5)"%ds
0

t
+ l / Csfa|ef(t7s+h)/r _ ef(tfs)/r|ds
T
0

< Cht™™.

Fory;, the required result follows from (2.7) and Lemma 2.2]

The following lemma establishes existence of a mild solution for the simplified model problem, using
a weak convergence argument.

Lemma 2.5. Assume that the conditions hold, which were stated in defining the simplified model problem
(2.1)—(2.4) Then that problem possesses a mild solutienz, y). Furthermore, any mild solution of
(2.1)—(2.4)satisfies the estimates of Lemn2a&—2.4 with (u”, zV, y") replaced by(u, z, y).

Proof. See Appendix A. O
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2.5. Optimal regularity
Here, it is shown that(r) € C%1(£2), r € (0, T].
Lemma 2.6. Given a mild solution: of (2.1)—(2.4) there exist a solution(r) € C**(£2), t € (0, T], of
the elliptic problem
1 d%

Livl=—Z = +v=f- V;‘S(' —y;O)uly;®).1) —z;(], xef,

and a constant, independent of, such thatijv(¢)||cox < Ct~Y4,

Proof. Itis well known, from the method of Fourier series, tiigt,] = f has a solution;, € W22(22) C
C%1(£2). On the other hand, fare (0, T'1,

Llva(n)] =~y Za —y;O)[u(y; ). 1) = 2;(0)]
has solution
)/\/ﬁ - VRx Rx
v, 1) = —— > exp(—VR |x — y;0)|) (u(y; (). £) — 2;(0) + Ca(t)e ™ F* + Ca(t)e
j=1

x e s,
whereC,(¢) andC,(r) are chosen so that

; (k) T (k) _

lerBIJr vy (X, 1) _xll[E_L vy, (x,t), k=01
For eachr € (0, T], we observe thab,(r) € C%1(£2) \ CX(2); i.e., C*! is essentially the optimal
regularity ofva(z).
The time dependence o5(¢) in C%1(£2) comes through the spatially uniform quantitiegy; (), 1)

and z;(t), y;j(t), j €{1,...,n}. By Lemmas 2.2 and 2.5, the;’s and z;’s are uniformly bounded
for t € [0, T] and |u(y](t) t)| < Ct7VY4 fort e (0,T], jel{l,...,n}, for C independent of. The

dependence af(r), C2(t) and hencdva (1) [|cor uponu(y;(t),t), j € {1, ..., n}, islinear, which implies
that ||vo(¢) || cox < Ct~Y4. Thus, as; is independent of,

0@ | cox < [v2®) | por + |2 | or < C27Y4 O

Lemma 2.7. Given a mild solution o{2.1)—(2.4) there is aC > 0, independent aof, such that
|u®)] por < Ct7¥*%, 1€, TI.

Proof. Fort € (0, T],

t

/eA(ts)|:f_VZSj(t):|ds:[1_eAt |:f VZS (t):| I—e*At]v(t)

0 j=1

wherev(z) is as in Lemma 2.6. Hence,
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t t n
u() =v(t) +e Mug+ / e M Vu(s)ds —e M) — y / eI N (8;(s) — 8;(1)) ds
0 0 j=1
=Ti+ T+ T3+ T4+ Ts. (2.14)
By Lemma 2.6/| Ty co1 = [[v(t)]|cor < Ct~ /4,
For 7>, we note that=4'ug € D(A), t > 0. Hence, Lemmas 2.1, 2.2 and 2.5 imply that

I Tallcor = lle M ugllcor < C || A uo|| 2

Consideringli and T, together, for some fixedl € (0, 1/8), Lemma 2.1 implies

HAl/ZefAtuoH ;/2 <34,

t

A3/4+6(/ e—A(t—s)u(S)ds _ e_AtU(l‘)>

T3+ Tullcor < C| AY* (T3 + Ty | ,= C

0 2
t
< [ et—9 e |0+ claze ], A-W““(f— VZSjm)
5 j=1 2
<C+ cz—%(ufnl + > (Jun] . + \zjm\))
j=1
< Ct—(1/4+38) < Ct_5/8.
! n
HA3/4+8T5H2 — A3/4+8/6—A(t—s)y Z(Sj(s) _ Sj(t))ds
o j=1 2
t
< V/HA1+256—A(t—s) Hz
0

x Y [ATHEIS( = i) [((yi (5), 5) = uly; ), 1)) = (2() = 2;(0))] ] ,ds
j=1

sy A543 A 3 0) o )]l

j=1
X |u(yj(t), t) — Zj(t)| ds
=+ I

Note that the following inequality holds for arbitraty e D(A/?):

yj(s)
/ w'(0)do

yi()

< C(t— )2 AY?w],, (2.15)

1/2
<y = y; ] lw'll2

[w(y; () —w(y®)]=
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by the Holder continuity of;, j € {1, ..., n}; see Lemmas 2.4, 2.5. Applying (2.15) and taking 1/4
in the statement of Lemma 2.3, (fay rather than™),

ug[cu—w*”mﬂwwuxw—u@Amww+W@%ﬂmww+g@§aurwﬂwbm

0
t

< / C(f _ S)7<l+28) ((f . s)l/zsfl/z 4 (f _ s)1/4sf(1/2+5) 4 (f . s)sf(l/4+(§)) ds < C.
0

Consideringly, let B = {¢ € D(AY?) | ||AY?¢|, = 1}. Then, fors € (0, 1)

|ATY2[8(- = y;()) = 8(- = v, )]l
=sups(- — y; () = 8(- — (). ¢)

¢eB
= Zul[;{d)(yj ) —o(y;)]<Ct—9Y% je(l,....n}, (2.16)

where we have applied (2.15) in the last line. Hence,

13
I < / C(t —s5) Dt — )22 ds < Cr~ 349,
0
In combination with the bound fak, we deduce that
[ Tsllcor < I+ I, < Ct 38,

The proof is now completed by taking®! norms in (2.14) and summing the bounds @ | co.,
k=1,...,5. O

3. Wellposedness and finite element spatial semidiscretisation
In this section we analyse a standard Galerkin finite element discretisation in space of the simplified
model problem (2.1)—(2.4). We simultaneously establish an optimal order error bofigdand a proof
of the well-posedness of the system (2.1)—(2.4).
3.1. Properties of the finite element space
Let V! c H(S;), be anN-dimensional space of piecewise linear polynomials.
Projection Let {y;'}; be a basis fov'", and letM}; = (v, ¥}). ThenP": H~' — V" is defined

by

N
Phu="Y"(M") Hu, vy, forue H ().

i,j=1
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(i) Approximation inequality There existsC independent ofi such that for alls € [1,2] and all
v e H*(2) = D(A*/?),

[v= Pl +n] (= Ph) |, < Ch* A0,
(ii) Inverse inequalitiesThere is aC > 0 independent ok such that
[(6")]l, < cn]g”
(i) Selfadjointnes&et A": V" — V" be defined by

%((uh)/, (¢") )+ (u", ¢"), forall p" € V.

for all ¢" € V".

PR U RN e

(Ahuh, ¢h> —
It is assumed that” is selfadjoint; i.e.,
<Ahuh, Uh) = (uh, Ahvh>, for all u, v" € V",
3.2. Finite element discretisation

Consider initial datagiio, 2o, §o) € L2(£2) x R* x 2". Given f, R, y, T from (2.1)—(2.4), for € [0, T']
we seek a solutiou” (1), 2" (1), y(t)) € V" x R" x 2" of the finite element problem

ul + At = P F 4t —y Z[uh(yj? (0).1) =i P*s(- — Y1), (3.1)
j=1
dz? P )
dl (y](t) )_Zj(t)a JE{l,...,I’l}, (32)
dyh _
d—t_z "), jef{l,...,n}, (3.3)
u"(0) = P"ip, Z'0)=2,  y"(0)=7Yo. (3.4)

Lemma 3.1. Under the assumptions for the finite element met{®d)—(3.4) there exists a solution
w", ",y e C[0, T; V! x R" x 2"]. Fort € [0, T,

2 2 ~ N
[u" @5+ |Z O, < (liollz+ 11115+ Tl2oll7,)- (3.5)
Here, we use the notatidfz||;, = (3", |z;|")"?, p € [1,00), € R".
Proof. Since (3.1)—(3.4) are a finite-dimensional system of ODESs, with locally Lipschitz nonlinearities,
there exist&™* > 0 and a unique solutioriy”, z", y") € C[0, T*; V" x R" x £2"].

Taking the inner product of (3.1) with"(¢), for ¢ € (0, T*), and adding to the sum ovgrof (3.3)
timesz;(¢), one obtains

23 @+ e[ @) + {6 ()) = (o) - z (! 0).1) — T



A.T. Hill, W.L. Wan / Applied Nuarical Mathematics 50 (2004) 445-474 457

After applying the Cauchy—Schwarz and Young inequalities,

d
O+l Z0) <ifi3+ ]« ol

Inequality (3.5) follows, forT = T*, after time integration. In turn, this bound, together with an obvious
bound fory(z), implies that the solution of the ODE system remains bounded for finite times, and may
therefore be continued until= T'. We finally deduce (3.5) by a repetition of the above energy inequality
argument. 0O

3.3. Linear approximation properties
For 1< p < oo, let ;! denote the complexification of* with norm|| - || ,.

Lemma 3.2. The operatorA”, defined under the finite element space assumptions is sectorial for
D(A") = X = V', with norm|| - |2, for constantsM, a, 6 independent of.. Furthermore, there exists
C > 0, independent aof, such that

(426 2= 216" (6))+ [0']3> Cllg" |2, Torall g e V4. (3.6)

Proof. We remark that the numerical range, (see Edmunds and Evans [3]), 6f(A") satisfies

O = {[{a"0",¢") 19" e V7 st |¢"] =1}
c {{AY?p, AY?9)| ¢ € H'(2) stlipl2= 1}
=0O(A) C[1,00).

A standard argument, see Edmunds and Evans [3, p. 100] or Henry [4, p.18], now show$ that
sectorial operator oi” in the L, norm for constant§M, a, ) which depend only on the sgt, co).

The evolution operatorz‘A"f and fractional powers ofi" may be defined, as in Henry [4]. These
functions of A" are subject tai-independent bounds identical to those of the corresponding functions
of A. Inequality (3.6) may be shown independentlya

Lemma 3.3. Under the assumptions defining, in Section2, and A", in Section3, there existsC
independent of such that, for allr € (0, T],

||efAt _ efAhtl)h”LZ_)Loo g Cht73/4,

He—m _ e—A"tPh H < Cht_l/4,

[[e4 —e 4" P"]s(- — )| . < Cht™%, forallye Q.

Hl> Ly

Proof. See Appendix A. O
3.4. Maximum norm error bounds

Let (u, z, y) be a mild solution of (2.1)—(2.4). We define difference variables
w)=@w—u")0); tW=z-2")0, 20)=(y-y")w®, te€[0,Tl. (3.7)
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The theory of ODEs implies that the solution of (3.1)-(3.4) may be expressed in the following mild
formforr € (0, T*1andj € {1, ..., n}:

u(t) = e M Phug + / e A=) [th +u(s) —y Z st (s):| ds, (3.8)
0 j=1

ZI} (t) = ef’/rzl} 0) + / e7<’ﬂ)/’u(y§‘ (s), s) ds, (3.9)
0

Y0 =y () + f ¢ (s) s, (3.10)

0
whereS" (s) = [u" (¥ (s), s) — 2} ()] P"8 (- — ¥ (5)).

Lemma 3.4. Let the assumptions hold which were made in defining the simplified model equéiaps,
(2.4)and its finite elements approximatidl,.1)—(3.4) Then, there exists a constatif independent of,
such that, for allr € [0, T]and j € {1, ..., n},

Is10] <C{|m(0)| + ;0] +/Hw<s>Hoods},

0

ot<e{inol+ ol [ ol s}
0

Proof (Sketch. The estimates for thi;|, j € {1,...,n}, may be approached by taking the difference
of (2.7) and (3.10), and using Lemma 2.7 to bouhds)| c01. This bound may be completed using
Gronwall's Lemma. The bounds g&;| are obtained by a similar approach, which in addition makes use
of the bounds omn;|. O

Lemma 3.5. Let the assumptions of Lemr8at hold. Then, there is a constaatindependent ok, such
that for all r € (0, T,

[w] < Clh> + [ @], +([n @], + [w@] )]
[¢®],, < ct[n@], +[¢ O], + |wO@]).
[n0],, <€+ [n @], +1[¢ @], + [w©@])-

Proof. See Appendix A. O
3.5. Well-posedness

Lemma 3.5 implies (2.1)—(2.4) is well-posed:
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Theorem 3.6. Given initial data(2.4), the systen{2.1)—(2.3)has a unigue mild solution over a time
interval [0, T'], satisfying the estimates of Lemn2aSand2.7. If ui(¢), r € [0, T] is the solution of(2.1)—
(2.3)for initial data (g, 29, Yo) € L2(£2) x R" x 2", then for allr € (0, T,

| =@, < Ct74(lluo — doll2+ llyo — Yoll) + Cllzo — Zoll»

|(z; — 2))(®)| < C(lluo — doll2 + Yo — Yolli, + 1120 — Zoll1,).

|(y; = 9)®)| < C(lluo — doll2 + 1Yo — Yolli, + 1120 — Zoll1,).-
Proof. The existence of a mild solution for initial data (2.4) is shown by Lemma 2.5. If the initial data
for the Galerkin discretisation (3.1)—(3.4)(iB" uo, Zo, Yo), then Lemma 3.5 implies

}Ilimo(uh, Z',y")t) = (u,z,y)(t), foreach e (0,T]
in Loo(£2) x R" x £2", where(u, z,y) is any mild solution of (2.1)-(2.4). Thus, the mild solution is

unique.
Suppose now that the initial data (3.4) for (3.1)—(3.4)R4iio, 2(0), (0)). This time,

}Ilimo(uh, Z',y") (1) = @,2,9)(t), foreachte(0,T].

Taking the limit ash — O+ in the error bounds of Lemma 3.5 we obtain the continuity estimates in the
statement of this lemma.O

3.6. Error bounds
Lemma 3.5 yields various error bounds:

Theorem 3.7. For t € (0, T'1, let (u, z, y) be the mild solution 0{2.1)—(2.4)and (u", Z", y") the solution
of the Galerkin systerf8.1)—(3.4)for initial data (P"uo, zo, Yo). Then, there is a constait independent
of h such that forr € (0, T'],

[ =)0y <Ch¥% (=)0 o < CHYZ3,
(z; =} | < Cn, |(vj =y @|<Ch, jell....n).

Proof. After Lemma 3.5, it only remains to prove ti&* error bound. From the inverse inequalities, we
deduce that for € (0, T']

[ =)D o < [(7 = PYu@® ]|+ | (Pru = ") D s
<[ =P | o+ (1= PO+ [ =" O]} @12)

As ||(u — u™) ()]s < Cht~%/*, we need only boundl — P")u(t) in H1(£2) and L. (£2).
We recall from the proof of Lemmas 2.6 and 2.7 that,#fer 0,

u(t)y=—y Yy ATS(-— y0) [u(y; (1), 1) — 2;(O] + u2(),
j=1
whereu,(t) € H¥?(£2). Using the approximation property &f, the bound forz;(t)| of Lemma 3.1,
the boundu(y; (1), 1)| < llu(t) |l < Ct~Y/%, the approximation in mean of ttéefunction by a sequence
in L1(£2), and the bounds obtained in Lemmas 2.6 and 2.7 and (A.13),
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(7 - ")u<f)||2 + h|| (7= P1)u®] 2

<VZ|| AT (= y;0) Ll ] + |2;®])
+hy ZH AT (= y;O) | (Ju@ | o, + |2/ O]) + CH2 |un(®)]) 5
(O = PYATY, Ly CH (1 = PPYATY, ) e
SC|(1 = P)ATH L 0 O, (3.12)

Now, duality arguments and the equivalence of norms implies that

”(1 o Ph)A_1||L1—>L2
= HA_l(I - Ph) HL2—>LOO
<C(1 = PYAT | (1 = PaT|P < on
Substituting this result into (3.12), we obtain

<clat(r—PEa - P2

(1 = P"Yu@)|,+ k| (I = P")u@)| . < Ch¥2 ¥, (3.13)
From this, we deduce
[(1 = PYYuw ], < || (1 = PYYu@ |1 = PPyu) |7 < Chr=¥. (3.14)

Substituting the bounds (3.13) and (3.14) into (3.11), we obtain the regHité®) bound. O

4. Fully discrete scheme and numerical results
4.1. Semi-implicit Euler finite element full discretisation

Here, forN € N, V" is the space of pleceW|se linears, defined on the nodese {1, ..., N}, where

= 1/N. We consider the nodal bas{t$ }N 11 satlsfylngw (ih) = §;;. Such a method is WeII known to
satlsfy the assumptions on the finite element space, made in Section 3.1.

The stiffness matrixC" and the delta matri®” (y) are defined by

1 1<
K= 2llvf) Dy =33 9 ovjon. 1<ij<N.
k=1

The delta vectors are given t(yj"(y))j = %[wf(yj) SYn()HIT, 1< j < n. The forcing vector
F=M"", where}" N | ("), ¢! = P" f.
Fork=0,1,..., u(-, kAt) is approximated by* = 3"V . U*y* and
zj(kAt)%zj’ , yj(kAt)%yj’ , forjef{l,...,n}

Fork=0,1,...,wediscretise (3.1)—(3.4) by a semi-implicit method, in which the stiffness component
is treated implicitly, while the impulsive components are explicit. The resulting method is
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pf( U U Lot h (yhk\ [ kL ik g ok
M T +EICU +yD (y)U :F+)/ZZ]- dj(y), (4.2
j=1
hk+l _  hk
Y; -
j — j :Z?,k’ (4.2)
Lkt ik N
v (Z ut! (y?”‘“)) -4 “3)
i=1
N
Y (W)l =Plug, 2=z, Y=y, (4.4)

i=1
whereuq, Zg andyg are specified by (2.4).

4.2. Numerical results

The main numerical results were obtained by integrating (4.1)—(4.4) using pararReters= 1,
n=28,y =10, f =0 andT =5, whilst Ar = 0.4h%. Large T and y were used to emphasize the
low order error due t@-function terms at the expense of the initially dominant high order error due
to approximating:—4’u. The size of the Reynold’s number is relatively immaterial in this interaction.

The initial particle positionsy”© were uniformly distributed, whilst initial velocitieg"® were
randomly assigned and @f(1).

In Table 1,E" = u* —u", whereu* is the solution for: = 1/3200. Fig. 1 is a log—log plot of the,(£2)
error. Table 2 gives the slopes of the regression line for log—log pldis(®), L. (2) and H1(£2).

4.3. Analysis of numerical results

Preliminary testing showed that the error due to time discretisation was respectively,
O(A?1) in Ly(82), O(A?1) in Lo (£2), O(At*?) in HY(£2).

Table 1
The numerical errors measured in thg(£2), Lo (£2) and H1(§2) norms
h IE |2 IE" oo IE" | g2
1/25 232e-02 441e-02 306e-01
1/50 121e-03 225e-02 171e-01
1/100 609e-03 120e-02 124e-01
1/200 304e-03 6.28e-03 918e-02
1/400 144e-03 304e-03 641e-02
1/800 616e-04 128e-03 4.34e-02

Table 2

Linear regression for loE" || = « logh + B

Ly(£2) Loo(£2) HY(2)

o 1.04 1.00 0.53
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Error in L norm

10®
mesh size h

10°

Fig. 1. Log-log plot of the numerical errors measured inithés2) norm.

As At = 0.4h2, this leads to time discretisation errors of
O(h?) inLy($2),  O(h?) inLy(2), O) inHY($2).
On the other hand, from Table 2, we conclude that the overall error is
O(h) inLy(2), O() inLy(2),  ORY?) in HY(R). (4.5)

We can therefore be confident that the orders of convergence stated in (4.5) are entirely due to the spatia
discretisation and so are directly comparable with the results of Section 3.

We observe that thd ..(£2) and H1(£2) results are in agreement with Theorem 3.6, for fixed
t =T = 5. However, more interesting is the implication that

| —u")(@®)|,=C@)h. (4.6)

This is suboptimal, since, from the proof of Theorem 3@, — P")u(t)|» < C(t)h%/>.

To see why this suboptimality occurs, turn ahead to (A.9). Here, the Tgns bounded directly in
terms ofw(yj? (s), s) and therefore tha-error in Lo (£2), which is Q). The termsTg, Ty, Tho and Ty;
are bounded in terms of and ¢, which are in turn bounded by theerror in L., (£2), as is shown by
Lemma 3.4. Thus, provided that these terms do not cancel one another out, the error in any norm is
limited by the Q) error in L, ($2).

5. Conclusions

The immediate conclusions from the analysis are:
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() The simplified model equations are well-posed;
(i) The delta function forcing limits the regularity of the solution, so théat € C%%(2) fort > 0;
(i) The delta function forcing term depends on a pointwise evaluation(9f(), ¢). In a spatial finite
element discretisation, the erroruiy;(¢), t) depends upon the error in,,(£2). This feeds through
to limit the order of accuracy obtainable in,(£2), for p € [1, o0), to be the same as thatin,(£2);
(iv) Conclusions (ii) and (iii) indicate that if a standard finite element is to be used, then one of low order
is appropriate.

From a broader perspective, it is to be expected that, whilst higher dimensional problems will raise
many new difficulties, aspects of such problems will retain some features similar to the one-dimensional
case.

Appendix A

Proof of Lemma 2.5. Following LadyZenskaja et al. [7], considef :[0, T] — R, wherea}' (t) =
u™ (), ). Applying Lemma 2.3, withe = 0 andé = 1/2, there is aC > 0, such that for alk ¢ N
and allN e N,

la) (¢ +h) —al O] < C|lu™ @ +h)—u"®)], < ChY2

Thus, for fixedk € N, {a,ﬂV}NeN C C[0,T] is bounded and equicontinuous. By the Arzéla—Ascoli
theorem there is a convergent subsequence converging to aafingitC[0, 7]. One may extract a
diagonal subsequendé, of N's such that the{a,@’}NeN converge inC[0, T'], uniformly in k. Defining
u) => 12 ar(®)Py, t €[0, T1, the N-uniform bound onu” in C[O, T; L»(£2)] implies the weak

convergence of M tou in C[O, T; Lo(£2)].
Fora € (1/4,3/4) ands € (0, T), Lemma 2.2 yields

o0

laY (1)| < ’\k“J 37 a2 = 2| AN ()], < CA) T < Cok 2,

m=—0oQ

forallt €[8, T1, k € Z\ {0} andN e N. This estimate implies the strong convergence of the subsequence
uMm tou in C[8, T; D(AP)], for 8 € (0, T) andp € (0, 3/4).

Estimating the integrals slightly differently in the proof of Lemma 2.4, we find thaty fer1/4, 3/4),
there is aC > 0 such that for allj € {1, ..., n},

Y@ +h) =Y @] <ch™, forallh>0,1€[0,T—h], NeN.

Noting Lemma 2.4,{z¥}yen, {y} }yven C C[O, T] are bounded and equicontinuous and thus possess
subsequences convergingztg y; € C[0, T'] for eachj € {1, ..., n}. One may thus extract a convergent
diagonal subsequengg™", zNn yNn) — (u,z,y) in

(C[0, T; Lo(2)]NC[8,T; D(A%)]) x C[0, T; R" x 2"],
for§ € (0,T), o € (0,3/4). So the bounds of Lemmas 2.2-2.4 also applguta, y).
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Integrating (2.8) and taking thi, inner product with some € H(£2),
t
1 / /
(0 = PYuo, PYo)+ [ 1) (P79))as
0
t

! n
= [P gl =y [ Y05 0.9 - )P0 w)ar
0 o /=t
Taking the limit asm — oo through the convergent subsequence abat, converges tou in
C[8,T; H(£2)] for any § > 0, whilst the contribution to the integrals for the second and fourth terms
over[0, 8] may be bounded in terms f using Lemma 2.2. Hence,

(u(®) = uo, ) + %/(u’, ¢')ds
0
~ [trore—y [ z";[u(y,(s),s) O . (A1)
j=
Fort e [00, T], we defin(:a the functioni(¢) by
i) =e Mug+ / e A=) {f +u(s)—y Z S; (s):| ds. (A.2)
0 j=1

Performing the same operations as in Lemma 2.2, we deduca(ihat D(A%), fora < 3/4,t € (0, T].
Integratingi (r) over[0, t] and exchanging the order of integration in the last term, by Fubini’s theorem,

t t

/ﬂ(r)dr:/eAruodr+//eAr|:f+u(s)—yZSj(s)i| dr ds.
0 0 0 j=1

0

Applying the identity A [; e 4 gds = g — e"'g, for g € D(A™Y?) = H71(2), see Mikla&it [9,
p. 211],

t

! n
u(t) —uo+A/ﬂ(s)ds =f|:f+u(s) — yZSj(s)i| ds.

0 0 j=1
Taking the inner product withh as above, and subtracting from (A.1),

t

1 t
() —at), ¢) + E< /(u — i) (s) ds, ¢/> _ _< f u(s) — ii(s) ds, ¢>.
0

0
Settingg (1) = [ (u — i) (s) ds,

1d
5312015 = (0 —aw. 8) < ~[¢'[;~ 115 <o.
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Thus,fé u(s)ds = [yi(s)ds forall € (0, T]. We conclude that satisfies (2.5). The other properties of
a mild solution follow on integration of (2.2) and (2.3). We remark tiay mild solution also satisfies
the bounds of Lemmas 2.2-2.4, withis removed, the proofs being identical to the Galerkin case.

Proof of Lemma 3.3. Thanks to Thomée [10, p. 41], there i€a> 0 such that, for alk € [0, 1],

e — e A ph ||2 < C(h2 ) (A.3)
Applying the inverse inequality (A.3) with = 3/4, and the approximation property with= 3/2, we
obtain

—At APt h”
He ¢ P Ly—H1

<[Pret = PP+ = PP,
<O e = WP 4 CH MR
< Ch=lCh¥%-3/4 & Chl/2HA3/4e—At Hz
< Chv/2;=3/4 + ChY2=3/4 < ChY2=3/4
We deduce that

et —e Pt

S TR P

< (Ch3/2t_3/4)l/z(Chl/zt_3/4)l/2 < Cht_3/4,

which is the first part of the lemma.
For the second part of the lemma, we note from Thomée [10, p. 45] that

Jet — e~ P 0, < CH*YT2 s e[0,1] (A.4)
By [10, p. 26], the approximation property and (A.4) with= 1,
e =& Py < [ PM[e M = e Py [[1 = PPl

<SCh Y e —e P, +Ch<Chi2
Substituting this estimate and (A.4), with= 0, into the inequality

Y efAthh Y 7AhtPh ” 1/2” —At 7AhtPh ” 1/2

e Hl>Ly

” oLy S ||e

we deduce the second part of the lemma.
By the selfadjointness of, the duality ofL1(£2) andL.,(£2) and Lemma 2.1,

le™ Ny = e 1y < Clle 57422 < oo, (A.5)
Approximatings(- — y) by a sequence ifi; convergent in mean,
[e=8¢ —wl,<Clle™], ., <™ (A.6)

By Lemma 3.2, there is @ > 0, independent of, such that for alt € (0, T'],

) e i T [CO R (A7)

H V2h~> VL
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ForB ={¢" € V" | ||¢" > = 1}, (A.7) implies that

[ P8 = )|,y = suple™*" P"5(- = 1), ¢") = sup(P"s(- — y), e~ *"'¢")
2 gheB ¢heB

= sup(e "¢") () < e |y <OV

—vh
¢heB *©

We now consider the identity, cf. Thomée [10, p. 41],
[e—At _ e—AhtPh]a(. — )
_ [efAt/Z _ efAht/ZPh]efAt/Z(S(. — )+ efAt/Z[efAt/Z _ efAht/ZPh](S(. — )
i [e—At/Z N e—Aht/ZPh]ZS(' =T+ To+Ts.
For T, by the first part of the lemma and (A.6),
_ _ Al _ _ _Ah
[ T1lloo < H [e Atj2 _ ,—A t/ZPh]e At/2HL1—>Loo < He Atj2 _ ,~A"t/2 ph
<

Cht=3*Cr Y4 < Cht L.

(PP Cits NS

(A.8)

For T, approximating the delta function in mean by a sequende, jusing the selfadjointness df,

A" and the projectoP”, and the duality of.; and L,

[Tolos = o 2[R — )], < Clle e - 2

=C|[e 2= e 2PM e 2| < Chih

where the last line follows from the argument to bound
For T3, the first part of the lemma, (A.6) and (A.8) imply that

I Talloo < |42 — 4120 |[e74/2 — A" 2PH]5(- — y)
<Ch (/25 — ), + |1 2Phs = ],)
<Cht ¥ (ct M+ ey <ot
Summing the bounds fdf,, 7> and T3 completes the proof. O
Proof of Lemma 3.5. Taking the difference of the mild forms (2.5) and (3.8),

_ _Abt B
w(t)=e YMug—e 4" Py

—

+ eA<’S)|:f 4+ u(s) —y 28( — yj(s))[u(yj(s),s) — zj(s)]i| ds

j=1

”L]_%Loo

0
B fe_Ah(,_s) { P4t (s) =y 3PS (- = yh () [u" (v (), 5) — 2! (s)]} ds.
0 =

Thus,
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w(r) =e Yw(0) + [eiAt — efAh’Ph]ﬁo + /[eA(tS) — eiAh(’*S)Ph]f ds
0
t

[e—A(t—S) _ e_Ah(t_S)Ph]u(s) dS + f e—Ah(t—S)Phw(s) dS
0

/
— /eA“S)y 8(-—yi)[u(y;),s) - u(y?(s), s)]ds
) ,
f Sy D (=) =8(—Yi®)]
0

< A[u(y1(s),8) —u(¥} @0, 1)] = [z;() — 2,0 ]} ds
_ \/‘[e—A(t—S) _ e—A’l(t—s)Ph]y ZS( _ yj, (S))
0 j=1

X A[u(yj ). 5) —u(yj©.0)] = [z, = 2,0} s

Iy Y P =) [ (). 5) €, (9)] b

j=1

o\w

e’A“ “U/ZZ: u(yh), 1) —z;(0)]

o\

< {8( =i ) =8( =¥ ®) =8(- = 3;®) +8( = yj®) } ds

n

e Ay S (b 0),1) = OB ( = v 0) = 8(- = ¥} (1) } ds

j=1

n

j=1

n

[e7 A=) — =AM Py S [u(y (1), 1) — 2;(0]8(- = ¥ () ds

j=1

O | O O—_

=Ti+ -+ T
For T;, Lemma 2.1 implies that

ITalleo = e *w (@], < €42 w (@ | w (@]} < 74w @],
For T,, Lemma 3.3 implies that

e 00 — e 09 Py S (0. 1) £, 0] {3(- ~ ¥ ) = 3(- — ¥ ) s

467

(A.9)
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—A —Alt ph A —3/4
I T2lloe < [l =™ P, ., lliolla < Cht™%*,

t
—A(t—s —Al(t—s) ph
ITll < [[Je 00 =P flads
0

t
</Ch<t—s>3/4||f||zds<Ch.
0

t
ITalle < [0 =P o]
0

t
<fCh(z—s)3/4ds < Ch.
0

For Ts, Lemma 3.3 implies that

e PH| < e P, < et P e

2 00
HL —L Lo—Ly Lo—H1
<l (A e < et

Hence,

(Tl < [l P Jue | as < @ =0 uw), o
0 0

For T, Lemma 2.1 with§ = 1/16 and Lemma 2.7 imply

I Tslloe < C||A>°T5|

< [[a%5e 40 |y 4595~ 3, 00) | ) o s 6)|
0

j=1
)

< C/(t —s)—5/8s—3/4(H,,(0) Hll + ¢ (0 Hll +/Hw(o)”oodo> ds
0

0
t

<c(pnol, +1eol, + [l )

0

For 17, applying Lemma 2.1 witld = 1/16,

177l < C|| A>T,
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<0 [ 30 A a3, 0) (o],
o /=t

X (|u(yj(s),s) — u(yj?(t), t)! + !Zj(s) - Zj(t)|)ds.
Taking B = {¢ € D(A*%/18) | || A¥¥%8¢|, = 1} and noting Lemma 2.1,
| A2 8(- = i) = 8(- = yj )],
= ;ggé(- — () =8(- =¥} (). ¢) = §3£(¢(y,~ () — (3} (5)))

< (suplglicos ) [n;)| < Clm; )|, jelL....n.
$eB
Forje{l,..., n}and 0< s <t < T, Lemma 3.1 implies that
t
h h _ h h
i -0l = | [yt <@ sup |21(0)] < €t~
o€|L,

N

So, forje{1l,..., n}and 0< s <t < T, Lemmas 2.3 and 2.5 imply
(37 (), 8) = u(y; @), 1)]
< u(yi(s),s) —u(yi@),s)| +u(y @), s) —u(yi@), )]
< Clu) | corly; 0 = yj @[+ C[A¥E(u®) —u®)[,
< Cs™34t —5) + Cs™ (1 — 5) 4,
Thus, by Lemmas 2.4 and 3.4,

! n
1T7]l0e < C / D =) ni() | (57 — 5) + 5701 — )4 571 — ) ds
o /=1

N

<c/wﬂrwfwfwwmnwawu+/wmwww)m
0

0
t

<c(prol, +1eol, + [l er)
0
Similarly for Tg, but this time using Lemma 3.1 as well,

ITglloe < C / Yo |[e 0 — eI P S (— i) |
o /=1
< |y} ©).5) —u(i@).0)) [+ |2;(5) —2; )]} ds

t
< C/h(t — ) Hs¥ 1t —5) + 57V —5)Y*) ds < Ch.
0
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For Ty, the derivation of (A.8) and Lemma 3.1 yield

www<0/2we““Wﬂ@wme”“W%%c—ﬁquwwwM+kmmws
o /=1
<C/a—w*ﬂ@mmh+%umh+memgﬁﬂwwwmw)m
0 0

<c(pnol, 10l + -9 2luw] a).
0

For Tyo, Lemma 2.1 withs = 1/8 implies that
I T10lloo < C[|A¥®T5 ],

t
< C/H AT/Ap—AU=5) H2HA7<11/8)
0

< A[8( = 35®) =8( =i )] = [8( =3 0) =8( =7 D)},
X (Hu(t)”Oo + |Zj(t)|) ds.
Now, for B = {¢ € D(A'Y®) | ||AY8¢ |, = 1}, applying Lemma 3.4,
[ATH[8( = 35() =8(- = ¥j )] = [8( = 3;®0) =8(- = y; )]},
= sua(- - 3,) =3~ )] = [ = 3,0) = 3¢5} 0)]. 0

:(?gg){[qb(yj(s)) - d)(y? )] = [o(y;®) - ¢(y§‘(t))]}

YO+ )=y} )=y O+ )] ¥i(0)
= sup / ¢'(6 + ¥ (s) — i () do — / ¢'(0) d9]
¢€B e Vi)
Vi O+ () =y )=y (D+y]) ()]
= th? / P04 (s) = yi@)do

yj(®)

yi()
+ f [6'(6 + ¥} () — ¥} (1) — ¢'(0)] de}

i

v (@)
S jug{lyj(w S HOESHOESAO I e f i (6) = ¥ (5] de}

VO]
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t

[E-ow

<su
¢eB
N

<supl[[¢'], max(c = )|¢;@)| +C[¢"] ¢ = )[n;0)|}
¢eB o€ls,t]

WWW+MWAﬁ®—ﬁmmmmd

<c@—s)(|n;)| +Urg§;<]|¢,-<a>|), jell....nl,

using [|¢' |l oo, 19"l < C for ¢ € B C C?(£2), by Lemma 2.1.
Recalling||u(t) || < Ct~Y* from Lemmas 2.2 and 2.5 and using Lemma 3.1,

[ T10llo0 < Ct‘l/“/(t — s)‘3/4Z(UrQ[§;<I|§j(o)| + |n,-(t)|) ds
0 j=1 ’

< Ct—1/4/(t - s)—3/4<”,7(0) I, +cO], + / Hw(cr)“oodo) ds
0 0

t

<clnol,+Jco], + ¢ [ oo, d

0

For T4, since all terms in the integrand are independent, of
Tu=—y ) [ —e*]A7Y3(-— y;0) = 6( =y} )][u(y} ).7) = 2;0].
Forje{l ..., n}, the Mean Value Theorem implies that
AT [8(- =y, ) = 8(- = ¥; )] ] (x)

R
= g{exp(—«/ﬂx —y;®]) — exp(—VR|x = Y1 (1)])} + Cr(0)e¥R* + Ca(t)e™ VR

RO = 30|~ |x = Y| + G| ?F + [ Con)| e R

> N =X

<SIno]+|Go)e™ ]l T < clam],.

sinceCy(¢) andCx(t) depend sublinearly om;(¢)|. Hence,

(=2 ®) =8( = y;O)][u(yj@).1) = 2;(]

n

<€ _([u®] o+l ODm@f <7 o],
j=1

471
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The parabolic maximum principle implies thit—4/|| ., < 1, and thus,

t

1T1llee < Ct @) ], < Ct-l/“(Hn(O) |, +llcO@], + / lw)| ds).
0
For T, we split part of the integrand for eaghe {1, . .., n}:

e = P s( = y}0) = 5( =)
= MR o — i) = 8-~ o)
4 [e—A(t—s)/Z _ e—Ah(t—s)/ZPh]e—A’l(t—s)/ZPh{8(' _ yjl (S)) _ 8( _ yjl (l))}
=1} +12.
ForB={¢ € L1|||¢|l. =1}, the estimates of Lemma 3.2 imply that
1] = Suge /24002 2RI o~ 1) 5~ 210)} 6]

_ juﬁ(‘s(' _ yj; (S)) _ 6(- _ yj; (t)), [e—A(t—s)/Z _ e—Ah(t—s)/ZPh]e—A(t—x)/Zd))
€

<ot = shw) =3 =)yl IR sugle 0
<[8(- =y ®) =8(- = yi®) | ,-1Cht =)@ — )74,
where in the last line we have used (A.5). From (2.16),
[8(:= 316)) = 8- = @) -2 < [A2[3( = 1) = 8(- = ¥ 0)][, < €t =92 (A10)
Consequently,
7], < Chte = )] 5(- = ¥1(5)) = 8(- = Y} )] s < Chte = 5)™4
For 77, Lemma 3.2 and (2.16) imply that
H 112” < ”e—A(t—s)/Z _ e—A”(t—s)/ZPh HL . He—Ah(t—s)/ZPh
[e%e} 2> Loo

x [[8(- = ¥7() =8(- =¥ 0) ] -2
< Ch(t — )" ¥4C (1 — 5) V2|4 0-9/2 ph

H H 1L,

|| L2~>Hl
< Ch(t —s)~YAC | (A") 24" =902ph | < Ch(t — 574,

Hence, by Lemma 3.2,

I T12ll00 < / y Y [0 — e pR5( = () = 8(- = yE @) Hu(y; (). 1) — 2;(0)] ds
o /=t

‘u(t)“oo + |Zj(t)|]ds

<cf é(HI}(s)HOO 2] )l
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t
< Ct1/4/h(t —5)"%4ds < Ch.

0
t

/[e—A(t—s) — e M PIS (- — Y1) ds

0

e e O (/N (SD

[e¢]

[ T13lloc < f(ﬂu(r)uoo +z;0)))

j=1

Approximating the delta function by convergent sequenceg. if2), applying (A.7), Lemmas 2.1
and 3.2, we may bound thgh term in (A.11) by

Cll[e —e P a2, 47425 = 51 0)],
+C 1 —e P [[[A7H = (A" P ( — v o)

_ _ph _ph _ 1
§C||e A —e A]tPh||H1_>LOO+||e AIIHVZ’“—W&CHA 1_(Ah) Ph“L1—>Loo

<Ch YAy oAt —(anre, (A.12)
From Thomée [10, Chapter 1],
[A7t = (AP <ont AT = (A TP <C
SinceL1(£2) andL..(£2) are dual andi, A" and P" are selfadjoint,
_ -1 _ -1
[A72 = (A") P, = AT = (A P
SClA™ = (A) TP AT = (AN TP e < O,
Using duality, the inverse and approximation propertie¥ 6f
[A7t = (A" P
_ -1 _
<|PraTt = (AN TP e+ (= PATY
< Ch_lHA_l - (Ah)ilph ”LlﬁLz + HA_l(I - Ph) HH*lﬁLoo
SCP4 a1 = P[0 a7 = P
<SCRP2 4 C(1 = P AT T A2 = P,
< RV CHIZ|(1 = PP A2
(A.13)

< Ch'/?,
Hence,
_ -1 _ -1 1/2 _ -1 1/2
[A72 = (A") Pl <A = (A TP AT = (AT P, < O
Substituting this estimate into (A.12) and then (A.12) into (A.11), we deduce that

| T13ll0o < Cht ™2,
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Collecting together the estimates a7, ||} 12, in (A.9), we conclude that for € (0, T,

[w], <[+ 2@, + (|2 @], + [w©O],)]
+C/(t—s)1/2||w(s)||oods.
0

Thanks to a modified Gronwall Lemma [4, p. 188], fof [0, T']
[w® ] <l + s @], + ([0 @], + [w©],)]

t
+ c/(z —5) " Y2ps™3/4ds,
0

from which we deduce the required bound far(¢)|| . The last part of the lemma follows by inserting
the ||w(#)|l« bound into those of Lemma 3.2.0
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