NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2013; 20:74-92
Published online 28 February 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nla.1826

Finding off-diagonal entries of the inverse of a large symmetric
sparse matrix

Shawn Eastwood*:™ and Justin W. L. Wan

Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

SUMMARY

The method fast inverse using nested dissection (FIND) was proposed to calculate the diagonal entries of the
inverse of a large sparse symmetric matrix. In this paper, we show how the FIND algorithm can be genera-
lized to calculate off-diagonal entries of the inverse that correspond to ‘short” geometric distances within the
computational mesh of the original matrix. The idea is to extend the downward pass in FIND that eliminates
all nodes outside of each node cluster. In our advanced downwards pass, it eliminates all nodes outside of
each ‘node cluster pair’ from a subset of all node cluster pairs. The complexity depends on how far (i, j)
is from the main diagonal. In the extension of the algorithm, all entries of the inverse that correspond to
vertex pairs that are geometrically closer than a predefined length limit / will be calculated. More precisely,
let o be the total number of nodes in a two-dimensional square mesh. We will show that our algorithm can
compute O(a3/212€) entries of the inverse in O (a3/272€) time where [= O(a!/41€)and 0 < e < 1/4.
Numerical examples are given to illustrate the efficiency of the proposed method. Copyright © 2012 John
Wiley & Sons, Ltd.

Received 12 December 2010; Revised 23 December 2011; Accepted 30 December 2011

KEY WORDS: nested dissection; sparse matrix; matrix inversion; off-diagonal entries; computational
mesh; computational complexity

1. INTRODUCTION

The concept of using nested dissection to factorize a sparse symmetric matrix was first proposed
in [1]. Details about the original nested dissection algorithm can be found in [2]. The algorithm
devised only encompassed the LDU factorization and did not return any entries from the inverse
itself. In [3], the authors presented the fast inverse using nested dissection (FIND) algorithm in two
parts. The first part, which is called the upwards pass, consisted of the original process of reordering
and reducing the sparse symmetric matrix introduced in [1]. The second part, which is called the
downwards pass, uses the elimination results that were calculated during the upwards pass to then
calculate each diagonal entry of the inverse. An algorithm for recursively computing entries of the
inverse of a sparse matrix using the LDU factorization and the matrix’s adjacency graph is given
in [4]. In a recent paper [5], the downwards pass is replaced with a recursive variant of the algorithm
stated in [4] which enables the computation of all inverse entries that correspond to nonzero entries
in the original matrix. However, this modification is unable to compute most entries of the inverse
that correspond to the zero entries in the original matrix. A similar approach based on a hierarchy
of Schur complements is developed in [6] for computing the diagonal of the inverse matrix.

The motivation given in [3] for finding the diagonal entries of the inverse of a large sparse matrix
is the problem of finding the ‘retarded Green’s function’ and the ‘less-than Green’s function’ for

*Correspondence to: Shawn Eastwood, Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada.

TE-mail: shawn.eastwood @ gmail.com

Copyright © 2012 John Wiley & Sons, Ltd.

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 75

quantum nanodevices. The retarded Green’s function is the inverse of the matrix A = El — H — X,
where E is a scalar denoting the nanosystem’s energy, [is the identity matrix, H is the system’s
Hamiltonian operator, and % is a diagonal operator [3] (i.e., scalar potential) denoting the
‘self-energy’ of the system [7, 8]. The less-than Green’s function is G= = G’ X<(G")', where
G’ denotes the retarded Green’s function and denotes the Hermitian transpose. X< is another
diagonal matrix [3] denoting the ‘less-than self energy’ of the system [7, 8]. The less-than Green’s
function can be rewritten as G= = G'2<(G") = 471241 = (4T (2<)"14)~'. =< is a diago-
nal matrix, so computing (X<)~! is straightforward. 4 and A" are sparse, and (X<)~! is diagonal,
so B = AT(Z<)714 can be assumed to be also sparse. Computing both G" = A~ and G= = B!
involve finding the inverse of a sparse symmetric matrix.

From the matrices G” and G =, the entries of G and G = are used to find the density of states,
the electric charge density, and the current at each node in the computational mesh. At each node
n in the computational mesh, the diagonal entry of G” corresponding to n is used to compute the
density of states at the current mesh node, the diagonal entry of G = corresponding to n is used to
compute the electric charge density at the current mesh node, and the off-diagonal entries of G =
corresponding to the edges leaving n are used to calculate the current density passing through the
current mesh node [3, 8].

The nanodevice modeling example suggests that the diagonal entries of the inverse are most
importantly followed by off-diagonal entries that correspond to connections that link adjacent nodes
in the computational mesh. In other words, off-diagonal entries that correspond to node pairs that are
close to each other are more important than off-diagonal entries that correspond to node pairs that
are far from each other (see Figure 1). Our algorithm will attempt to calculate as much off-diagonal
entries as possible while minimizing the time complexity. Let o denote the number of nodes present
in a roughly square two-dimensional computational mesh, and let / be a geometric length threshold.
If a pair of nodes from the computational mesh is separated by a geometric distance that is greater
than /, the algorithm will not attempt to compute the entry of the inverse that corresponds to that
pair of nodes. More precisely, if / is of order O(a'/4*€) where 0 < ¢ < 1/4 is arbitrary, then the
extended FIND algorithm will compute the O («r3/212€) off-diagonal entries of the inverse that cor-
respond to node pairs that are separated geometrically by no more than / in time O(a>/2%2€). This
results in O(1) time per entry of the inverse computed. We note that the complexity of the original
FIND algorithm for computing the diagonal entries is O (). For € = 0, our algorithm is able to
compute additional O(a®/?) off-diagonal entries with the same order of complexity of FIND.

Similar to FIND, our algorithm is based on the nested dissection method [1,2]. We will make the
standard assumption that the matrix is symmetric positive definite. This assumption is mainly for
numerical stability consideration. Our algorithm itself does not rely on this property.

Figure 1. An example computational mesh showing some connections whose calculation in the inverse take
precedence over others.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

76 S. EASTWOOD AND J. W. L. WAN

Throughout this paper, we will use the following notation: if B denotes a matrix, then B(S;, S;)
will denote the submatrix of B whose row indices belong to the set S, and column indices belong
to the set S.. Moreover, B(S,, S¢) will be referred to as the (S;, S.) block of B.

In Figure 1, the connection between nodes p and g has a graph distance of 1, whereas the con-
nections between nodes p and r, and p and s have graph distances of 3 and 5, respectively. In this
paper, we will place priority on computing entries of the inverse that correspond to shorter con-
nections than entries that correspond to longer connections. Hence, the computation of A~1(p, q)
takes priority over the computation of A~!(p,r) which in turn takes priority over the computation
of A7(p,s).

In Section 2, we will describe the FIND algorithm as presented in [3]. In Section 3, we will dis-
cuss an extension to the FIND algorithm in order to compute all off-diagonal entries of the inverse
that correspond to mesh node pairs that are closer to each other than a certain length limit. In
Section 4, we will theoretically analyze the computational complexity of computing off-diagonal
entries of the inverse. Finally, in Section 5, we will give experimental results that verify the
computational complexity presented in Section 4 for the case when € = 0.

2. THE FIND ALGORITHM

This section will describe the upwards and downwards passes as proposed in [3]. Throughout this
and the subsequent sections, the large sparse symmetric matrix for which we will be computing
entries of the inverse will be denoted by A.

Before we start describing the FIND algorithm, we will first define the ‘node cluster’ and ‘node
cluster tree’ for the computational mesh.

Definition 1
A ‘node cluster’ is a subset of the set of nodes that makeup the computational mesh.

Definition 2
A ‘node cluster tree’ is a binary tree where each node in the tree denotes a node cluster. Node cluster
trees obey the following properties:

e The root node cluster is the entire computational mesh.
e Given a nonleaf node cluster, the two child node clusters make up a partition of the parent node
cluster.

To assist with the description of our proposed extension to the FIND algorithm, we will also
assume that the node cluster tree is a perfectly balanced tree, meaning that all leaf node clusters are
on the same level. If we happen to have a node cluster tree that is not perfectly balanced, then we
can further subdivide shallower leaf node clusters until the tree is perfectly balanced. For the case
where we would have to subdivide a leaf node cluster containing a single node, it is important to
note that empty node clusters are still considered valid.

On any given level, all node clusters are assumed to have approximately the same number of mesh
nodes. Leaf node clusters are assumed to have O(1) mesh nodes. Figure 2 shows an example of how
an 8 x 8 computational mesh (using the five-point stencil) is partitioned to form a node cluster tree.
The root node cluster (Level 0) is the entire mesh as laid out in the definition. The central vertical
line separates the root node cluster into two child node clusters (Level 1). The node clusters on
Level 1 are, themselves, bisected by horizontal lines to obtain the four node clusters on Level 2. By
recursively bisecting the node clusters, we eventually obtain 64 leaf node clusters, each consisting
of a single node.

2.1. The upwards pass
We will first define the boundary, interior, and the private interior of a node cluster N.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 77

oheteteetetete
~o+e
oo
shototereteioto
ohofoteteteteto
RARS
pane
apdbundbund buw:

Figure 2. An example computational mesh with node cluster tree subdivisions.

Definition 3
Given a node cluster N, the ‘boundary’ of N, denoted by d/V, is the set of all nodes in N that has a
connection with a node outside of N.

The boundary of the root node cluster is always empty.

Definition 4
Given a node cluster N, the ‘interior’ of N, denoted by /nt (N), is the set of all nodes in N that do
not have a connection with a node outside of N.

oN and Int(N) form a partition of N: N = dN U Int(N), where U denotes the disjoint union.

In Figure 3 (left), nodes that are contained within node cluster N are shaded, whereas nodes
that are outside N are grid textured. The shaded area is N, whereas the diagonal-textured area is
Int(N).

The action of eliminating a node n from the computational mesh is equivalent to pivoting from
the (n,n) entry of the matrix during Gaussian elimination. Assume that node n is ordered first so
that the matrix can be written as the following:

5]

where d is a scalar, v is a column vector, and B is a square matrix.

®

Figure 3. (Left) An example showing the boundary and interior of a node cluster and (right) the connectivity
of the node cluster after the interior nodes have been eliminated.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

78 S. EASTWOOD AND J. W. L. WAN

After eliminating node »n, the matrix becomes:

T .
0 B-u

The remaining part of the matrix, B — *2—, is symmetric, and the computational mesh associated

with the remaining part is the same as before, only that n has been removed and all neighbors of n
are now all mutually linked to account for all the fill-ins that occur. We will subsequently refer to

the Schur complement B — % as the ‘reduced matrix’.

The importance of defining the interior of node cluster N lies with the divide-and-conquer nature
of the FIND algorithm. As long as we do not eliminate any boundary nodes, the effect of elimi-
nating nodes from the interior has absolutely no effect outside the cluster. Given any two disjoint
node clusters Ny and N;, the result of eliminating all nodes from /7t (N;) can be superimposed on
the result of eliminating all nodes from /nt(N;) to obtain the result of eliminating all nodes from
Int(Ny) U Int(N3). For a node cluster N, eliminating all nodes from Int(N) only affects AN, so
the only results we need to store is the (JN, dN) block of the reduced matrix. This (dN, dN) block
is all that we need to call upon when we wish to instantly eliminate /nt(/N) in another scenario
(provided 9N is untouched). The overall aim of the upwards pass is to, for each node cluster N,
calculate the (0N, dN) block that remains once all nodes from /nt(N) have been eliminated.

Figure 3 (right) shows the result of eliminating the interior of the node cluster. The dashed edges
are edges that have been added (fill-in) or changed, and the diamond-textured nodes are nodes whose
corresponding diagonal entry has been changed. Notice the complete graph of eight nodes mutually
connecting all boundary nodes that had a connection with the interior. The four corners of the cluster
had no connection with the interior and are hence not part of the complete graph. Notice how the
changes are all constrained to the cluster itself.

Assume that we now wish to eliminate the interior of a nonleaf node cluster N that has children
My and M,. We start by eliminating Int(M;) and Int(M;) which are both disjoint subsets of
Int(N). When we eliminate /nt(M;), the effect of the elimination is constrained to M;. When
we eliminate Int(M>), the effect of the elimination is constrained to M,. After eliminating both
Int(M;) and Int(M>), the set of nodes remaining in /nt(N) is called the private interior of N.
The private interior of N is what we must eliminate in order to complete the elimination of Int(N).

Definition 5

If N is a nonleaf cluster with children M; and M5, then the ‘private interior’ of N, denoted by
pi(N), is defined by pi(N) = Int(N) — (Int(My) U Int(M,)). For convenience, if N is a leaf
cluster, then we simply let pi(N) = Int(N).

For a nonleaf cluster N with children M; and M, dN U pi(N) = dM; U OM5. This equation is
important as it shows that pi (N) is all we need to subsequently remove for us to be left with dN.

Figure 4 shows the steps involved in the elimination of the interior of a nonleaf node cluster
N with children M; and M>. The shaded region is dN, whereas the diagonal-textured region is
pi(N). The top mesh shows the mesh before any elimination of /n¢(N) has occurred. The middle
mesh shows the elimination of /nt(M;) and I nt(M,). The final mesh shows the middle mesh after
pi(N) has been removed. These steps form the basic idea of the upwards pass algorithm.

Algorithm 1 describes the upwards pass algorithm in full detail. Let A be the original sparse
matrix before any nodes have been removed. Consider a node cluster N with children M and M>.
The goal of the upwards pass is to compute Uy (dN, dN) which is the reduced matrix A after the
interior of node cluster N has been removed. The idea is to eliminate the interior of node cluster N
by eliminating the interior of its children My and M>.

The algorithm starts with computing Ups, and Uy, by a recursive call to the upwards pass.
It then computes U.(y), the reduced matrix A after the interiors of M; and M, have been
removed. (Here, ¢(N) refers to the children of N.) Note that eliminating the interior of M,

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 79

Figure 4. The stages in the elimination of the interior of a node cluster N with children M and M>: (top)
no elimination, (middle) elimination of interiors of M| and M>, and (bottom) further elimination of the
private interior of N.

only affects the (dM;, dM;) block of A. Similarly, eliminating the interior of M, only affects the
(0M>, 0M>) block. As a result, if ny and n, are two nodes from dM; (0M53), then U, (yy(n1,n2) =
Um, (n1,n2) (Uevy(ni,n2) = Uy, (n1,n2)). If one node is from M; and the other from M, then
Uevy(ny,n2) = A(ny,ns).

Consider nodes in dN, and let S; = dN N M; and S, = ON N M,. Index the nodes in M first,
followed by the nodes in M. Using the aforementioned formulas for U.(y), we have

| Um(S1,81) A(S1,82)
U“N)(E’N’aN)‘[A(S5, 51) UM2<Sz,Sz)] M

Similarly, let Py = pi(N) N M; and P, = pi(N) N M,. We have

. _ [Uy (51, P1) A(S1, Py)
Uea@ON.PIND) = | A (5, P1) Upty(Sa. Py) |

. . [Umy(P1,P1) A(Py, Py)
U N N N = ! s 2
cw)(Pi(N), pi(N)) | A(P2,P1) Unmy(P2.P2) @)
. [Up, (P1.S1) A(P1.S)
U N),dN) = ! .
ey (PI(N)) I A(P2,S1) Upy (P2, S2) |
Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92

DOI: 10.1002/nla

80 S. EASTWOOD AND J. W. L. WAN

Algorithm 1 (Uy (0N, ON) = UpwardsPass(IV)

if ClusterType(/NV) = Leaf then

{If N is a leaf node cluster, we simply eliminate the interior. }

{Note our convention that for a leaf node cluster, pi(N) = Int(N).}

Un(ON,ON) = A(ON,ON) — A(ON, pi(N))A(pi(N), pi(N)) "t A(pi(N),dN)
else

U, (OMy,0M,) = UpwardsPass(M)

U, (0Ms, OM5) = UpwardsPass(Ms)

{Compute Ue(n)(ON,ON), Ue(n)(ON,pi(N)), Ue(ny (pi(N), pi(N)), and Ue(n) (pi(N), ON)

by equations (1) and (2).}

UN(ON,0N) = U, n)(ON,ON)

- c(N)(an pZ(N))Uc(N) (pZ(N)7p7'(N))_1Uc(N) (pZ(N)7 aN)

end if
return Uy (ON, ON)

Finally, we compute Uy (0N, dN) by eliminating the pi (N) nodes from the computational mesh,
leaving us with the Schur complement:

Un(ON,dN) = U;(n)(ON,0N)
— Uevy@N, pi(N)Ueny (pi(N), pi (N) ™ Ueny (pi(N), 0N).
In the case where N is the root cluster, IN = @, so Uy (AN, dN) stores an empty (0 x 0) matrix.

2.2. The downwards pass

After the upwards pass has been terminated, we will have computed Uy (0N, dN) for every node
cluster N.

Suppose that we are inverting A by performing simple forward reduction on the augmented matrix
[A I] Letthe arbitrary node n occur last in the ordering. After pivoting from all of the previ-
ous nodes, the bottom row becomes [0 ... 0 u | x ... = 1] u denotes the (n,n)
entry that remains after all nodes, other than 7, have been eliminated, whereas each * denotes an
unknown fill-in. Thus, A~} (n,n) = % Similarly, if node cluster N occurs last in the ordering, then
A"Y(N,N) = U™!, where U is the (N, N) block of the reduced A after all nodes outside of N
have been removed.

The overall aim of the downwards pass is to calculate A=1 (N, N) for every leaf node cluster N.
As described earlier, it is equivalent to finding the (N, N') block of the reduced matrix A obtained
from eliminating all nodes outside of N. We first define the following.

Definition 6 o
Given a node cluster N, the ‘complement’ of N, denoted by N, is the set of all mesh nodes outside
of N.

Definition 7 o
Given a node cluster N, the ‘adjacent’ of N, denoted by oN = dN, is the boundary of the
complement of N.

Definition 8 o
Given a node cluster N, the ‘exterior’ of N, denoted by Ext(N) = Int(N), is the interior of the
complement of N.

Similar to the upwards pass, we employ a divide-and-conquer method for eliminating the exterior
nodes in the case of nonroot clusters. Consider a node cluster N with parent cluster P and sibling

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 81

cluster S. 10 eliLninate the exterior of N, we first eliminate the exterior of P and the interior of S
(note that N = P U §). We will call the set of remaining nodes as the private exterior of N.

Definition 9
Given a nonroot node cluster N with parent cluster P and sibling cluster S, the ‘private exterior’ of
N, denoted by pe(N), is defined by pe(N) = Ext(N)— (Ext(P) U Int(S)).

Figure 5 depicts the adjacent and private exterior set for a node cluster N with parent cluster P
and sibling cluster S. The dark/red area is the adjacent set oN N P of N, and the light/grey area is
the private exterior set pe(N) of N.

The notion of the exterior and private exterior node sets were not part of the notation used in [3].
These definitions are introduced in this paper to simplify the discussion.

Algorithm 2 describes the downwards pass algorithm in full detail. The goal of the downwards
pass is to compute Uz(oN, 0N), the reduced matrix A after the exterior of N has been removed.
The idea is to eliminate the exterior of N by eliminating the exterior of its parent P and the interior
of its sibling S.

The algorithm starts with calling DownwardsPass(Root), where Root denotes the root node clus-
ter. After the computation of Uz; (which is just an empty matrix for Root), it makes a recursive call
to compute Upy, and Uy, for its children M; and M>.

At a general recursive step for a node cluster N, U has already been computed for its parent
cluster P. Also, Ug can be obtained from the upwards pass for its sibling cluster S. The algorithm
then computes U r(y), the result of eliminating both the exterior of the parent, and the interior of
the sibling. (Here, f(N) refers to the ‘family’ of N.) Note that eliminating the exterior of P will
only affect the (0P, oP) block of A. Similarly, eliminating the interior of S will only affect the
(S, 0S) block. Thus, if n1 and n, are two nodes from gP (9S), then U r(5)(n1,n2) = Up(ny,n2)
(Uyrwy(ni,ny) = Us(ny,nz)). Otherwise, Uyrny(n1,n2) = A(ny,n2). This is similar to the
computation of U,y in the upwards pass.

Let X, =oNNP,X,=0oNNS,Y, = pe(N) NP,and Y, = pe(N)NS. Also, index the nodes
in P first, followed by the nodes in S. Using the aforementioned formulas for U ¢(x), we have

. i U?(Xl,Xl) A(X1, X2)

Uravy(@N.oN) = | A(X2, X)) Us(X2,X2) |’
. [Uﬁ(Xl,Yl) A(X1,Y2)

Uran@N.peND =1 "A(x,) Us(Xa,1s) |

Usw)(pe(N), pe(N)) = (ff(gly?)) (}As((};;z’,);?z))]’

[Up(Y1,X1) A1, X
crmtrera=[TS G0 |

3)

Figure 5. An example showing the adjacent (dark) and private exterior (light) of a nonroot node cluster N.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

82 S. EASTWOOD AND J. W. L. WAN

Algorithm 2 (U (0N, oN) = DownwardsPass(/V)

if ClusterType(/N) = Root then
{If N is the root node cluster, then pN = 0}
Ux(oN,oN) =[] (a0x0 empty matrix)
else
{Compute Uywy(eN,oN), — Usavy(eN,pe(N)), Upavy(pe(N),pe(N)), and
Uy (pe(IV), o) by equation (3).}
Ug(eN,oN) = Ugy(oN,oN)
~Uyswy (eN, pe(N)Ug(n) (pe(N), pe(N)) " Uy () (pe(N), oN)
end if

if ClusterType(/NV) = Leaf then
{If we have a leaf node cluster, we finally eliminate the adjacent node set and invert the
remaining (N, N) block.}
AN, N) = (A(N,N) — A(N, oN)Ux (0N, oN)* A(oN, N))~!
else
{If we do not have a leaf node cluster, we pass the results of the computation down to the
children of N.}
Usr (oM, oMy) = DownwardsPass(M)
Usg; (0Mz, 0M3) = DownwardsPass(M2)
end if
return Uz (0N, oN)

Then, we can compute Uz (oN,oN) by eliminating the pe(N) nodes from the computational
mesh, leaving us with the Schur complement:

Ug(eN.oN) = Uysw)(eN,oN)
—Usw)(@N, pe(N)U sy (pe(N), pe(N)) "' Usvy(pe(N),oN).

At the leaf node cluster, we finally eliminate the adjacent node set o/N and invert the remaining
(N, N) block.

3. THE ADVANCED FIND ALGORITHM

This section will describe the extensions to the FIND algorithm that will be made to compute the
off-diagonal entries of the inverse of A.

As in the previous section, suppose that we are inverting A by performing simple forward reduc-
tion on the augmented matrix [A 1] Let the nodes n; and n, be the second-to-last and the
last nodes in the ordering, respectively. After pivoting from all nodes other than n; and n,, the

0 ... 0 * ... % 0 1
U denotes the {ni,n,} x {n1,n,} block that remains after all nodes other than n; and n, have
been removed, whereas each * denotes an unknown fill-in. Multiplying the bottom two rows
... 001 0 * ... %
0O ... 0 01 R
affected by any of the subsequent row operations during back substitution, so we can conclude
that A=Y (ny,n,) = U71(1,2) and A= (ny,n1) = U~ (2, 1). Similarly, if node clusters N; and N,
occur last in the ordering, then A1 (N, No) = U~Y(Ny, N3) and A=Y (Na, Ny) = U™ (N,, Ny),
where U denotes the (N7 U N3) x (N U N3) block that remains after all nodes that are outside of
N1 U N, have been removed.
To summarize, FIND algorithm (downwards pass) computes the diagonal entries, A~!(n,n), by
eliminating the exterior of each node cluster. The main idea of our proposed method (‘advanced

bottom two rows of the augmented matrix become[0 ... 0 U * oo 10 i|

U1 . The bottom two rows are not

by U1 gives [

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 83

downwards pass’) for computing the off-diagonal entries, A~ (n1,n5), is to eliminate the exterior
of what we call the ‘node cluster pairs’.

3.1. Node cluster pairs

In this section, we define the notion of ‘node cluster pairs’, which is the key for computing
off-diagonal entries of the inverse. In addition, we extend the concepts of the node cluster tree,
complement, adjacency, (private) interior, and (private) exterior for node cluster pairs.

Definition 10
A ‘node cluster pair’ is an unordered pair of distinct node clusters that both exist on the same level
in the node cluster tree.

We now define the different types of node cluster pairs.

Definition 11
A node cluster pair is called a ‘twin pair’ if the node clusters are siblings of each other. A node
cluster pair is called a ‘leaf pair’ if the node clusters exist at the leaf level of the node cluster tree.

We note that there is no ambiguity in the definition of the leaf pair because we specified that
the node cluster tree will be perfectly balanced with all leaf clusters on the same level. Also, it is
possible for a node cluster pair to be both a twin pair and a leaf pair.

To accommodate the computation involving node cluster pairs, we need to extend the structure of
the node cluster tree. The motivation behind these extensions will become clear when we describe
the recursive algorithms that makeup the advanced downwards pass. The changes are as follows:

e Any nonleaf node cluster N with children M and M, will receive a twin pair as an additional
child. This twin pair will consist of the children of N, that is {M7, M}, and is called the ‘twin
child’ of N.

e Every nonleaf node cluster pair { N1, N} has four children:

- child11({Ny1, N2}) = {child1(Ny),child1(N>)},
- child12({N1, N2}) = {child1(Ny),child2(N,)},
- child21({Ny, N3}) = {child2(Ny),child1(N>)},
- child22({N1, N2}) = {child2(Ny),child2(N,)}.

After making the earlier extensions, we now have what we call the ‘extended node cluster tree’.
Figure 6 gives an extended node cluster tree for a 2 x 2 computational mesh with a five-point stencil.
Each node cluster/pair is denoted by a 2 x 2 grid. For example, the root node cluster occupies the
entire grid and is denoted by the dark-shaded square. It has two children and each covers half of
the nodes. Nodes that are not part of the cluster are white squares. In the extended node cluster
tree, each node has an additional twin child, connected by a dashed edge. The twin child pair of
the root node cluster consists of two node clusters: the first cluster (left child of root) is shown by
dark-shaded squares; and the second cluster (right child of root) is shown by lightly shaded squares.
The remaining cluster nodes and twin child pairs are shown similarly. Notice that node cluster pairs
have four children and no twin child.

We now extend the notations from the previous section to node cluster pairs. Given any node
cluster pair {Ny, N,}, the complement cluster {N;, N>} = N N N», the adjacent set o{N;, No} =
d{N1, N2}, and the exterior Ext({N1, N2}) = Int({ Ny, N»}) are defined in a similar fashion to how
they are defined for node clusters. Note that oN; and oN, are not necessarily disjoint nor is their
union equal to o{Ny, N2}. Figure 7 (left) shows how oN; and oN, are not always disjoint, and
Figure 7 (right) shows how the union of o/N; and N, is not always equal to o{ Ny, N2}.

In addition, the sibling pair {S7, S>} is defined such that S; and S, are the sibling clusters to
Ny and N,, respectively. Given any nontwin pair { Ny, N} with parent pair { P1, P»} and sibling
pair {S1, S»}, the private exterior pe({N1, N2}) = Ext({Ny, N»}) — (Ext({Py, P2}) U Int(Sy) U
Int(S,)) is defined in a similar fashion to how it is defined for node clusters.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

84 S. EASTWOOD AND J. W. L. WAN

B n m e

Figure 6. The extended node cluster tree for a 2 x 2 computational mesh.

Figure 7. (Left) Adjacent sets oN1 and o> intersect at two corner nodes and (right) the union of adjacent
sets oN1 and oN> includes nodes between Ny and N> which do not belong to o{ N1, N2 }.

3.2. Minimum separation

Before we describe the advanced downwards pass, we remark that, ideally, one would want to
compute the elimination of the exterior for all node cluster pairs which would in turn enable one
to compute every entry of A~!. Because of time complexity constraints, however, we will limit
ourselves to only work with pairs whose ‘minimum separation’ is less than a user-defined threshold.

Definition 12

Let d(n1,n,) denote the graph distance between nodes 7 and n, as measured on the computational
mesh. The ‘minimum separation” between node clusters N; and N, denoted by d(Ny, N»), is the
minimum value of d(ny,n,), where n; € Ny and n, € N,. For a node cluster pair { Ny, N>}, the
minimum separation of { Ny, N»} is simply d (N7, N»).

Let / be the cut-off distance that determines the node cluster pairs for which we will calculate the
elimination of the exterior. If the minimum separation of a node cluster pair is less than or equal to
[, then we compute the elimination of the exterior for this pair. If the minimum separation of a node
cluster pair is greater than /, then we do not compute the elimination of the exterior for this pair. We
make two observations.

Observation 1: If d(Ny, N2) > [, then the minimum separations of all child pairs of {Ny, N,}
are also greater than /. The moment we exclude a pair from our calculations because the minimum
separation is greater than /, we can exclude the entire tree rooted at that pair from our calculations.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 85

Observation 2: If d(Ny, N2) < [, then there exists at least one child pair of {Ny, N,} that
has a minimum separation less than or equal to /. When we include a pair in our calculations
because the minimum separation is less than or equal to /, we can move on to at least one of the
child pairs.

The aforementioned two observations imply that if we restrict the extended node cluster tree
as to exclude pairs whose minimum separation is greater than /, the resultant tree is connected
because of the first observation. Also, there are no ‘dead ends’ in the sense that there always
exists a nonempty child pair before we reach the leaf node or leaf-pair level because of the
second observation.

3.3. Advanced downwards pass

We will now describe the advanced downwards pass, which will replace the downwards pass. The
essence of the advanced downwards pass is not much different from the downward pass. It com-
putes the elimination of the exterior of the node clusters. However, in addition, it also computes the
elimination of the exterior of node cluster pairs. This is the main difference from the downwards
pass that enables us to compute off-diagonal entries of the inverse.

The advanced downwards pass consists of two recursive subroutines: ClusterDownwardsPass
and PairDownwardsPass. ClusterDownwardsPass operates on input node cluster N and com-
putes Uryy and Uy in the same way as the downwards pass, see Algorithm 3. At the leaf
node, it computes A~!(N, N), the diagonal entries of the inverse. To compute the off-diagonal
entries, it also calls PairDownwardsPass on the twin child (cf. Figure 6) of a nonleaf cluster
node N.

PairDownwardsPass computes Um, the reduced matrix A after the exterior of the node clus-
ter pair {N1, N} has been removed. The algorithm resembles the procedures of the downwards
pass. It merges the results of the elimination of the exterior of the parent pair with the results of
the elimination of the interiors of the sibling clusters and finally computes the elimination of the
exterior of the node cluster pair itself.

Algorithm 3 U (9N, oN) = ClusterDownwardsPass(/N)

if ClusterType(/N) = Root then
{If N is the root node cluster, then pN = ()}
Uy(oN,oN) =[] (a0x0empty matrix)
else
{Compute Upn)(oN,oN), Ugpw)(oN,pe(N)), Usvy(pe(N),pe(N)), and
Ug(ny(pe(N), oN) by equation (3).}
Ux(eN, oN) = Ug)(eN, oN)
—Usny (N, pe(N)) Uy (pe(N),pe(N)) " Usny (pe(N), oN)

end if
if ClusterType(/V) = Leaf then
{If we have a leaf node cluster, we finally eliminate the adjacent node set and invert the
remaining (N, N) block.}
A=1(N,N) = (A(N, N) — A(N, oN)Ux (oN, oN) = A(oN, N)) !
else
{If we have a non-leaf cluster, we pass the results of the computation to the children of N, and
we also call PairDownwardsPass on the twin child of N.}
Um(QM 1, oM7) = ClusterDownwardsPass(;)
Usg; (M3, oM3) = ClusterDownwardsPass(Mz)
Um(g{Ml,]\42}7 Q{Ml, MQ}) = PairDownwardsPass({Ml, MQ})
end if
return Uz (0N, oN)

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

86 S. EASTWOOD AND J. W. L. WAN

Algorithm 4 describes the PairDownwardsPass algorithm in full detail. At a general recursive step
for a node cluster {N1, N2}, Ugp—p,y has already been computed for its parent cluster pair { Py, P> }.
Also, Ug, and Ug, can be obtained from the upwards pass for the sibling cluster S; of Ny and the
sibling cluster S, of N5. The algorithm then computes U sy, n,1), the result of eliminating both the
exterior of the parent pair and the interiors of the siblings. (Here, f({N1, N,}) refers to the ‘family’
of {Nl . Nz})

Similar to the computation of Uz(y), eliminating the exterior of {Py, P>} will only affect the
(o{P1, P2},0{P1, P2}) block of A. Also, eliminating the interior of S; (S2) will only affect the
(0S1,081) block ((053, 0.53) block). These processes do not interact. So, if 71 and n, are two nodes
from Q{Pl, Pz}, then Uf({N],Nz}) (I’ll,nz) = Um(l’ll, I’lz). Similarly, if ni and ny both come
from 957 (3S2), then Uy n, N,y (n1,12) = Us, (n1,n2) (Ugn, Ny (n1,12) = Us,(n1,n2)). In
all other cases, U r((n, N,y (11, 12) = A(ny1,n3).

Algorithm 4 UW(QN p, 0N p)=PairDownwardsPass({ N1, N2 })

if PairType({ N1, N2 }) = Twin OR LeafTwin then
IUW(Q{Nl’N2}’ o{N1,N2}) = Up(oP, oP) (P=parent of {N;, N>})
else

{Compute Ujyyn, 31 (Q1, Q1) Usp(nvy,vop(Q1,Q5)s Up((ny,no})(@5,Q5), and
Ugsn,,No}) (@5, Q1) by equation (4).}
Um(@n Q1) = Upn,,n21)(Q1, Q1)

~Us (i Nah) (@1, @)U (v 32 1) (@5, Q5) T Uy) (@5, Q1)

end if
if PairType({ N1, N2 }) = Leaf OR LeafTwin then
{If we have a leaf cluster pair, we finally eliminate the adjacent node set and invert the
remaining (N7 U Na) x (N7 U N3) block and extract the off-diagonal blocks with Np =
{N1, N2t}
Ail({Nh NQ}v {Nl’ NQ}) = (A(va NP)_
A(Np, oNp)Ux(eNp, oNp) ' A(eNp, Np)) ™!
else
{{N1, N3} is assumed to have a minimum separation less than or equal to [. We will only call
PairDownwardsPass on the children of { N7, Ny} that have a minimum separation less than or
equal to [.}
ifd(Mll, Mgl) < [then
Um(QMPIM QMPH) = PairDownwardsPass({Mu, Mgl})
(oMp11 = o{ M1, M2y })
end if
if d(M117 MQQ) < [then
Um(@Mplz, QMplg) = PairDownwardsPass({Mn, MQQ})
(oMp12 = Q{Mu, Mzz})
end if
if d(Mlz, le) < [then

Uiy (0Mpa1, 0Mpo1) = PairDownwardsPass({ Mo, Mo })

(oMpa1 = o{Mi2, M2 })
end if
if d(]\4127 M22) < [then
Ui{Mu,Mﬂ} (oMpaa, 0Mpas) = PairDownwardsPass({ M2, Mas })
(0Mpag = o{ M2, M32})
end if
end if
return Upgx(e{ N1, Na}, o N1, Na})

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 87

To concisely express the formulas, we define the following sets:
01 = 0{N1, N2}, Q2 = o{N1, N2} N {P1, P2}, Q3 = o{N1, N2} N S1, Q4 = 0{N1, N2} N S,

Qs = pe({N1,N2}), O = pe({N1,N2}) N {P1, P2}, Q7 = pe({N1,N2}) N 81, Qg =
pe({N1, N2}) N Ss.

Index the nodes in { Py, P,} first, the nodes in Sy second, and then followed by the nodes in S5.
Using the aforementioned formulas for U sy, n,}), We have

Up553(02.02) A(Q2,03) A(Q2,04)
Urany.nop (01, 01) = A(Q3, 02) Us, (Q3,03) A(Q3,04)

| A(Q4.02) A(Q4,03) Us,(Q4,04) |
[U 557(02,06) A(02,07) A(Q2,05)]
Uran, non(Q1, Qs) = A(Q3, Qs) Us,(Q3,07) A(Q3,05s)

| A(Q4,06) A(Q4,07) Us,(Q4,08) |
[U 557(Q6, Q6) A(Q6.07) A(Qs, Qs)]
Urin, a3 (0Qs, 0s) = A(Q7, Qs) Us,(Q7,07) A(Q7,05s)

| A(0Os, Q) A(Qs,0Q7) Us,(Qs,08) |
[Up557(Q6, 02) A(Q6.03) A(Qs, Q4)]
Uran,.Non(Qs,01) = A(Q7,02) Us,(Q7,03) A(Q7,04) .
A(Qs, Q2) A(Qs,03) Us,(Q0s,0Q4) |

We then compute UW(Ql, Q1) by eliminating the private exterior pe({Ny, N»}) nodes,
which results in the Schur complement:

“)

Ui wy1(Q1, Q1) = Uiy — Ui sUs 3 Us 1,

where Uy 1 = Upn, no0) (@1, @1), Urs = Urny von (@1, Q5), Uss = Urin, Noy) (@5, Os), and
Usa =Urn, Nop(Qs, Q1)-

If it is a nonleaf cluster pair, then the procedure is repeated recursively for its four children cluster
pairs: {M11, Ma1}, {M11, M2z}, {M12, M21}, and {M12, M2}, where {M11, M2} and {Ma1, M2z}
are the children of N; and N, respectively. We remark that we only perform the computation if the
minimum separation of the cluster pair is less than or equal to /. If it is a leaf cluster pair, we have
eliminated most of the exterior nodes except the adjacent node set. After eliminating the adjacent
nodes, we can invert the remaining (N7 Ll N3) X (N1 U N3) block to extract the off-diagonal entries:

ATV({Ny, No b (N1, No}) =
(A(Np,Np)— A(Np,oNp)Uy,(oNp,oNp) ' A(oNp, Np)) ™",
where Np = {N1, N2} and oNp = o{ Ny, N2 }.

4. COMPLEXITY ANALYSIS

In this section, the time complexity of the upwards, the downwards, and the advanced downwards
passes will be analyzed for a square computational mesh with area « (by area, we mean the number
of mesh nodes). We assumed that the node cluster tree is perfectly balanced. Thus, the number of
levels in the node cluster tree is log,. Each node n in the mesh will be assumed to be only con-
nected to nodes that are in the immediate vicinity of n. This assumption means that the number of
neighbors each mesh node has is O(1).

Given a node cluster N with area 8, let L be of the same order as the length of the node cluster’s
perimeter. We will call L the ‘characteristic’ length of node cluster N. As will become apparent
later, it will be desirable to keep L to a minimum. L is minimized with order \/F when N is square
or near-square, so an assumption that we will make is that every node cluster is a square or at least

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

88 S. EASTWOOD AND J. W. L. WAN

a near-square rectangle. Thus, nonleaf node clusters are divided into their child clusters by a cut
parallel to their shorter dimension.
During the upwards, downwards, and the advanced downwards passes, we perform the following

computation at each node cluster/pair: Start with the block matrix v], where X is uxpu, Y

X
zZ w

X Y
0 W-2zZx7ly
ciently computing U = W —ZX 'Y will require uv? + %yﬁ + w?v multiplication flops, neglecting
lower-order terms.

isuxv, Zisvxpu,and W is av xv. We then block reduce to obtain |:] Effi-

e When we perform the upwards pass on nonleaf node clusters N, u = |pi(N)|, and v = |ON|.

e When we perform the downwards pass on nonroot node clusters N, u = |pe(N)|, and
v =|oN]|.

e When we perform the advanced downwards pass on a nontwin node cluster pair {Ny, N»},
w = |pe({N1, N2})|, and v = |[o{ N1, N2}|.

In 2;11 these cases, it and v have order L. Therefore, the complexity of computing U = O(L3) =
0(B>?).

We now label the root level of the extended node cluster tree as Level O and the subsequent levels
as Level 1, 2, etc. At Level i, there are exactly 2/ node clusters. Although there are approximately
4% node cluster pairs at level i, we only need to consider the pairs whose minimum separation is less
than or equal to /. The following will give an informal geometric argument to determine the order
of the number of pairs at level i whose minimum separation is less or equal to /.

Let N be any node cluster at level i. Denote the number of level i node clusters other than N,
whose minimum separation from N is less than or equal to / by k(N). The number of level i pairs
whose minimum separation is less than or equal to / is then given by % > k(N). If we simply find
the magnitude order of k(N), we can multiply it by 2/ to obtain the order of the number of level i
pairs whose minimum separation is less than or equal to /.

We now derive the magnitude order of the number of level i pairs for the following two cases:

Case 1: 0 <i <log, 73

In this case, the characteristic length L = \/gz, of N satisfies L = [. L > [implies that the
number of level i node clusters whose minimum separation from N is less than or equal to / is O(1)
because there are only O(1) node clusters around N because of a relatively large size. Figure 8 (left)

shows an example when L > /. In this case, only eight neighboring node clusters are within / of N.
Hence, the number of pairs at level i whose minimum separation is less than or equal to / is O(2).

N

Figure 8. Number of node clusters whose minimum separation from N < [for (left) large node clusters
(L =) and (right) small node clusters (L <1).

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 89

Case 2: log, 13 <i <log,

In this case, the characteristic length L = ,/;‘—i of N satisfies L < /. L < [implies that the
number of level i node clusters whose minimum separation from N is less than or equal to [is
proportional to the area of a ball of radius / and inversely proportional to the area of each cluster.
Figure 8 (right) shows how small node clusters are covered by a ball of radius /. Because the area
of a ball of radius / is O(/?), the number of level i node clusters that fill this ball is thus 0(%).
Hence, the number of pairs at level i whose minimum separation is less than or equal to [is 0(%).
Combining the two cases,

0(2") if 0 <i <log,

k(N) = o (%) if log, ;5 <i <log,

During the upwards pass, the work per node cluster at level i is O(L3) = 0(,33/ 2 =
3/2 . 3/2
0] ((=)) The total work at level 7 is O (2’ X (;—,)) =0 (%) The total time com-

2r
plexity of the upwards pass is

log, o _1
0 Z ()[3/2 _0 ()[3/2 1=2 5 (logy a+1)
2i/2 1—2-1/2

i=0
=0 a3/2 \/5_ Ol_1/2
V2—-1

= 0(a*?).

Hence, the time complexity of the upwards and, by a similar argument, the downwards passes
is 0(a%/?).

We will now determine the time complexity of the advanced downwards pass. As with the
upwards and downwards passes, the work per node cluster and node cluster pair at level i is still

3/2
oL =0p**=0 (("‘)) The total work at level i is

2
for 0 <i <log, 73:

o 3/2
o ((clusters + pairs) x (2—1))

o(e+2(5)7)

for log, 73 <i <log, a:

a\3/2
0 ((clusters + pairs) x (E))

() -6)")
(7))

=0 (22a'22).

Il
Q

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

90 S. EASTWOOD AND J. W. L. WAN

The total time complexity of the advanced downwards pass is

logZ% a3/2 log, & .
R 1
0 Z 2,'/2 + Z 2% /
i=0 i=log2;i2
_l(l l-‘rl) 1 2
=0 a3/21_2 T +2%10g2,%0,1/212%
- 12172 v
3/2\/5—01_%1 IvV2—-1
=0\« +al
V2-1 V21

= 0@ +al?).

Hence, the time complexity of the advanced downwards pass is O(a>/? +al?). Note that if [= 0,
which means that we are computing no off-diagonal entries, then the time complexity is 0(a3/ 2)
which is the same as the upwards and downwards passes. If / = /&, which means that we are
computing all off-diagonal entries, then the time complexity is O(a?) which is the minimum time
complexity required to compute every entry of the inverse.

The highest order for cut-off distance / that will still result in a time complexity of O(a/2) for
the advanced downwards pass is / = O(«!/#). In other words, / must have, at most, the same order
as the square root of the computational mesh’s width if the time complexity is to remain at O (« 3/ 2),

Given a cut-off distance of /, it is of interest to note that the number of entries of A~! that will
ultimately be computed is of the same order as the number of leaf pairs whose minimum separation
is less than or equal to /. The number of leaf pairs whose minimum separation is less than or equal
to/ is O(%) = O(“i—lz) = O(al?) (Here, we used the case 2 result derived when computing
the number of level i pairs whose minimum separation is less than or equal to /). If we let the cut-off
distance [= o'/4+€ where 0 < € < 1/4, then we will be computing O (a®/2+2€) entries of 47!,
Because the computational time complexity in this case is also O (e3/272€), the computational time
complexity per entry of A~! calculated is O(1). This concludes the result stated in the abstract.

5. NUMERICAL RESULTS

In this section, we will demonstrate that the computational complexity of the advanced FIND algo-
rithm is O(a?/?), provided that the cut-off distance / is O(a!/#). The example scenario that was
used in measuring the flop counts is an L x L square computational mesh utilizing a five-point
stencil. The sparse matrix used was the five-point stencil approximation of the Laplacian operator.
The node cluster tree depth is chosen to be deep enough so that all leaf node clusters have either 0
or 1 nodes. More precisely, the node cluster tree depth used for an L x L computational mesh is
2[log,(L)]. The cut-off distance / used for an L x L computational mesh is / = |+/L|.

Figure 9 is a base 2 log-log plot of the multiplication flops used versus the grid size L. The
upper curve (interpolated from the points denoted by squares) shows the number of flops used in
the upwards pass and advanced downwards pass, that is, the advanced FIND algorithm. The lower
curve (interpolated from the points denoted by diamonds), included for reference, shows the number
of flops used in the upwards pass and downwards pass, that is, the original FIND algorithm. As we
are trying to show that the computational complexity is O(a?/?) = O(L?), the upper curve must
tend towards having a slope of 3. The straight line included indicates a slope of 3. As can be seen,
both the upper and the lower curves become increasingly parallel to the straight line.

Notice that the upper curve in Figure 9 has a number of apparent jumps: between grid sizes 8 and
9; between grid sizes 15 and 16; between grid sizes 24 and 25; and between grid sizes 35 and 36.
Recalling that the cut-off distance / = | /L |, the jumps correspond exactly when [increases by 1.

Figure 10 is a base 2 log-log plot of run time versus the grid size. Again, the upper curve denotes
the advanced FIND algorithm and the lower curve denotes the original FIND algorithm. The straight

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

FINDING OFF-DIAGONAL ENTRIES OF THE INVERSE OF A LARGE SPARSE MATRIX 91

log_2(flops) vs log_2(grid size)

30

25
20
log_2(flops)
=+log_2(legacy flops)
10

0 0.5 1 15 2 25 3 3.5 4 45 5 55
log_2(grid_size)

log_2(flops)
&

Figure 9. A base 2 log-log plot of flops versus grid size.

6 /
4
2
“=log_2(time)
0 ~+log_2(legacy time)
0 1 2 5 6
2
-4

Figure 10. A base 2 log-log plot of CPU time versus grid size.

line included indicates a slope of 3. As can be seen, both the upper and the lower curves are (roughly)
parallel to the straight line.

Both the upper and the lower curves in Figure 10 jump dramatically whenever the node cluster
tree depth, 2[log, (L)1, increases. This behavior, which is evident in the curves for both the original
FIND algorithm and the advanced FIND algorithm, is caused primarily by a dramatic increase in
the amount of integer computations that accompany the increase in the node cluster tree size. At
each ‘step’, the depth of the node cluster tree increases by 2, and because the node cluster tree is a
binary tree, this means that the number of node clusters has increased by fourfold. The upper curve
also exhibits smaller jumps whenever the cut-off distance / = L\/ZJ increases. Despite this, both
curves still exhibit an overall slope of approximately 3.

6. CONCLUSION

We have extended the algorithm first described in [3] to now calculate off-diagonal entries of the
inverse of a large sparse matrix corresponding to a square computational mesh. The application
given in the introduction of finding the Green’s function for quantum nanodevices motivates the
central idea that entries of the inverse that correspond to geometrically closer pairs of vertexes in the
computational mesh are more important than entries of the inverse that correspond to more separated
pairs of vertexes. Diagonal entries, which correspond to connections of length 0, have the highest
priority. The extended algorithm computes all entries of the inverse that correspond to connections
shorter than a given cut-off distance /. We proved that if / is of the order of O(a!/4*€), where « is
the number of nodes in the square mesh and where 0 < € < 1/4 is arbitrary, then the computational

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

92 S. EASTWOOD AND J. W. L. WAN

time complexity is O(a?/212€) and the number of inverse entries computed is also O(«3/212€),
resulting in a constant amount time per entry computed. For € = 0, we obtain O(«>/?) additional
off-diagonal entries while not changing the time complexity of the FIND algorithm given by [3]
which is O(a?/?).

REFERENCES

1. George A. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical Analysis 1973;
10(2):345-363.

2. George A, Liu, Joseph W H. Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs: N.J.,
Prentice-Hall, 1981.

3. Li S, Ahmed S, Klimeck G, Darve E. Computing entries of the inverse of a sparse matrix using the FIND algorithm.
Journal of Computational Physics 2008; 227:9408-9427.

4. Erisman AM, Tinney WF. On computing certain elements of the inverse of a sparse matrix. Communications of the
ACM 1975; 18(3):177-179.

5. Darve E, et al. A hybrid method for the parallel computation of Green’s functions. Journal of Computational Physics
2009; 228:5020-5039.

6. LinL, LuJ, Ying L, Car R, E W. Fast algorithm for extracting the diagonal of the inverse matrix with application to
the electronic structure analysis of metallic systems. Communications in Mathematical Sciences 2009; 7(3):755-777.

7. Svizhenko A, Anantram MP, Govindan TR, Biegel B, Venugopal R. Two-dimensional quantum mechanical modeling
of nanotransistors. Journal of Applied Physics 2002; 91(4):2343-2354.

8. Anantram MP, Svizhenko A. Multidimensional modeling of nanotransistors. /[EEE transactions on Electron Devices
2007; 54(9):2100-2115.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:74-92
DOI: 10.1002/nla

