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ABSTRACT
In this paper, we explore the possible approaches to har-
ness extra computing power from commodity hardware to
speedup pricing calculation of individual options. Specifi-
cally, we leverage two parallel computing platforms: Open
Computing Language (OpenCL) and Compute United De-
vice Architecture (CUDA). We propose several parallel im-
plementations of the two most popular numerical methods of
option pricing: Lattice model and Monte Carlo method. In
the end, we show that the parallel implementations achieve
significant performance improvement over serial implemen-
tations.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Parallel algorithms;
G.4 [Mathematical Software]: Parallel and vector imple-
mentations; I.6.8 [Simulation and Modeling]: Types of
SimulationMonte Carlo

General Terms
Algorithms
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GPU, option pricing, CUDA, OpenCL

1. INTRODUCTION
Option pricing has been a fundamental activity in the

financial sector. The mathematical formulation has been
well studied in the literature and has been known as the
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Black-Scholes model. The key basis of the model consists of
the following insights and assumptions:

• The stock price follows geometric Brownian motion,

• One can perfectly hedge the option by buying and sell-
ing the underlying asset in just the right way and con-
sequently ”eliminate risk”, and

• There are no arbitrage opportunities, i.e. all risk-free
portfolios must earn the risk-free rate of return.

The Black-Scholes equation, a partial differential equation
describing the price of the option over time [1], is then de-
rived by setting the price of a perfectly hedged portfolio to
the risk-free rate:
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where V is the value of the option, r the risk-free rate, and σ
is the volatility. Typically, the equation is solved backward
in time from the option expiry time t = T to the present
t = 0.

In practice, it is desirable to compute the value of an op-
tion quickly and accurately. In this paper, we explore the use
of parallel computing platforms, and in particular, graphics
processing units (GPUs), to speedup pricing calculation of
individual options.

1.1 Parallel Computing Platforms
In this section, we briefly introduce two parallel comput-

ing platforms that are the primary basis of the research
topic: OpenCL and CUDA.

Open Computing Language (OpenCL) is “a framework
for writing programs that execute across heterogeneous plat-
forms consisting of central processing units (CPUs), graphics
processing units (GPUs), digital signal processors (DSPs),
field-programmable gate arrays (FPGAs) and other proces-
sors.” It is similar to Nvidia’s Compute Unified Device Ar-
chitecture (CUDA) framework but has the advantage of not
being restricted to Nvidia GPUs. CUDA, on the other hand,
has the advantage of better double-precision support and
more mature libraries. Since CUDA is architecturally and



Figure 1: Memory model of OpenCL framework

functionally similar to OpenCL for the purpose of this pa-
per, we will discuss OpenCL as a representative.

OpenCL programs are defined in terms of two compo-
nents: the host program and the kernel functions. The host
program runs on the CPU, sets up connection with and dis-
patches work to the processing units. The processing units,
then, execute the kernel functions to perform data process-
ing.The kernel functions are executed in threads called work-
items. These work-items can be assigned to workgroups,
which allow intra-workgroup synchronization. Since work
items from different work groups cannot be synchronized
with each other, work done in each work group needs to be
independent of each other. This is important to consider
when optimizing the kernel program.

In terms of memory mode, OpenCL employs three levels
of memory: global, local, and private. As shown in Figure 1,
global memory is accessible by all work-items, whereas local
memory is shared within workgroups, and private memory
is exclusive to individual work-items.

In this paper, we limit the scope of discussion to GPUs,
but the algorithms developed should be applicable regardless
of the underlying computing units.

2. OPTION PRICING METHODS

2.1 Lattice Method
The lattice method is one of the most popular numerical

method for option pricing. It models the movement of the
underlying security with geometric Brownian motion in dis-
crete number of time-steps. As illustrated in Figure 2, the
price of the stock has a pseudo-probability of p of going up
by factor of u, and 1−p of going down factor of d, where p, u,
and d are parameters derived from the underlying volatility
σ, duration t, and number of time-steps N :
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t
N

d = e−σ
√

t
N

p =
er

t
N − d
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Figure 2: Illustration of lattice tree

The high level algorithm of option pricing with the lattice
method consists of two steps. First, we calculate option
values at expiry with the payoff formula. For a put option,
the values are calculated as:

V Nj = max(K − SNj , 0); j = 0, . . . , N

Then, we sequentially calculate option values at each pre-
ceding node:

V nj = e−r
t
n (pV n+1

j+1 + (1− p)V n+1
j )

n = N − 1, . . . , 0

j = 0, . . . , n

Finally, we obtained the present value of the option as
V 0
0 . The run-time complexity of the algorithm is O(N2)

with respect to the number of time-steps N .

2.2 Monte Carlo Method
The Monte Carlo method is another popular numerical

method for option pricing. Unlike the binomial lattice model,
it takes the approach of generating individual paths of asset
price movements instead of the entire lattice tree. Each sim-
ulation uses a sequence of random walk to arrive at a final
asset price, as illustrated in Figure 3.

The price movements are modelled by a geometric Brow-
nian motion with drift, where the change is the sum of the
risk-free rate and a random volatility. The random volatility
follows a normal distribution with a mean of 0 and standard
deviation equal to the asset’s volatility. If Si is the price of
the asset at time step i, then:

Si+1 = Si + Si(µ∆t+ Φiσ
√

∆t)

where µ is the risk free return, σ is the volatility of the asset’s
returns, ∆t is the size of a time step, and Φi ∼ N(0, 1).



Figure 3: Illustration of Monte Carlo simulations

The present value of the option, then, can be obtained
by taking the average option payoff at maturity discounted
at the risk-free rate. Due to the forward nature of Monte
Carlo method, however, only vanilla European options can
be priced by the standard algorithm. American options can
be valued by estimating the continuation value of the option
and comparing it with the early exercise value. This can be
done using least squares regression [2] and other methods.

To extend the standard model, we can consider random
jumps in price movements. The jumps can be modelled by
the Poisson process, and the jump sizes follow a given normal
distribution. Thus, the extended model is a generalization
of standard model with non-zero jump probability.

The main use of Monte Carlo is pricing multi-asset op-
tions [5]. These are options where the underlying asset is
a portfolio of assets and only their aggregate value is con-
sidered. Our program can easily be extended to price these
options.

3. GPU IMPLEMENTATIONS

3.1 Lattice Method 1: Group
Consider Figure 2 for N time steps. The standard lattice

method works backward; i.e. from n=N back to n=0. An
intuitive parallel implementation of the lattice method is to
group the option values, {V Nj }, at final time into pairs and
then assign each pair to a thread in GPU. Each thread will
then perform one step of the lattice algorithm in parallel to
compute {V N−1

j }. However, in order to proceed; i.e. up-

date V N−2
j in the next time step, thread j would need to

communicate with thread j + 1 to obtain the value V N−1
j+1 .

Thus, it creates a synchronization point in each time step,
which can be very costly.

One way to reduce synchronization is to assign each thread
more than two option values at final time. Thus, each thread
can perform the lattice algorithm for R time steps in parallel
before communication occurs. However, it is important to
note that the blocks of option values have to overlap with
one another. Otherwise, after R time steps, the threads will
only complete partially the lattice pyramid computation as
shown in Figure 5 with R = 3 and two threads. In other
words, we reduce communication at the expense of duplicate
computation.

More precisely, we use N + 1 work-items to calculate the
N + 1 option values at expiry (V Nj ; j = 0, . . . , N) with the

Figure 4: Illustration of intuitive implementation

payoff formula. Now, we implement the kernel function
”group-reduce”, which performs R reductions (R time steps)
on n−R+1

K−R+1
groups of K+1 option values with n−R+1

K−R+1
work-

groups of K work-items. After each kernel execution, each
V nj is reduced to V n−Rj and the number of option values is
reduced by R. To obtain the present value of the option, we
execute the kernel function N

R
times.

The parameter R can be tweaked at run-time to adjust
the balance of synchronization frequency and duplicate cal-
culation. With R = 1, no duplicate calculation is performed,
but we need full synchronization after every time-step. With
R = K, we can process K time-steps in one execution of the
kernel function, but there is significant duplicate calculation
among threads. Figure 4 illustrates two executions of the
kernel function with R = 1 and K = 2.

A critical implementation detail that must be noted, is the
use of two global buffers. We use one buffer as input and
the other as output in alternating fashion to prevent race
condition. Note that there is no obvious way to synchronize
different blocks in a GPU. The two global buffers serve as
synchronization points.

3.2 Lattice Method 2: Triangle
A drawback of the intuitive approach is the large duplicate

calculation to reduce the frequency of synchronization. The
waste of computational effort eventually affects the perfor-
mance of the parallel algorithm. In this section we discuss
the improved version of the algorithm with a more complex
implementation.

As discussed in previous section, given a group of K + 1
lattice points of option values, we can only obtain a triangle
tree of lattice points without additional information. The
tree would span K time-steps with each preceding time-step
having one less lattice points than the previous [3]. This
triangle of intermediate option values is illustrated in Figure
5. To compensate for the missing entries, we will perform
another parallel step which will be explained in more details.

Specifically, we propose a kernel function, “triangle-up”,
that performs the calculations as shown in Figure 5. Then,
it is clear that given a pricing request of MK steps and
MK+1 initial lattice points, we can run M instances of the
function in parallel with overlapping first and last nodes to
process the MK + 1 lattice points.

After the execution of “triangle-up”, more than half of the
option values between time-steps M(K−1) and MK would



Figure 5: Illustration of triangle tree of lattice points
obtained by “triangle-up”

Figure 6: Illustration of reverse triangle tree of lat-
tice points obtained by “triangle-down”

be calculated. As shown in Figure 6, M − 1 reverse triangle
trees of lattice points remain unknown. If all the boundary
nodes of the calculated lattice points are stored, we observe
that we can use M − 1 instances of another kernel function,
“triangle-down”, to fill in the remaining values (black dots in
Figure 6). The data flow of the “triangle-down” calculation
is indicated by the arrows.

After the execution of and “triangle-up” and “triangle-
down”, we have full information between time-steps M(K−
1) and MK. Effectively, then, we have processed K time-
steps and decreased the number of work-items by K. To
process the entire option values tree, we just need to itera-
tively run the two functions M times.

To implement the function “triangle-up”, we use a ker-
nel function that process work-groups of K + 1 work items
which correspond to the K + 1 lattice points. In addition
to the main global buffer, we also need a local buffer of
K + 1 for each work-group to store intermediate option val-
ues, and another global buffer to store additional boundary
node values. To calculate the triangle tree of lattice points,
we iterate through K time-steps while synchronizing after
each time-step to prevent race conditions and storing inter-
mediate values in local buffer and boundary values in global
buffers.

Similarly, we use kernel function that process work-groups
of K + 1 work items to implement the function “triangle-
down”. To calculate preceding option values, we synchronize

each time-step and select the correct lattice points from ei-
ther the local or global buffers depending on the index and
time-step. In the end, we store all final option values back
into the original global buffer.

3.3 Monte Carlo Method
The Monte Carlo method is comparatively more straight-

forward to implement, since the simulations of price move-
ments are independent of each other. We can simply use
one work-item per simulation and perform all simulations
concurrently.

The main challenge of the Monte Carlo method is gener-
ating normally distributed random numbers. When imple-
menting for CPU execution, we can generate normally dis-
tributed random numbers with the polar form of Box-Muller
transform on uniformly distributed random numbers. With
the CUDA framework, we can generate normally distributed
random numbers with the CURAND library.

In the parallel implementation, a different random number
generator is required for each simulation [4]. To ensure the
results are statistically uncorrelated, the generators should
have the same seed but different sequence for each simula-
tion. These random numbers are used to calculate the asset
price at each time step. The asset price at the final time-
step is used to find the simulated option payoff, and then
the present value of the average is the final option value.

An alternate way of simulating randomness is with the
quasi-Monte Carlo method which uses low discrepancy se-
quences [6]. This involves creating sub-random numbers
that cover the area of interest evenly. Due to the deter-
ministic generation in quasi-Monte Carlo it exhibits a faster
convergence than traditional Monte Carlo which has proba-
bilistic convergence.

4. RESULT
In this section, we show the benchmarking results compar-

ing efficiency and accuracy of the parallel implementations
to that of the standard implementations. The parameters
used for each benchmark are shown in Table 1. For the GPU
implementations, we used CUDA version 7.0 and OpenCL
1.2. The GPU programs were run on Nvidia GeForce GTX
980 with 4GB memory. The CPU results were obtained from
a separate implementation using C. The CPU programs were
run on Intel Dual Core Xeon processors, 3.4GHz, with 16GB
memory.

Parameter Lattice 1 Lattice 2 Monte Carlo
Volatility 30% 30% 20%
Initial Price $100 $100 $100
Strike Price $100 $100 $105
Risk-Free Rate 2.00% 2.00% 5.00%
Expiry 1.00 1.00 0.50
Type Put Call Call
Black Scholes Price 10.841 12.822 $4.582

Table 1: Testing parameters

4.1 Lattice Method 1: Group
Table 2 and 3 show that the GPU implementation is able

to obtain correct option values of up to 10 significant digits
and achieve much better runtime at large time-steps. For



number of time-steps less than 10000, the GPU implemen-
tation has inferior performance, most likely as a result of
the overhead of initializing the GPU kernel functions and
transferring buffers.

Time-steps
Runtime (ms)
CPU GPU

10 1 1115
100 3 1117
1000 15 1118
10000 1700 1284
100000 220734 3419

Table 2: Lattice Method 1: European option per-
formance

Time-steps
Option Values

CPU GPU
10 10.54983349 10.54983349
100 10.81191051 10.81191051
1000 10.83849153 10.83849153
10000 10.84115297 10.84115297
100000 10.84141915 10.84141915

Table 3: Lattice Method 1: European option results

Table 4 and 5 show that calculating the payoff value at
each time-step for pricing of American options significantly
worsens the performance of the GPU implementation. At
100000 time-steps, the CPU implementation runtime in-
creased 4 times, where as the GPU implementation runtime
increased 8 times.

Time-steps
Runtime (ms)

CPU GPU
10 7 1106
100 4 1133
1000 50 1285
10000 6760 2282
100000 760680 25720

Table 4: Lattice Method 1: American option per-
formance

Time-steps
Option Values

CPU GPU
10 10.81911079 10.81911079
100 10.99376906 10.99376906
1000 11.01131875 11.01131875
10000 11.01305085 11.01305085
100000 11.01322305 11.01322305

Table 5: Lattice Method 1: American option results

Finally, we observe that the grow rate of the CPU im-
plementation’s runtime is roughly quadratic with respect to
the number of time steps, while the GPU implementation
exhibits a linear growth in runtime for the tested range of
time steps. It is probably due to the high parallelism of the
GPU implementation which delays the quadratic behaviour
to kick in.

Time-steps
Time (ms)

CPU GPU
500 2.47908 17.3468
1000 10.3548 10.0334
2000 25.191 11.7359
4000 104.243 18.0077
8000 359.79 30.4959
16000 1431.35 89.5854
32000 5545.46 176.971

Table 6: Lattice Method 2: European option per-
formance

Time-steps
Option Value

CPU GPU
500 12.815668 12.817036
1000 12.818624 12.819850
2000 12.820103 12.821415
4000 12.820842 12.822145
8000 12.821212 12.819236
16000 12.821397 12.779358
32000 12.821489 12.779887

Table 7: Lattice Method 2: European option results

4.2 Lattice Method 2: Triangle
By comparing Table 2 and Table 6, we can see that the

second GPU implementation outperforms the first as ex-
pected. It is noted that single precision is used for the GPU
implementation for this lattice method. Plus the effect of
roundoff, there is a discrepancy between the option values.

4.3 Monte Carlo Method
To benchmark the GPU implementation of Monte Carlo

method, we use the generalized version of the algorithm with
jump diffusion, but set the jump probability to zero to show
convergence to the Black-Scholes price.

In Table 8, we see that the GPU implementation begins
to outperform the CPU implementation when the number
of simulations is greater than 100,000. Also, we observe that
the GPU runtimes are unaffected until more than 1,000,000
simulations or 50,000 time-steps is used. This implies that at
lower numbers of simulations and time-steps, the computing
capacity of the individual threads is not yet saturated.

By comparing the generated option values in Table 9 against
the Black-Scholes price in Table 1, we see that convergence
occurs by increasing either the number of simulations or the
number of time-steps. At 1,000,000 simulations and 100,000
time-steps, we achieve convergence of approximately 4 sig-
nificant digits. We note that the option values given by the
CPU and GPU code are not the same since the random num-
bers used were not the same and there is no obvious way to
generate identical random numbers using CPU and GPU.

5. CONCLUSION
In this paper, we have implemented two standard op-

tion pricing methods, namely, lattice and Monte-Carlo, us-
ing GPU. We have coded the GPU implementations using
CUDA and OpenCL. The former is specifically designed for
Nvidia graphics cards and the latter is portable for differ-
ent GPUs as well as CPUs. For the lattice method, we



Simulations Time-steps
Time (s)

CPU GPU
10,000 50 0.096 1.403
10,000 100 0.189 1.441
10,000 500 0.939 1.42
10,000 1,000 1.863 1.1
10,000 5,000 9.257 1.462
100,000 100 1.957 1.442
100,000 1,000 18.644 1.504
100,000 5,000 95.216 1.877
100,000 10,000 186.085 2.367
100,000 50,000 981.741 5.938
100,000 100,000 1963.448 10.359
1,000,000 100 19.523 6.329
1,000,000 1,000 187.383 6.547
1,000,000 5,000 955.878 7.597
1,000,000 10,000 2056.048 10.375
1,000,000 50,000 9763.871 44.168
1,000,000 100,000 19635.623 86.821

Table 8: Monte Carlo Method: European option
performance

Simulations Time-steps
Option Value

CPU GPU
10,000 50 4.52419 4.5217
10,000 100 4.6434 4.72211
10,000 500 4.5589 4.58213
10,000 1,000 4.55826 4.67678
10,000 5,000 4.42839 4.58776
100,000 100 4.60462 4.55653
100,000 1,000 4.6239 4.55228
100,000 5,000 4.61841 4.54796
100,000 10,000 4.53072 4.59382
100,000 50,000 4.58821 4.55851
100,000 100,000 4.6035 4.60008
1,000,000 100 4.58641 4.57844
1,000,000 1,000 4.57491 4.58701
1,000,000 5,000 4.5791 4.58298
1,000,000 10,000 4.55927 4.59185
1,000,000 50,000 4.56702 4.5782
1,000,000 100,000 4.58469 4.58804

Table 9: Monte Carlo Method: European option
results

have proposed and investigated two parallelization of the
standard algorithm. The intuitive approach is easy to un-
derstand and implement but may not achieve the best par-
allel performance due to duplicate computation. The im-
proved approach addresses the issue by performing two par-
allel steps: “triangle-up” and “triangle-down”. The result-
ing method shows better parallel performance. For all the
methods, we have compared the CPU runtimes with GPU
runtimes. The latter shows significant gain in computational
time for achieving similar accuracy.

In this study, the parallelization of computation explored
pertains to the valuation of individual options, as opposed to
pricing a large number of options. In that scenario, it would
seem natural to compute all the options in parallel, with each
one computed sequentially by a single thread. However, it is

not clear whether it would be more efficient than computing
each option in parallel and processing the options one by
one. This will be an interesting topic for future study.
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