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ABSTRACT

Segmentation of fluorescent cell images has been a popular technique for tracking live cells. One challenge of
segmenting cells from fluorescence microscopy is that cells in fluorescent images frequently disappear. When the
images are stacked together to form a 3D image volume, the disappearance of the cells leads to broken cell paths.
In this paper, we present a segmentation method that can reconstruct incomplete cell paths. The key idea of this
model is to perform 2D segmentation in a 3D framework. The 2D segmentation captures the cells that appear
in the image slices while the 3D segmentation connects the broken cell paths. The formulation is similar to the
Chan-Vese level set segmentation which detects edges by comparing the intensity value at each voxel with the
mean intensity values inside and outside of the level set surface. Our model, however, performs the comparison
on each 2D slice with the means calculated by the 2D projected contour. The resulting effect is to segment the
cells on each image slice. Unlike segmentation on each image frame individually, these 2D contours together
form the 3D level set function. By enforcing minimum mean curvature on the level set surface, our segmentation
model is able to extend the cell contours right before (and after) the cell disappears (and reappears) into the gaps,
eventually connecting the broken paths. We will present segmentation results of C2C12 cells in fluorescent images
to illustrate the effectiveness of our model qualitatively and quantitatively by different numerical examples.
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1. INTRODUCTION

The study of cells is crucial in the development of science. Diseases like cancer are direct consequences of cell
mutations such as rapid cell growth, abnormal cell division, and large quantities of cell death. For this reason,
biologists consistently rely on live cell imaging via light microscopy for medical research and monitoring of
diseases. The idea is to use visible light to detect and enlarge small objects such as cells inside a given frame.
With this research tool, cell biologists can extract detailed images of the interrelated structures and dynamics of
biological systems.

Fluorescent microscopy is one of the several types of imaging techniques used by these biologists to study cell
movement, cell growth, cell metabolism, cell differentiation, and cell death.1 Images from fluorescent microscopy
are recorded in a time series, for example, taken every thirty minutes over a period of seven days. Typical
experiments result in hundreds of images, each containing many cells that undergo movement, division, growth,
and death, which render manual analysis extremely meticulous and time-consuming.2

In fluorescent microscopy, the cells are tagged with a protein that exhibits fluorescence when exposed to
light of different wavelengths. The fluorophore is the component of the protein that causes the molecule to be
fluorescent. The result is an image in which the objects of interest, usually the nuclei of the cells, are easily
distinguishable from the background because they appear as bright convex shapes. However, the amount of
energy emitted by the fluorophores depends on the environment they are in. Therefore it is sometimes possible
for the protein to not emit a visible light when the cell undergoes chemical changes during its division cycle.
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This property of fluorophores causes the cell to be missing from the frame of interest for a short period of time.
Hence, given a sequence of fluorescent microscopy cell images obtained over a certain time interval, it is easy to
locate the positions of the various objects in each frame. The problem lies in tracking the origin of a cell when it
reappears into the frame after disappearing for a short period of time. Although this is a problem that is often
mentioned in the literature, a solution that does not involve manual intervention has not yet been addressed.

It poses a challenge when tracking cells in fluorescent images, which has not been addressed much in the
literature. When a cell disappears, it is not known when and where the cell will appear again. When a cell
reappears, it is not easy to determine where it was. One confusion is whether this cell corresponds to a nearby
cell from the previous frame, or it corresponds to a cell that disappeared a number of frames before. It is not
apparent which disappearing cells correspond to which reappearing cells. Manually tracking these cells can be
very time consuming. It is desirable that a robust cell tracker can handle these cases automatically.

Image segmentation3–6 is a common tool used in the automated algorithm of cell tracking. A common
challenge for programmers is to develop a segmentation method that is able to detect edges as accurately as the
human eye, despite gaps and broken boundaries in the actual image. The standard tracking methods involve
recording position and boundary information of the cells, at specified regular time intervals, using an appropriate
segmentation technique. The identified boundaries in a given frame are then used as initial guesses for the position
of the cells in the following frame.7 In the case of a cell disappearing and reappearing, it is up to a specialist to
identify the origin of the cell.

The segment-and-track method only uses information from the previous image frame. However, the entire
sequence of recorded fluorescent images is often available for analysis. In this paper, we will exploit the temporal
information of the cells in order to reconstruct the missing segments when a cell disappears from the frame.
The set of images obtained from fluorescent microscopy are stacked in chronological order to create a three-
dimensional image volume. The sequence of cells form“tubes” in the image volume; for example, the stacking of
one cell is shown in Figure 1 (left). We define the case of a cell disappearing from the frame of interest, which can
be seen in Figure 1 (right), as an incomplete cell path because there is a gap in the 3D image volume. Applying
a three-dimensional segmentation to the volume will capture the cell tubes and hence the locations of the cells at
different times. However, this approach alone does not resolve the issue of tracking a cell when it reappears into
the frame after disappearing for some time. The standard 3D segmentation fails to connect the broken pieces
together.

The goal of this paper is to develop a technique for reconstructing incomplete cell paths through a three-
dimensional segmentation. The algorithm should automatically be able to bridge gaps that are easily detectable
by the human eye in any image volume. The input parameters may vary from one experiment to another,
however, within a single experiment, no adjustments to the parameters should be necessary. In this paper, we
propose a 3D-2D segmentation model which performs 2D segmentation in a 3D framework. The 2D segmentation
captures the cells that appear in the image frames while the 3D segmentation reconstructs the incomplete cell
paths.

Figure 1. (Left) 3D segmentation of a complete cell path, (right) Disappearance of a cell from the frame of interest forms
an incomplete cell path.
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2. METHODOLOGY

Our approach is based on the active contour segmentation algorithm of Chan and Vese.8 Level set methods9

have the advantages of segmenting cells of different shapes, capturing naturally topological changes such as cell
divisions, and easily extendable to three dimensions. Let Ω be an open bounded set in R

n with boundary ∂Ω
that corresponds to the object that we wish to segment. A level set function φ is typically initialized as a signed
distance function with the following properties:

φ(x(t), t) = 0 for x ∈ ∂Ω
φ(x(t), t) > 0 for x ∈ Ω
φ(x(t), t) < 0 for x ∈ R

n\(Ω ∪ ∂Ω).

Thus, the boundary of the object, ∂Ω, is given by the zero level set of φ.

2.1 Active contour segmentation

Assume that an image u can be separated into two regions of approximately piecewise-constant intensities, of
distinct values uin, which represents the object to be segmented, and uout, which corresponds to the background
of the image. In the three-dimensional implementation of the Chan-Vese model,8 a level set function φ is used
to divide u into two regions where φ > 0 is the inside and φ < 0 is the outside. Let cin and cout be the mean
intensity values of the cell image region where φ > 0 and φ < 0, respectively. In three dimensions, the Chan-Vese
model minimizes the energy functional:

min
φ

μ

∫∫∫
Ω

|∇H(φ)| dxdydz + ν

∫∫∫
Ω

H(φ) dxdydz + λ1

∫∫∫
Ω

|u− cin|2H(φ) dxdydz

+ λ2

∫∫∫
Ω

|u− cout|2(1−H(φ)) dxdydz,

where H(·) is the Heaviside function, and μ, ν, λ1 and λ2 are parameters. The λ1 and λ2 terms are defined such
that the energy is minimized when the level set surface is located right on the boundary of the object. The μ
term is a regularization term to minimize the surface area and the ν term is to minimize the volume of the inside
region. In the original Chan-Vese model, the volume term is ignored with ν chosen to be 0.

The corresponding Euler-Lagrange equation for φ is given by:

∂φ

∂t
= δ(φ)

[
μ∇ ·

( ∇φ

|∇φ|
)
− ν − λ1(u− cin)2 + λ2(u− cout)2

]
, (1)

where δ(·) is the Dirac delta function and the initial contour is given by φ(x, y, z, 0) = φ0(x, y, z). At the steady
state, the zero level set of φ gives the boundary of the object.

As illustrated in Figure 1 (right), the Chan-Vese level set segmentation is able to correctly capture the
positions of the cell tubes when the cells are visible in the image frames. However, it would not be able to detect
gaps in the cell tubes since the gaps are essentially the background.

2.2 3D-2D level set segmentation

The Chan-Vese model detects edges by comparing the intensity value at each voxel (x, y, z) with the mean
intensity values inside and outside of the level set surface. However a point inside the gap of an incomplete cell
path has the same intensity value as the background, as opposed to the intensity values within the cell tubes.
Therefore, the level set surface will move away from the gap and simply capture the visible cells, as illustrated
in Figure 2 (left). An important property of active contours without edges is that if cin = cout, that is the mean
intensity values inside and outside the level function φ are equal, then the fitting terms is minimized for that
particular φ. Furthermore, if ν = 0, so that there is no volume constraint on the energy functional, then the
level set surface will not evolve since the given φ is already an optimal solution. We use this particular property
in our 3D-2D level segmentation method to avoid the undesirable motion of the level set surface moving away
from the gap.
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Figure 2. 3D segmentation of a cylinder with a gap of height 10 voxels given by the (left) Chan-Vese model, (middle)
3D-2D segmentation with μ = ν = 0, and (right) 3D-2D segmentation with μ, ν �= 0.

In order to detect gaps in the z-direction, we propose that the comparison of the intensity values takes place
at a two-dimensional slice instead of the three dimensional volume. More precisely, suppose we want to classify
the voxel (x, y, z) as a point inside or outside the level set surface φ. We consider the image frame corresponding
to the z position, say uz, and project the 3D level set function φ onto frame z to obtain a 2D level set function:

φz(x, y) = φ(x, y, z).

This idea is illustrated in Figure 3. The image u is a cylinder that exhibits a gap between the slice z = 50
and z = 60. The zero level set surface of the initial level set function φ0 is a sphere that encompasses the entire
cylinder, including the gap. At any point on the 80th slice of u, denoted u80 (Figure 3 (left)), we consider the
2D level set function φ80

0 (x, y) = φ0(x, y, 80) for which the zero level set curve is shown in Figure 3 (middle).

Figure 3. (Left) Frame 80 of the cylinder image u, (middle) projection of φ0 onto frame 80, (right) projection of φ0 onto
frame 55 (inside the gap).

With this 2D projected level set function, we then define cz
in and cz

out to be the mean intensity values of uz

inside and outside φz, respectively. Instead of cin and cout, we will use cz
in and cz

out to determine whether the
level set function φ should expand or shrink. Our proposed model equation for φ is given by

∂φ

∂t
= δ(φ)

[
μ∇ ·

( ∇φ

|∇φ|
)
− ν − λ1(u− cz

in)2 + λ2(u− cz
out)

2

]
.

This equation evolves the 3D level set function φ in such a way that it performs a 2D level set segmentation on
each image frame. If a cell is present in an image frame z, as in Figure 3 (middle), the λ1 and λ2 terms will
evolve φ and hence φz to capture the cell boundary. This is similar to the 2D Chan-Vese segmentation model.
However, for an image frame within the gap of the volume such as in Figure 3 (right), cz

in and cz
out will be the

same and the two λ terms will not cause φ to move. Thus, the zero level set surface will stay as the initial
surface. As a result, it will not close the gap and split the cell tube into two as the standard Chan-Vese model
does; see Figure 2 (center).
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We note that the 3D-2D approach is not the same as segmenting each image frame individually. The latter
would not be able to bridge the gap and would simply produce the same results as a three dimensional image
segmentation. In our model, each 2D projected level set function φz locates the boundaries of the objects in its
own image frame while maintaining information about the entire 3D level set function φ, In fact, this information
is maintained by the regularization terms, μ and ν. For illustration purposes, consider a unique incomplete cell
path with one gap. Suppose the cell is visible in frame z1 but non-existent in the next frame z1 + 1. Then
the projected level set function φz1 is drastically different from φz1+1 because the first contour captures the cell
in the 2D image whereas the second is given by the initial level set function. This large difference in contours
induces a large mean curvature in the zero level set of φ. The regularization terms are meant to minimize this
effect by evolving φz1+1 such that the contour will be close to the cell boundary given by φz1 . Hence, with an
appropriate choice of μ and ν, the 3D-2D method will correctly capture the gap as in Figure 3 (right).

To summarize, the λ1 and λ2 terms drive the segmentation of the two-dimensional image towards the existing
objects in the frame, capturing the visible parts of the cell tube. The regularization terms then extend the
surface by minimizing the mean curvature into the region where the cell disappears, creating a segmentation of
the missing cell. This method does not rely on physically identifying a gap region, it simply manipulates the
level set surface to evolve in a desired manner when there is a gap within the embedding function. In other
words, the level set curve is not attracted towards the gap, instead, it is designed to replicate contours from
image frames prior to and following the gap.

3. NUMERICAL RESULTS

We apply the 3D-2D level set segmentation algorithm for cell images showing live C2C12 cells obtained from
experiments performed at the Genomic Laboratory, McGill University. Due to limited space, we only show a few
examples here to illustrate how the segmentation method works. All computation is performed on a Mac using
MATLAB. The original image size is 512× 512, but for illustration purpose, only the portion of a cell is shown
whose size is around 100× 100.

Figure 4 shows the results of the 3D-2D level set algorithm applied to an incomplete cell path containing one
gap of height 8 voxels. A complete image dataset with the cell visible in each frame is taken as the ground truth.
We then manually remove the cell from frames z = 36 to z = 43 to simulate the effect of a cell disappearing and
reappearing from the frame of interest. For this experiment, we choose the 3D-2D parameters to be μ = 0.1,
ν = 1, and λ1 = λ2 = 1000. The gap is visible in Figure 4 (left) which corresponds to an ordinary level set
segmentation result. The 3D-2D level set method is able to reconstruct the incomplete cell path, as illustrated
in Figure 4 (middle). In Figure 4 (right), we project the predicted segmentation surfaces onto frame 36 of the
ground truth dataset; this corresponds to the actual cell. The segmentation contour agrees very well with the
missing cell, capturing also the glow of the cell from the microscope.

Figure 4. Segmentation results given by (left) the Chan-Vese model and (middle) the 3D-2D segmentation model. (Right)
Projection of the predicted segmentation contour onto the ground truth.

Figure 5 shows that the 3D-2D segmentation method is capable of detecting multiple gaps of different sizes
within one cell tube. Given the unicellular complete image dataset, we remove the cell from frames z = 22
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Figure 5. Segmentation results given by (left) the Chan-Vese model and (right) the 3D-2D segmentation model.

to z = 29 and from z = 55 to z = 63, as shown in Figure 5 (left). Once again, we observe an appropriate
reconstruction of the incomplete cell path.

We demonstrate the effect of gap sizes on the segmentation results. An image dataset with all the cells visible
is taken as the ground truth. We then manually remove a cell from 6, 11, and 16 frames, respectively. The 3D-
2D segmentation is applied to reconstruct the incomplete cell path. The segmentation results for the image
frames where a cell is missing are shown in Figure 6. The cell locations predicted by the 3D-2D segmentation
(red contours) are ovelayed with the actual cell images that have been manually removed. In general, the
segmentation contour agrees with the missing cell very well. The result is better for smaller gap sizes and tend
to get worse when the gap size increases.

In another image sequence, we compute the accuracy of the 3D-2D segmentation for cells disappeared for
8 frames. Ten such cases are analyzed for a total of 80 image segmentation results. Accuracy is measured as
|A∩B|/|A| where A denotes the segmentation result and B the ground truth. The results are shown in Figure 7.
Reconstruction near the ends results in an accuracy of above 0.9 and decreases gradually in the middle since it is
getting farther away from the known positions. However, on average, this method captures most of the missing
cell with a mean accuracy of 87.5%.

Finally, we show the segmentation results for a 3D image volume containing multiple cells and two gaps. A
complete image dataset with two cells in each frame is taken as the ground truth. We then manually remove
a cell from frames z = 16 to z = 22 and a different one from frames z = 60 to z = 66, creating two gaps of
size 7 voxels. For this experiment, we set μ = 0.02 and ν = 2. The gaps are visible in Figure 8 (upper left),
which corresponds to the regular level set segmentation result. The 3D-2D segmentation method reconstructs
the incomplete cell paths as shown in Figure 8 (upper right). In the 2D images, we show the segmentation results
at slices z = 17 and z = 61. The green contour represents the segmentation of the cells that are visible in the
image frame, whereas the red contour represents the predicted location of the missing cell. We observe that the
3D-2D segmentation method captures the cells quite accurately.

4. CONCLUSION

We have presented a segmentation model for reconstructing incomplete cell paths for tracking cells in fluorescent
images when some of the cells disappear and reappear in the image sequence. By segmenting cells on 2D image
frames in a 3D framework and enforcing minimum mean curvature on the level set surface, we have shown that
our 3D-2D segmentation method is able to capture visible cells as well as cells that have disappeared. We have
demonstrated the effectiveness of the model by a number of examples from different live cell images.
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Figure 6. 3D-2D Segmentation results of image frames where a cell is removed from a gap of size (left) 6 frames, (middle)
11 frames, and (right) 16 frames.
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Figure 7. Accuracy of 3D-2D segmentation for 10 testing cases, each with a gap of 8 frames.

Figure 8. Segmentation of multiple cells with 2 gaps of height 7. The green contours are for visible cells and red contours
for cells in the gaps.
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