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We propose a deep neural network framework for computing prices and deltas of American options
in high dimensions. The architecture of the framework is a sequence of neural networks, where each
network learns the difference of the price functions between adjacent timesteps. We introduce the
least squares residual of the associated backward stochastic differential equation as the loss function.
Our proposed framework yields prices and deltas for the entire spacetime, not only at a given point
(e.g. t = 0). The computational cost of the proposed approach is quadratic in dimension, which
addresses the curse of dimensionality issue that state-of-the-art approaches suffer. Our numerical
simulations demonstrate these contributions, and show that the proposed neural network framework
outperforms state-of-the-art approaches in high dimensions.
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1. Introduction

American options are among the most common derivatives
in financial markets. In practical applications of hedging, we
are required to compute not only an American option price,
but also the derivatives of a price with respect to the under-
lying asset prices, called American option delta (Hull 2003).
Numerous approaches have been proposed for solving Amer-
ican option problems, such as binomial trees (Hull 2003),
numerically solving partial differential equations (PDEs) with
free boundary conditions or with penalty terms (Forsyth
and Vetzal 2002, Achdou and Pironneau 2005, Duffy 2006),
regression-based methods (Tsitsiklis and Van Roy 1999,
Longstaff and Schwartz 2001, Kohler 2010), stochastic mesh
methods (Broadie and Glasserman 2004), etc. When the
dimension of an American option, i.e. the number of under-
lying assets, is greater than 3, numerical solution of PDEs
is infeasible, as the complexity grows exponentially with the
dimension. When the dimension d is moderate (e.g. d < 20),

*Corresponding author. Email: y493chen @uwaterloo.ca

the regression-based Longstaff-Schwartz method (Longstaff
and Schwartz 2001) is widely considered as the state-of-the-
art approach for computing option prices. In addition, one
can combine the Longstaff-Schwartz method with the meth-
ods proposed in Broadie and Glasserman (1996), Bouchard
and Warin (2012) and Thom (2009) to compute correspond-
ing option deltas. We note that these approaches only compute
option prices and deltas at a given point (e.g. t = 0).T How-
ever, we emphasize that price and delta at a given point
are insufficient for a complete delta hedging process, which
requires computing prices and deltas for the entire space-
time (see Hull 2003, He et al. 2006, Kennedy et al. 2009,
for explanations and concrete examples). Furthermore, for the

T Although one may consider using the Longstaff-Schwartz
regressed values as an estimate of the spacetime prices, figure 1 in
Bouchard and Warin (2012) shows that using such regressed val-
ues as the spacetime solution is inaccurate. Alternatively, one may
consider applying the Longstaff-Schwartz method repeatedly on all
the spacetime points, where every point requires M — oo samples.
However, this is expensive.

© 2020 Informa UK Limited, trading as Taylor & Francis Group
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Longstaff-Schwartz method, a set of yth degree polynomi-
als is normally used as the basis for regression, which leads
to xth degree complexity (rather than exponential complex-
ity). However, x is required to go to infinity for convergence
(Longstaff and Schwartz 2001, Stentoft 2004), which still
results in a high complexity.

In this paper, we propose a deep neural network frame-
work for solving high-dimensional American option prob-
lems. The major contributions of the proposed neural network
framework are summarized as follows:

e Our proposed approach can evaluate both option
prices and option deltas for the entire spacetime,
not only at a given point, which further enables a
complete hedging simulation.

e We propose a novel neural network architecture
and incorporate the domain knowledge of Amer-
ican options into our network, such that our for-
mulation yields accurate prices and deltas. Assum-
ing that there are N discrete timesteps, we design
a sequence of N recursively-defined feedforward
neural networks, where each network extracts the
difference between the price functions of adjacent
timesteps. This architecture provides a good ini-
tial state that is close to the exact solution even
before the training starts, which makes a critical
contribution to the accuracy of our formulation. The
domain knowledge we leverage includes smoothing
the payoff at + = T, and adding the payoff and the
previous continuation price as features, etc. These
additional techniques further improve the accuracy
of the proposed formulation.

e We introduce the least squares residual of the asso-
ciated backward stochastic differential equation
(BSDE) as the loss function of neural networks.
BSDE couples prices and deltas in one single
equation, and thus evaluates both prices and deltas
accurately.

e The computational cost of the proposed neural
network framework grows quadratically with the
dimension d, in contrast to exponential growth as
in the Longstaff-Schwartz method. In particular,
our approach outperforms the Longstaff-Schwartz
method when d > 20, in the sense that our pro-
posed approach solves American option prices and
deltas in as high as 200 dimension, while the
Longstaff-Schwartz method fails to solve the prob-
lems due to the out-of-memory error and the worse-
than-quadratic cost.

We note that this paper is not the only neural network
framework for American option problems. Early research
of neural networks in American options can be found in
Kohler et al. (2010) and Haugh and Kogan (2004). They
consider using one-hidden-layer (shallow) feedforward neural
networks for option pricing. However, the highest dimension
considered in their numerical simulations is 10. Very recently,

T Here the proposed ‘recursively-defined’ feedforward network is
not the same as the Recurrent Neural Network (RNN) in the liter-
ature, which will be explained in Section 4.1.

several types of deep neural network approaches were pro-
posed in Sirignano and Spiliopoulos (2018), E et al. (2017),
Beck et al. (2017), Han et al. (2018), Fujii et al. (2017), Huré
et al. (2019) and Becker et al. (2019a, 2019b). They suggest
that increasing the depth of neural networks is important in
pushing the solutions to higher dimensions. Similar to these
approaches, our proposed framework is also a deep neural net-
work approach. However, we emphasize that there are a few
key differences between our proposed approach and the other
deep neural network approaches.

e Different computed quantities: Our approach com-
putes American option prices and deltas for the
entire spacetime. The approach in Sirignano and
Spiliopoulos (2018) computes prices but not deltas.
The approaches in E et al. (2017), Beck et al. (2017)
and Han er al. (2018) only consider European
option prices, noting that European options are eas-
ier to price than American options. Although Fujii
et al. (2017) extends their methods to American
options, the authors only compute the price at a
given point. In particular, we emphasize that only
our paper discusses and simulates hedging options,
which is beyond merely pricing options.

o Different network architectures: Our network archi-
tecture is a chain of recursively-defined networks
that learn the difference of the price functions
between adjacent timesteps, which yields accu-
rate computed prices and deltas; Sirignano and
Spiliopoulos (2018) uses a long short-term neural
network that learns the price function itself; E et
al. (2017), Beck et al. (2017), Han et al. (2018)
and Fujii ef al. (2017) consider a chain of isolated,
independent feedforward networks.

e Different loss functions: The approach in Sirignano
and Spiliopoulos (2018) defines the loss function by
the residual of the Hamilton-Jacobi-Bellman par-
tial differential equation emerging from the Black-
Scholes theory. It involves computing the Hessian
of the output price function, which is expensive in
both time and memory, and is difficult to imple-
ment. Our framework uses the residual of one
single BSDE as the loss function, which avoids
computing the Hessian. The approaches in E et
al. (2017), Beck et al. (2017), Han et al. (2018)
and Fujii et al. (2017) involve the integral form
of multiple BSDEs, which is redundant for option
pricing. In addition, their BSDEs are not used as
loss functions.

The paper is organized as follows. Section 2 defines
the American option problems. Section 3 introduces the
BSDE formation and the least squares residual loss func-
tion. Section 4 describes the architecture of the proposed
neural network model. Section 5 discusses the techniques
that improve the accuracy of the framework. Section 6 sum-
marizes the algorithm. Section 7 analyzes the computational
cost. In Section 8, we present numerical solutions of option
prices and deltas to illustrate the advantage of our deep neural
network framework. Section 9 concludes the paper.
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2. American options

In this paper, we use capital and lowercase letters to distin-
guish random and deterministic variables respectively. Sup-
pose an American option contains a basket of d underlying
assets. Let § = (Si,...,S4)7 € R? be the prices of the under-
lying assets. Let ¢ € [O, T] be the time up to the expiry 7. Let
r be the interest rate. Let §; and 0; (i = 1,...,d) be the div-
idend and volatility of each underlying asset. Let p € R¥*¢
be a correlation matrix. Define d correlated random vari-
ables dW;(1) = Y| Ly;(1)+/dt, where ¢;(r) ~ N'(0,1) are
independent standard normal random variables, and L is the
Cholesky factorization of the correlation matrix, i.e. p = LLT.
Given an initial state 5° € R, the prices of the underlying
assets S evolve under the following stochastic differential
equations (SDEs):

dsi(t) = (r —
S(0) =5

s)Sim dt + oS dWi(n), i=1,....d,

(1)
Let f(5) be the payoff function of the option at the state s,
which usually takes the form of

f () = max(g(5),0). 2)
Let c(5, t) be the continuation price, i.e. the discounted option
payoff provided that the option is not exercised at time ¢ and

state s

c(s,t) = max E [e”(”’)f(g(r)) |S(t) = E] ,

€[t,T]

3)

where 7 is the stopping time. Then the American option price
v(s, t) is defined as

v($, 1) = max [c(5, 1), f (5)]

e, 0, ife@sn > f(5),
i.e. the option is continued at (s, ?),
fG), ife@n <f6),

i.e. the option is exercised at (3, £).

“4)

In practical application of hedging, we are also interested in
the first derivative of the American option price,

W in)
— (s, .
asd

This is called the ‘delta’ of the American option. The objec-
tive of this paper is to solve for both the option price v(5, 1)
and the option delta Vv(5, t) on the entire spacetime.

= v
Vv(s, t) = g(s, n,...
1

3. Backward stochastic differential equation (BSDE)
formulation

3.1. BSDE formulation

Our approach is to first convert the American option problem
into a backward stochastic differential equation (BSDE) using
the following theorem:

THEOREM 3.1 (BSDE formulation) Assume that an American
option is not exercised at time [t,t + dt]. Then the contin-
uation price of an American option at time t satisfies the
following BSDE:

de(S, 1) = re(S, 1) dt + Z 0iS; (t)

i=1

(S ndwi(, ()

where S satisfies the SDE (1), and r, o; and dW;(t) are the
same as in (1).

Proof We refer interested readers to the proof in El Karoui et
al. (1997) and Leentvaar (2008), which uses Ito’s lemma. W

The significance of the BSDE formulation (5) is tvgo-fold.
One is that it correlates the price ¢(s, ) with the delta Vc(5, 7).
If the price is solved correctly, then (5) simultaneously yields
the correct delta. A simultaneously correct evaluation of the
price and the delta is essential for performing a complete
hedging process. The other significance is that the BSDE for-
mulation allows a less expensive and more manageable neural
network approach. In fact, other than the BSDE formula-
tion, American option problems can also be formulated as a
Hamilton-Jacobi-Bellman partial differential equation (PDE)
based on the Black-Scholes theory. Sirignano and Spiliopou-
los (2018) considers a neural network approach for solving
the PDE, which involves computing Hessian tensors. Unfor-
tunately, a Hessian tensor is an O(Md?) tensor, where M is
the number of samples for a neural network. When d is high,
a Hessian tensor can be expensive to compute and store. In
addition, given a neural network, the automatic differentia-
tion of a Hessian is nearly impossible to derive, which makes
it difficult to implement using existing deep learning libraries.
However, unlike the PDE formulation, the BSDE formula-
tion (5) does not contain a Hessian, which avoids the compu-
tation and storage of Hessian tensors. Instead, it only requires
computing price tensors of size O(M) and delta tensors of
size O(Md). In addition, delta tensors can be easily evaluated
by the built-in automatic differentiation of Tensorflow (Abadi
et al. 2016), i.e. ‘tf.gradients’.

In this paper, we use an Euler timestepping Monte Carlo
method to simulate the SDEs (1) and the BSDE (5). Let m =
1,...,M be the indices of simulation paths, n = 0,...,N be
the indices of discrete timesteps from Oto T, At =T /N, t* =
nAt be the timesteps, and (AW)% = Y| Ly(¢))1~/Ar. We
discretize (1) as

SN =52 i=1,....d; (6)
SHE = (1 + (r — 8)AD(SH, + 0i(SHL(AW)L,
n=0,....N—1,i=1,....,d. (7
We also discretize (5) as
c(§,'4'1+1, tn+1)
= (1 + rADc(S", ")
+Za,(S)” ™. "YAW)", n=N-—1,...,0.
()
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Theorem 3.1 assumes that an American option is not exercised
at time [z, ¢ + dr]. More generally, if we allow the oQtion to be
exercised at any time after ¢, then we can replace c(S,',’f', Ry
on the left hand side of (8) by v(g,’jfl,t”“). In addition, we
add the expiry condition v(5, T) = f (5) into the discretization.
This yields a complete discretized system for the BSDE:

VSN, M) =f@SY), n=N. )

Solve(l + rAnc(Sy, ) + Z (S

s n ot AW; 21,
l‘ﬂa m )( )

= v Y for e(SE, 1, (10)

m’

and then compute v(S,’;, )

— max [c(i,';,t"),f(i,';)] . n=N-—1,...,0. (1)
To sketch the idea of solving the discretized BSDE let (6)—
@) generate samples of underlying asset prices {S”} for all
n’s and m’s. Then one starts with n = N, computes the expiry
condition (9), and then performs backward timestepping from
n=N-— 1 to n = 0 using (10)—(11) iteratively, which yields
{v(S},,t")} for all n’s and m’s. Eventually, at n = 0, noting that
3‘,?1 =35 by (6), we obtain the option price v(s°,0) and the
option delta Vv(s°,0).

3.2. Least squares solution for the discretized BSDE

Consider only the nth timestep ¢, and introduce a short
notation for the corresponding price and delta functions as
VI(S) = v(5, %) and V' (s) = Vv(s, ). Solving (10) requires
finding a d-dimensional function ¢"(s) where both the func-
tion c"(s) itself and its derivative Ve (5) satisfy (10). This is
challenging, especially when d is large.

In this paper, we consider finding an approximation of
the continuous price function. We let the approximation sat-
isfy (10) in a least squares sense. More specifically, define the
residual of (10) as the difference between the left and right
hand sides:

d
RIC | = (1+ rAD" S8 + Y 0i(S; )"

i=1

m=1,...,M.

(S” )(AW)),,

A A (12)
Then our goal is to find an approximation y" to the actual
continuation function ¢* that minimizes the least squares
residual:

13)

"~ (y")" = argmin,, (ZR m) .

4. Neural network formulation

Finding the optimal approximate function in the least squares
sense (13) is non-trivial. One approach is to use a param-
eterized function to represent the approximate function y".

Then the optimization problem in terms of function space is
converted to the optimization problem in terms of parameter
space, which is more manageable.

One well-known example of the parameterized approach
is the Longstaff-Schwartz method (Longstaff and Schwartz
2001). More specifically, the continuation price is approx-
imated by a yth degree polynomial. We note that unlike
our approach, their objective is not to minimize the least
squares residual of the BSDE (12), but to minimize the least
squares difference between the discounted payoffs and the
parameterized polynomials. In practical implementation of
the Longstaff-Schwartz method, we let x < d, which means
that the number of the polynomial basis is (djx ) &~ (1/xHd*.
However, convergence of the Longstaff-Schwartz method to
the exact American option prices requires the number of
the basis tending to infinity, i.e. y — oo (Longstaff and
Schwartz 2001, Stentoft 2004), which results in a high com-
putational cost. In addition, a pre-defined, static polynomial
basis may not be the optimal choice for American options.

4.1. Sequence of neural networks

Our approach is to use neural networks to represent the
approximate continuation price function y”. A neural network
is a nonlinear parameterization where the basis is dynamic,
i.e. the optimal basis is learned during the training process
(Goodfellow et al. 2016). The main advantage of neural
network formulation is that the complexity does not grow
exponentially with the dimension 4.

The architecture of neural network determines the proxim-
ity between the global minimum of the loss function and the
true underlying price function, the landscape of the loss func-
tion, and the level of difficulty for optimization algorithms to
find the global minimum. These directly impact the accuracy
of the approximate price function. There exist many neural
network architectures, such as feedforward, convolutional, or
recurrent networks. We refer interested readers to Goodfellow
et al. (2016) for a review of these standard network architec-
tures. However, these standard networks are not designed for
solving American option problems.

In this paper, we propose a sequence of N networks
'@ QY | n=N—1,...,1,0}, where Q" is the trainable
parameter set of the nth network. Each individual network
y"'(s; ") approximates the price function at the nth timestep
c"(s). The design of each individual network is motivated by
the fact that the approximate function of the nth timestep,
y'(s; "), should differ from y"*!(s; Q"*!) by a function of
magnitude O(At). Mathematically, it means that

WE=fG). n=N; (14)
V'R =y QT + A FG QY.
n=N-1,...,0; (15)

where F(5; Q") is the difference between the approximate
functions at the two adjacent timesteps, or the ‘residual’ that
we aim to find. We note that the sequence of networks (15) is
defined in a recursive sense. In addition, the sequence of net-
works is backward in time, i.e. the timestep n decreases from
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N —1 to 0. Hence, in this paper, we use the ‘previous’, ‘cur-
rent’ and ‘next’ timesteps to refer to the (n + 1)th, nth and
(n — 1)th timesteps, respectively.

Regarding each residual network F(s; Q"), we parameter-
ize it by an L-layer feedforward network with batch normal-
izations. In the following part, we drop the timestep index
n temporarily, and use superscript with square brackets for
the layer index [ = 0,...,L. Let the dimensions of the lay-
ersbe {d'|1=0,...,L}. Let the input of the neural network
be ¥ =3 e RY", where the input dimension is d!% = d.
Then we construct an L-layer feedforward neural network as
follows:

e For the hidden layers, [ = 1,...,L:

linear transformation: 7/ = Wil . =11, (16)
batch normalization:
7" = bnorm@"; g, 71, i, 511, (17)

rectified linear unit activation: ¥/ = max(h[”, 0),
(13)

where

1

bnorm(¥; ,5,17,!_/:,5) =y -—
o

-

+ B

=!

19)

is the batch normalization operator, Pl U AU
R are hidden layer variables, Wi ¢ Rd"xat!
are trainable weights, i, 51 € R?" are moving
averages of batch means and standard deviations,
and 71, A1 € R¥" are trainable scales and offsets.
The operations in (17)—(19) are evaluated element-
wise. For instance, (18) means xlm = max(hlm,O)
foralli=1,...,d"M.
e For the output layer:
FGQ) =a- ¥ + b, (20)
where ® € RY", b € R are trainable weight and
bias.

In addition, we propose adding a scaling parameter «” to
each neural network (15) and revise it as

yn(g; Qn) =" [ynJrl(}; Qn+1) + At - F(E, Qn)] ,

n=N-1,...,0. (21)
We let «” be trainable, or equivalently, «” € Q". «" is initial-
ized as 1 before training, and is close to 1 during and after
training. Introducing the trainable parameter " expands the
function space the neural network can represent. A neural
network with a larger function space is less likely to under-
fit, and thus more likely to have an accurate training result
(Goodfellow et al. 2016).

We remark that our proposed recursive architecture (21) is
different from the other architectures in the literature, partic-
ularly Sirignano and Spiliopoulos (2018), where one single
neural network is used to represent the spacetime price func-
tion. The justification of our choice of this recursive archi-
tecture is that it is critical to the accuracy of the resulting

prices and deltas. We note that the true price functions ¢+ (s)
and c"(s) differ by a function of magnitude O(Af). In (21), if
we let y"H1 (5; Q1) &~ ¢"*1(5) and o” ~ 1, then regardless of
the value of F(5; Q"), ¥"(s; ") will only differ from the true
price function ¢ (s) by a magnitude of O(Ar). Hence, before
training starts, y"(s; ") is already a good approximation of
c"(5). This makes it more likely for the training to find the
optimal solution that (almost) equals c"(5).

4.2. Feature selection

Feature selection, i.e. choosing the correct input features
based on domain knowledge, has a great impact on the accu-
racy of neural network models (Goodfellow et al. 2016).
Naively one can simply set the input as the underlying asset
prices X! =75. In this paper, we consider adding two new
features.

One new feature is the payoff function. It is suggested in
Kohler (2010) and Firth (2005) that including the payoff in the
nonlinear basis can improve the accuracy of the regression-
based algorithms. In this paper, we consider using g(s) in (2)
as an input feature. The reason of using g(s) rather than £ (5)
is that the maximum operator in (2) is irreversible. In other
words, f(s) can be computed by g(s) but not conversely.
Hence, using g(s) as the input contains more information than
f(5). The additional maximum operator in (2) can be learned
by the activation function (18) in the network.

The other new feature we consider adding is the output
price function from the previous timestep, i.e. y"+!(s; Q")
in (21). The intuition is that the solution at the nth step should
look similar to the solution at the (n + 1)th step. We note that
this feature is similar but not exactly the same as the payoff
function, which makes it useful as an additional feature. More
specifically, when n &~ N, y"*! is approximately the same as
but slightly smoother than the payoff function; when n < N,
y"*! can be very different from the payoff function.

The accuracy of neural network models can be further
improved by input normalization (Sola and Sevilla 1997).
Effectively, we can combine the implementation of feature
selection and input normalization by adding the following
‘input layer’ (denoted as / = 0) before the hidden layer / = 1:

.. S . T
feature concatenation: 2! = (5, g(s), "' (5; 2"""))" € R4
(22)

input normalization: X! = bnorm(z!%; B o1 p1o1 101 5100y
(23)

where the input dimension is changed to d'%! = d + 2 after the
concatenation. We note that ;%! and ¢!”! can be pre-computed
from the entire training dataset, unlike ﬁ”] and ! in the hid-
den layers that are computed by moving averages of training
batches.

To summarize Sections 4.1-4.2, the architecture of the pro-
posed neural network framework is defined by (14) and (21),
where the residual network at each timestep JF(s;Q") is
defined by the input layer (22)—(23), the hidden layers (16)—
(18) and the output layer (20). The trainable parameters of the
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ynH(S’QnH)

(X"ﬂ

yn+2(s,Qn+2) yn+l(s’Qn+1)

¥'(s,22")

F(s; QM)
2 % } Output layer
7= (ST " ReLUM
e =y
@W Hidden layers
bnorm™
L,

- } Input layer

I
s, 8(5)

A4
s 8(5) y"'(5)

Figure 1. The architecture of the proposed neural network framework defined by (14) and (21), where the residual network at each timestep
F(s; Q") is defined by the input layer (22)—(23), the hidden layers (16)—(18) and the output layer (20). The symbols ® and & represent

multiplication and addition, respectively.

neural network framework are {Q2" |n =N — 1,...,0}, where

Q" = (Wi, Gy, (B, Gy,

B, &b e [L=1,...,L}. 24

Figure 1 illustrates the architecture of the proposed neural
network framework.

After the completion of this paper, we realized that, after
introducing y’”rl as an additional feature, our architecture
becomes a novel variation of the Residual Neural Networks
(ResNet) proposed in He et al. (2016). The commonality
between our architecture and ResNet is the pattern of the
‘shortcut connections’. Mathematically, it means that, for each
building block (in our case, the network at each timestep), the
output (in our case, y") is the sum of the input feature (in our
case, y"*!) and its propagation through the ‘residual’ neural
network (in our case, F(5,g(s5),y""!(s))). ResNet is well-
known for its high accuracy. As explained in He ez al. (2016),
this is because the ‘shortcut connections’ make it easier for
the input information to propagate through the deep neural
network, and, compared with optimizing the full mapping,
it is easier to optimize the ‘residual’ mapping as it is close
to zero. This provides another insight on how our network
architecture achieves accuracy. As a side remark, despite the
similarity, our architecture is more sophisticated than ResNet
due to the input feature (5, g(5)) in each residual network F
and the scaling parameter .

4.3. More efficient neural network sequence

Sections 4.1-4.2 have explained that the main advantage of
our recursive architecture is the accuracy. However, the recur-
sive architecture (21) is expensive when N is large. More
specifically, consider the Oth timestep, and consider using the
sequence of the neural networks to compute the value of y°(5).
By applying the recursive relation (21), we have

N
YE =G + A Y FEQN),

v=1

(25)

where for simplicity we set o” =1 for all timesteps.
Equation (25) shows that the computation of y°(5) requires
going through N feedforward networks.

Here we propose a modified neural network architecture to
reduce the computational cost. In Section 4.1, we motivated
the recursive relation (21) based on the fact that the outputs of
the two adjacent timesteps, ¥ (5) and y**!(5), should differ by
a function of magnitude O(Ar). In fact, we can generalize this
relation to any two timesteps n and n 4+ j where j <« N. That
is, the outputs y*(5) and y"*/(5) should differ by a function of
magnitude O(A¢). Similar to (21), we formulate this idea into
the following recursive relation:

Y& QD =o" [yHE Q) +jAr- FEQD]. (26)
This generalization allows us to recur the feedforward net-
works at every few timesteps, rather than at every single
timestep, and thus reduces the computational cost.

To be more precise, if we recur the feedforward networks
at every J timesteps (J < N), then we modify the sequence
of the neural networks (21) as follows:

V'R = o [T E Q) A FG QY]
where n =[(N —n—1)modJ]+1, n=N-1,...,0.
27

Equivalently, we can enumerate (27) as

yn—l(g’; Qn—l)
— Oln_l [yn(g’ Qn)
+ At FEQH],

at the (n — 1)th step:

Y (s Q1)
=" [y"(5; Q")
+ AL FG )],

at the (n — j)th step:
(28)

ynfj (E, anj)
— an—] [yn(g, Qn)
+ JAL- F(5 Q7]

at the (n — J)th step:

where | <j<Jand n=N,N—J,N —2J,.... We remark
that (21) is simply a special case of (27) with J = 1. Figure 2
illustrates the modified architecture with J = 3. Readers can
generalize the idea of figure 2 to any J < N.
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y" 1 (S, Q- 1)

¥'(s,R")

]

y"'z(S,Q"'Z)

o2 @ o3

yn-3(S’Q|\-3)

I
s, 8(5)

Figure 2. The modified architecture of the proposed neural net-
work framework defined by (14) and (27), where J = 3. Similar to
figure 1, the residual network at each timestep F(s; Q") is defined by
the input layer (22)—(23), the hidden layers (16)—(18) and the output
layer (20).

Regarding the choice of J, smaller J yields more precise
trained y" with higher computational cost; larger J is com-
putationally cheaper but the trained y” is less precise. In our
numerical simulations, we choose N = 100 and J = 4.

To give an example of how the modified architecture
reduces the computational cost, let us reconsider evaluating
y°(s). By applying the recursive relation (27), we have

IN/J]
YE =G +Iar Y FGEGQ)
v=1

+ (N mod J)At - F(5; %), (29)
where for simplicity we set o” = 1 for all timesteps. Com-
pared to (25), using (29) to compute y°(5) only requires going
through [N/J] feedforward networks. In other words, the
computation is J times cheaper.

4.4. Computation of the derivatives

Using the BSDE formulation (12)—(13) requires the compu-
tation of the derivatives Vy"(s). This can be evaluated by
the built-in automatic differentiation of Tensorflow (Abadi et
al. 2016), i.e. ‘tf.gradients’.

4.5. Training the neural network

Consider training the network at the nth timestep for solv-
ing (12)—(13). The training inputs are

(7 AW VLS, (81, y (ST (1)),

Uy (S (1)) |V m), (30)
where the first three inputs are the required inputs of (12), the
last three inputs are the features introduced in Section 4.2,
y*™1 is defined in (27) and (Q""")* is the trained parame-
ters from the previous timestep n + 7. The training output
is {y"(S),; ), %y”(an; Q") | Y m}. The loss function of the
network is given by (12)-(13), i.e. the least squares BSDE
residual, which we rewrite as a function of the trainable

parameters 2":

M

c =y [(1 + rAny"(Sh; Q")

m=1

d 2
oy" - R
+ i 5 G AW, - v”“(s,’;“)} .
i=1 !
(31)

We consider using the popular Adam optimizer (Kingma and
Ba 2014) to minimize the loss function (31), which yields the
set of optimal trainable parameters

(2"* = argmin L[Q"].
Q’l

(32)

Then, using the trained neural network, we can compute the
estimated option price ¥"(s; (2")*) and delta Vy"(5; (")*).
In addition, we use the estimated option price to determine
the exercise boundary as

ity (55 (21" > £ (),

n~ _ |continued,
§'0) = { otherwise. (33)

exercised,

In order to ensure the accuracy of training, we follow sug-
gested good practices in the deep learning community (Good-
fellow et al. 2016). For instance, mini-batch optimization is
used; the learning rate of the Adam optimizer is decayed
to ensure convergence; gradient clipping is applied to avoid
exploding gradients. In particular, we let the number of train-
ing steps be 600. At the sth training step (0 <s < 600),
we let the moving average rate for /! and ¢! in (17) be
ﬁ(O.Olma"(mi“(‘/35°’1)*0) —0.01), and let the learning rate for
the Adam optimizer be 0.01 x 0.00]™max(min((s—150)/350.1).0),

5. Improving the accuracy of the formulation

Sections 3—4 describe the foundation of our deep neural net-
work formulation. In general, achieving precision is a major
challenge for developing deep neural networks. Sections 4.1—
4.2 have explained that our neural network architecture, i.e.
using the sequence of recursive networks to provide a good
initial guess and introducing g(s) and y"*!(s; Q") as addi-
tional features, is critical to the accuracy of the resulting prices
and deltas. In this section, we propose multiple techniques
that further improve the accuracy, including smoothing pay-
off functions, defining training input v**! in (30) carefully,
weight reuse, network ensemble, and special formula for the
price and delta at t = 0.

5.1. Smoothing payoff functions

We note that most of the payoff functions in practical applica-
tions have the form of (2), which is not differentiable at g(5) =
0. In other words, YV (5) in (14) is not differentiable. How-
ever, YV 1 (5; QV~1) as an approximation of the continuation
price function is differentiable. Consequentially, the left and
right hand sides of (21) at n = N — 1, i.e. YV !5 QV 1) =
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NIV B) + Ar- F(s; QV71)), are inconsistent in terms of
differentiability. Such inconsistency makes it difficult to learn
an accurate F(5; QV 1), which negatively affects the accuracy
of the trained y¥ ! (5; Q¥~!), and furthermore, the accuracy of
the trained y" (s; ") in the subsequent timesteps. In this paper,
we propose smoothing the function y¥ (5) in (14) as follows:

W) ln (1 + e"g(‘))

where « is a user-defined parameter. The operations in (34)
are evaluated element-wise. f,(s) converges to f(s5) when
Kk — 00, and is a good approximation of £ (s) when « is large.
The significance of (34) is that f, (5) is differentiable, which
makes it easier to train an accurate F(5; QV~!). In practice, we
choose k¥ = 2/At. We note that smoothing payoff functions
is a standard technique in the literature of binomial trees for
option pricing (Heston and Zhou 2000). However, to the best
of our knowledge, this paper is the first to propose smoothing
payoff functions among the literature of neural networks for
option pricing.

=f() = (34)

5.2. The training input ‘v’

Consider the nth timestep. The definition of v'*! (g'fn+1) in the
training input (30) turns out to play a significant role in the
accuracy of the trained continuation price y". More specifi-
cally, if the training input v”“(S”“) is incorrectly defined,
which means that we feed incorrect values to the right hand
side of (10), then the trained network y* would not represent
the correct ¢”. .

Finding the correct definition of v"*!(S”!) turns out to be
non-trivial. One natural way of defining v**! (3‘:’,1“) is to use
the output prices of the trained network. More specifically,
suppose Y"1 (s; ("1)*) is already trained. Then

yn+l (§’:l1+1; (QV!+1)*), if%—n+1(§g1+1)
= continued,
if g_—n+1 (S‘Irqz1+1)
= exercised,
(35)

vn+1 (§n+1) —

FSeh,

where £"t! is defined in (33). However, in practice, due
to the finite number of samples and training steps, train-
ing error in the network y"*! is inevitable, which means
that v**! (S”“) might contain error after applying (35) Con-
sequentially, the error of the training input v"“(S,’,’l“) will
propagate into y" after training the nth network, and propagate
into v"(S”) after applying (35) again, and propagate into y"*~!,

Vi '(S;; 1, y"2,..., after further backward timestepping. In
other words, (35) is not robust against the accumulation of
training errors over timesteps and may result in bias. _

In fact, such bias can be quantified. Assume that {S, |0 <

v <n,VY m} are given/fixed. Let {._S:;}fl |V m} be another set
generated under (7). Consider taking the conditional expecta-
tion of (10):

d
(A +rAnc"Sm) + Y oS 1 2 G ELAWY, |52)
i=1

m a

— E[V’1+l(§,r;l+l) | g:;]

We note that under the assumption, {3’;’1}, {C"(S'Z)} and
{(ac*/as;) (E,”n)} in this equation are not random variables, and
the only random variables are {3,’;1“} and {(AW))"}. Since
E[(AW)" | S"] = 0 and 1 + rAt ~ ¢/, we have

(81 = E[e 2y Sy |57, (36)

Equation (36) indicates that if v”“(._S:;}fl) is correctly evalu-
ated, then E[e™"* v"“(._S:,’;“)] should match the true under-
lying continuation function c”(:S";'n). After a few timesteps,
if E[e’m’v"“(g,’;,“)] deviates from c”(g,fl), then it indi-
cates an accumulation of training errors from the previous
timesteps.

Figure 3 shows a concrete example of the bias. Con-
sider a simulation of a one-dimensional American option,
where T = 0.5, N = 100 and the true continuation function
¢" can be computed by finite difference methods. Consider
using (35) to define the training input v**!(S"+1) at every
timestep. As shown in the top left plot of figure 3, when
the simulation proceeds to n = 33, there is a clear deviation
of E[e”A’ "*1(5”“)] (blue line)} from c"(S”) (black line)
around S,','l = &0.

In fact, we can use the relation (36) to avoid the
bias caused by the definition (35). More specifically, let
S”Jrl be a continued point. Then v”+'(S”+') = c"“(S”*')
E[e"A’ ”+2(S,”n+2)]. This motivates us to redefine the training
input v+ (§7+1) as follows:

efrAt Vn+2 (SZLJFZ)’ if €n+1 (S:erl)

gt = continued,
(Sm ) f(§n+l) if En—H (§n+1) (37)
= exercised.

We note that (37) is actually the ‘discounted payoffs’ used in
Longstaff and Schwartz (2001). They use (37) as the target
prices for regression.

The top right plot of figure 3 considers again the same
simulation, where the definition of v”“(S”“) is changed
to (37). The deviation of E[e"m 1 (§7+1)] (blue line) from

m

”(S,’,‘l) (black line) around S” = 80 disappears. The blue
and black lines agree well with each other. This shows that
using the definition (37) does not introduce bias as does the
definition (35). However, the noisy red dots show that using
the definition (37) results in a big variance of e 7"/ *! (S”‘H)
This poses a risk for the model to fit the noise, which may still

result in an inaccurate trained y”".

+To assess E[e_’A’v”+l(§fn+l)], we start with a fixed set of {3,’1’1}.
For each point of an, we generate multiple S”'H ’s by (7), denoted as
{Sn+1 |m =1,. Sn+1
1mper1al average:

.,M'}; compute {v( )}; and then compute the

- 1 -
]E[e—rAtvn-H (S:ln-i—l)] ~ e—rAlM Z V(Szj—n;/).

m
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6=1,t=0.17 6=0,t=0.17
301 351
E[e—rAtvn+1(Sn+1)] E[e—rAtvn+1(5n+1)]
m m
301 .
25{ —— c(S7) — @S e
- e—rAtvn+ 1(5,’,71+1) 251 e—rAtvn+ 1(5,’;,"'1)
20 &
151
151
101 10,
51 58
01 01 . :
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Sh Sm
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30 B E[e-rAtvn+1(5n+1)]
m
25| — c"(sp) :
e—rAtvn+1(Sn+1)
m
20
151
10+
5_
04
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Figure 3. The values of ¢" (3‘,’,’1) (black line), e~ Ayl (._S;an) (red dots) and E[e"A1ynt] (§,’,’1+])] (blue line) under different definitions
of V11 (S,’,‘["1 ). (Top left) The values under the definition of (35), which shows a bias, i.e. deviation of E[e™" Aty (S,’;,'H )] from ¢"(S},),

especially near 3,’,’1 = 80; (Top right) The values under the definition of (37), which shows a variance, i.e. large noise of e™" Atyntl (3,’,’1"'1);
(Bottom) The values under the definition of (38) with & = 0.5, where both bias and variance are reduced.

In this paper, we define v+ (§"+!) as the linear combina-

tion of the two definitions (35) and (37):
ViH—l (§n+1)

0 yn+1 (gfn+1; (Qn+1 )*)
+(1 _ 9) e_rAtV"+2(SZ1+2), if$n+l(SZl+l)

= = continued,
f(anJrl), if%-n+1(S’1111+1)
= exercised,
(38)

where 0 € [0, 1] is a user-defined hyperparameter. This lin-
ear combination mitigates both the bias caused by the
definition (35) and the variance caused by the definition (37).
That is, the resulting v'+! (S;’n“) would accumulate less train-
ing error over multiple timesteps, and meanwhile contain less
noise. The bottom plot in figure 3 considers the same sim-
ulation, where the definition of v*™1(S"t!) is (38) with 6 =

0.5. We observe almost no deviation of E[e”mv”“(g'gfl)]
(blue line) from c"(g',’;l) (black line), and a small vari-
ance of e”A’v”“(S'ﬁfl) (red dots), as expected. Hence, the
definition (38) can improve the accuracy of the trained net-
works.

5.3. Weight reuse

The trainable parameters Q" need to be initialized for
each individual network from n = N —1 to n = 0. Starting
from the network at n = N — 1, we initialize (E[l])N —1 and
V=1 by zeros; (y"HN~! and o' by ones; and (WUHN-!
and &"~' by uniformly distributed random numbers in
(—1/+/d0 + dU=11/3/d + =1, as suggested in Good-
fellow et al. (2016). Move on to the consecutive networks
at n<N — 1. One can use the same idea to initialize their
trainable parameters. However, we notice that when At is
sufficiently small, the networks at the nth and (n+ 1)th
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Figure 4. Example of the computed deltas with or without weight reuse. (Left) The L1 norm error of the computed delta over 600 training
steps. Blue: the error with no weight reuse. Red: the error with weight reuse. (Middle) The computed delta with weight reuse after 600
training steps. Black line: the exact delta computed by finite difference. Red dots: the sample values of the delta obtained from the network
y". (Right) The computed delta without weigh reuse after 600 training steps.

timesteps should be close. In other words, their optimal train-
able parameters should be close, i.e. (2"*!)* ~ (Q")*. We can
take advantage of this fact and use the values of the trained
parameters (Q"!)* as the initial values of the correspond-
ing trainable parameters 2". Such ‘weight reuse’ provides a
good initial guess before the training starts at the nth timestep.
Hence, the training results will be more accurate.

Figure 4 demonstrates a concrete example on how weight
reuse improves the training accuracy. Consider again a sim-
ulation of a one-dimensional American option with T = 0.5,
N = 50. Consider a particular timestep n = 47. We computed
the delta (dy" /ds)(S},) of 180000 sample points. The first plot
shows the evolution of the L; norm error of the computed
delta over 600 training steps. The error with weight reuse
(red line) is significantly lower than the error without weight
reuse (blue line). The second plot shows that after 600 train-
ing steps, the computed delta with weight reuse (red dots)
agrees with the exact delta (black line). As a comparison,
the third plot shows that after 600 training steps, the com-
puted delta without weight reuse (red dots) still has a large
fluctuation and does not match the exact delta (black line)
well.

5.4. Ensemble of neural networks

It is well-known that ensemble learning, which is a com-
bination of the multiple machine learning models, usu-
ally outperforms individual models (Goodfellow et al.
2016). Inspired by this, we consider ‘ensemble of neural
networks’.

To describe the details, at each timestep (e.g. the nth
timestep), we construct C networks {y"(s; Q") ¢ =1,...,C}
instead of one network. All the C networks have the same
architecture as defined in Sections 4.1-4.3. The difference
is that their trainable parameters {Q2” |c = 1,...,C} are ini-
tialized by different set of numbers. Then the C networks
are trained by different input data. To do this, we generate
CM input samples (30) with m = 1,...,CM, split them into
C copies, and then use each copy of the input samples to
train each of the C networks. Consequentially, the trained
results of the C networks are independent of each other, i.e.
{(Q)*|c=1,...,C} are distinct from each other. Then after

training, we compute the averages across the ensemble:
1S
Y6 = 5 DG @D,
c=1

N
VG =5 2 WIGEDY, (39)
c=1

for the prices and deltas, respectively. Eventually, we use the
ensemble-average prices to determine the exercise boundary
at the nth timestep by (33) before proceeding to the (n — 1)th
timestep.

Such ensemble technique yields more precise prices, deltas
and thus more precise exercise boundaries. We note that the
computation across different ensembles can be parallelized.
In practice, we find that C = 3 is a good choice, in the sense
that the accuracy is improved compared with C = 1 without
dramatically increasing computational cost.

5.5. Priceanddeltaatt = 0

Our neural network formulation yields prices and deltas for
the entire spacetime domain. In practical applications, the
price and the delta at t = 0, v(s°, 0) and Vv(s°, 0), are of par-
ticular interest. We can extract their values from the trained
neural network at r = 0. Here we discuss how to further
improve the accuracy of their values.

Our approach is to use the expectation values of the Monte
Carlo paths, subject to the exercise boundary computed by our
neural network formulation. More specifically, given the mth
path, the trained neural networks determine its stopping time,
denoted as t,,,. Then the price at t = 0 can be computed by the
mean of the discounted payoffs:

cM

Y e (S(Tm).

m=1

v(3°,0) = (40)

M

Regarding the delta at + = 0, we can use the method in
Thom (2009), which is an adaptation of ‘pathwise deriva-
tive method’ (Broadie and Glasserman 1996) to American
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options:
cM
. 1 - if o 9(Sj)m
0 T, J
—(s,0 m S (T
( ) = ar 2 |© ]ZI ST 55
(4D
When the underlying asset prices evolve under (1), we have
(S _ (S s
30 ()0

We note that the pathwise derivative approach may not be
applicable if 9(S;)m/ d(s;)? is not evaluable (e.g. the under-
lying asset prices do not evolve under (1)) or if the payoff
function is not differentiable. For such non-applicable cases,
we can still obtain the deltas from our trained neural network
att = 0.

Using (40)—(41) to compute the price and the delta at
t =0 is also observed in other Monte Carlo style pric-
ing approaches, including the Longstaff-Schwartz algorithm.
However, we emphasize that our approach differs from the
others. More specifically, (40)—(41) are not computable unless
combined with an algorithm that can determine the exercise
boundary on the entire spacetime. In this paper, our neural net-
work framework is used to determine the exercise boundary
before applying (40)—(41). In Section 8, we will demonstrate
that our neural network formulation yields a more accurate
exercise boundary, and thus more accurate prices and deltas
at t = 0, compared to the Longstaff-Schwartz algorithm.

6. Final algorithm

The final version of the proposed algorithm is summarized
in Algorithm_1. We note that in Algorithm 1, we store
(S, Vy (S;) |Y n,V m} on the entire spacetime (i.e. for
all m’s and n’s). The reason is that we are interested in
a complete delta hedging simulation, which requires sam-
ple values of both prices and deltas for the entire space-
time. The implementation of Algorithm 1 uses an overwrit-
ing strategy for more efficient memory. We note, however,
that if an algorithm user does not need sample values from
the entire spacetime, then only the storage of the train-
ing outputs " (S”) Vy (S") |V m} and the training inputs
{y”+'7(S”) Vy"*” (S”) |V m} at the current timestep (i.e. for
all m’s and for a given n) is necessary.

7. Computational cost

In this section, we analyze the computational cost of the pro-
posed algorithm, and make a comparison with the Longstaff-
Schwartz algorithm. For the Longstaff-Schwartz algorithm,

consider degree-y monomial basis

0y ) ={s{"sy sy lar+ar+---+as < x},  (42)
as proposed in Longstaff and Schwartz (2001) and
Kohler (2010). In practice, we choose x < d. Then the

number of the monomial basis is (dj;X )& (1/xHd”*.

Algorithm 1 Neural network pricing and hedging under
BSDE formulation

1: Parameters

2: C': the number of networks in network ensemble

3: M : the number of samples per ensemble

4: N': the number of timesteps

5: J: the number of timesteps between the network
recurrence

6: .

7: Initialize the underlying asset prices {S? =
P \VmGem=1,...,CM))}.

8 for n=1,...,N do

9: Use (6)- (7) to generate CM Monte Carlo trajectories
of the underlying asset prices {S |V m}.
10: end for
11:
12: Use (34) to compute the expiry option prices and option
deltas
Y, yN(S”)|0< V<N,V m}
W(S:,) 0<v<N.Vm}
13: Initialize {vN(S‘Z) |V m} by (9).
14:
15: for n=N—-1,...,0 do
16: for c=1,...,C do
17: Initialize the neural network y"(s; Q") defined
by (27), where the input layer is (22)—(23), the hid-
den layers are (16)—(18) and the output layer is (20).

18: Training: minimize the least squares residual (31)-
(32), using the training input (30).

19: Result: the trained neural network y"(5; QnH").

20:  end for

21:

22: if (N —n) mod J = O then

23: Ensemble evaluation (all future timesteps): over-

write the optlon pnces and deltas
= LY Y S @) 0=y <

n,¥Y m}, .
(Zh =X VY S (@) 10<v <
n,vV mj.
24:  else
25: Ensemble evaluation (current timestep): overwrite

the option pr1ces and deltas
(Y= & X, Y Sy (@D [V m),
(Zn = £ X, VY (Sh (@) |V m).
26:  endif
27: R
28:  Determine whether S,
using (33) fgr all m’s.
29:  Update {V'(S)) |V m} by (38).
30: end for
31:
32: Result: samples of option price and delta functions on the
entire spacetime .
(Y < max(Y),f(Si) |V
{Z” |V n,Vm}.
33: Optional result: Recompute the option price and the
option delta at t = 0 using (40) and (41).

is continued or exercised

n,v m} and
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7.1. Memory

The proposed algorithm requires storing

e the underlying asset prices {3‘,’; |V n,V m} on the
entire spacetime, requiring NMd floating point
numbers; . .

e the training outputs {y”(S;),%y”(S,Z) |V m} and
the training inputs {y"*” (3’;’1), %y”*”(g’fn) |V m} at
the current timestep, requiring 2(M + Md) floating
point numbers.

Hence, the entire process requires a total memory of
NMd + 2(M + Md) ~ NMd floating point numbers. As a
comparison, the Longstaff-Schwartz method requires stor-
ing {S) |V n V m} on the entire spacetime and storing
{9y (3,’;,) y”(S,’,’l) |V m} at the current timestep. This requires
a total memory of NMd+ M - (1/x!)d* + M ~ NMd +
(1/xHMd* floating point numbers. We remind readers that
convergence of the Longstaff-Schwartz method to the exact
American option prices requires x — 00. As a result, the pro-
posed neural network method is more memory efficient than
the Longstaff-Schwartz method.

7.2. Time

Consider a given timestep n. The computational time is
dominated by two stages:

o Stage 1: Computing the training inputs (30), in par-
ticular, {y”+”(S" (Qrrmy®), Vy”*”(S” (Qmy*) |
V m}, using the trained networks {(Q2")* |v > n +

n}.
e Stage 2: Training, using the training inputs (30).

To derive the computational time of each stage, denote the
maximal width of the L-layer neural network .7-' as dpax =
inant operat1on in (16)—(18). Hence, for each stage, the com-
putational time per neural network is given by ¢c;MLd?_, and
czMLdmdx, where ¢; and c¢; are constants. Typically ¢; < ¢;,
because Stage 1 only involves computing the outputs of neu-
ral networks, while Stage 2 involves training. This seems to
suggest that Stage 2 dominates Stage 1. However, we note
that Stage 2 involves only one single network (i.e. the nth
network), while Stage 1 involves multiple networks from
the previous timesteps. More specifically, following the same
analysis as (29), one can show that the computation of the
training input y”+’7(S” ("t1)*), given by

N—n=n)J
PAGE A

v=1

YHE =YW E) +IAL- (43)

requires going through (N —n —1n)/J ~ (N — n)/J feedfor-
ward networks. As a result, the actual computational time for
Stage 1 is ¢;MLd? - (N —n)/J.

ax

Furthermore, if we consider all the N timesteps, then the
total computational time is

N —n  ¢N?
Stage 1: ZoclML = =7 MLd>,,
5 (44)
Stage 2: ) " coMLdy,, = caNMLdy,,.
n=0

Equation (44) suggests that when N is large, Stage 1 is domi-
nant. However, we can significantly reduce the computational
time of Stage 1 by increasing J, as discussed in Section 4.3.
In our numerical simulation, we chose dp.x = d + 5. Then
the total computational time of the proposed algorithm is
approximately (c;N/2J + ¢;)NMLd?, which is quadratic in
the dimension d.

Regarding the Longstaff-Schwartz method, if we assume
that the standard normal equation or QR factorization is used
for solving regression problems, then the computational time
is ONM ((1/x1)d*)?) = O(NMd?*), which is worse-than-
quadratic in d. Hence, the proposed neural network method
is asymptotically more efficient than the Longstaff-Schwartz
method in high dimensions.

8. Numerical results

In this section, we solve the American option problem (1)—
(4) using our neural network described in_Algorithm 1. We
compute the price v(s°,0) and the delta Vv(s°,0) at t = 0
for given 5 = (s9,...,59) where s = .-+ = s = 0.9K, K or
1.1K. We also compute the prices v(s, t) and the deltas %v(E, 1)
for sample paths of (s, 7) spread over the entire spacetime.

In our experiments, we set the strike price K = 100, the
number of the timesteps N = 100, the number of timesteps
between the network recurrence J = 4, the smoothing param-
eter in (34) k = 2/ At, the coefficient in (38) & = 0.5. At each
timestep, we train an ensemble of C = 3 neural networks,
where each neural network has a depth of L = 7 and a uniform
width of d!! = d 4 5 across all the hidden layers. We let the
number of samples per network be M = 240,000 (or the total
number of samples be CM = 720,000), and let the batch size
and the number of training steps be 400 and 600 respectively.
Each numerical experiment is implemented on one Cedarf
base-GPU node, which contains 4 NVIDIA P100-PCIE-12GB
GPUs, 24 CPUs and 128 GB memory.

We compare the numerical results computed by our pro-
posed method with those computed by the finite difference
method, the Longstaff-Schwartz method and the deep neu-
ral network method proposed in Sirignano and Spiliopou-
los (2018). For the Longstaff-Schwartz method, we choose
degree-x monomial basis (42) with x = 4. Finite difference
solutions with very fine grids are used as exact solutions. We
note that this is feasible only if d < 3. In addition, we remark
that the comparison is not made with the other methods ref-
erenced in the introduction, such as E et al. (2017), Beck et

T Cedar is a Compute Canada cluster. For more details, see https://
docs.computecanada.ca/wiki/Cedar and  https://docs.computeca
nada.ca/wiki/Using_ GPUs_with_Slurm.
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al. (2017) and Han et al. (2018). This is because their meth-
ods solve European option problems but do not discuss the
more challenging American option problems, even though
their methods also belong to the category of neural networks
for option pricing based on BSDE:s.

We note that when finite difference solutions are available,
we can evaluate the absolute and percent errors of computed
prices and deltas. More specifically, denote the finite differ-
ence solutions as v, Then the percent errors of the price
and the delta at t = 0 are

|V(§Ov 0) — Vexact (EO’ 0) |
Ivexuc't (EO, O) I
VG2, 0) = Veraer 52, 0) |1,

”Vvexact(go’ 0) ||L2

x 100%,

x 100%;

(45)

and the percent errors of the spacetime price and the spacetime
delta are

Y VS 1) = Verger (ST, 17)]
> Veraat (S, 1)
Y IV ) = V¥erer (S 1) 1,
3 I VVeraer (S, ) 1,

x 100%,

x 100%.  (46)

In addition, we can evaluate the quality of the computed
exercise boundaries. More specifically, each sample point
(S5, 1) is classified as ‘exercised’ or ‘continued’ by either
the proposed algorithm or other algorithms that we compare
with. Meanwhile, the true ‘exercised’ or ‘continued’ class of
each sample point can be determined by the finite difference
method. Let ‘exercised’ class be the positive class, and denote
the numbers of true positive, true negative, false positive and
false negative samples as TP, TN, FP, FN, respectively. Then
the quality of the exercise boundaries can be evaluated by the
fl-score:
2TP

2TP + FP + FN'

The best (or worst) case of the fl-score is 1 (or 0), respec-
tively. We note that another common metric to evaluate the
quality of classification problems is the accuracy. Since in all
our experiments, the positive class is skewed (around 3—17%),
the fl-score would be a better metric than the accuracy (see
Murphy 2012, for explanations).

fl — score = “7n

8.1. Multi-dimensional geometric average options

Consider a d-dimensional ‘geometric average’ American call
option, where p; = p for i #j, o; = o for all i’s, and the
payoff function is given by f(5) = max[(]_[?=1 sH4 — K, 0.
Although such options are rarely seen in practical applica-
tions, they have semi-analytical solutions for benchmarking
the performance of our algorithm in high dimensions. More
specifically, it is shown in Glasserman (2004) and Sirignano
and Spiliopoulos (2018) that such a d-dimensional option
can be reduced to a one-dimensional American call option
in the variable s’ = (]_[l.d:1 59174, where the effective volatil-
ity is o' = /(1 +(d —1)p)/do and the effective drift is

r— 38+ 1(0” — 0?). Hence, by solving the equivalent one-
dimensional option using finite difference methods, one can
compute the d-dimensional option prices and (sometimes)
deltast accurately.

In the following Experiments 1-5, we consider the geomet-
ric average option in Section 4.3 of Sirignano and Spiliopou-
los (2018), where p;; =0.75, 0 =0.25, r =0, 6 = 0.02,
T=2.

Experiment 1 Comparison between our proposed method
and the Longstaff-Schwartz method. First we compare the
computed prices at ¢ = 0; see table 1. Each sub-table includes:
the exact prices computed by the Crank-Nicolson finite dif-
ference method with 1000 timesteps and 16,385 space grid
points, the prices and the corresponding percent errors com-
puted by our proposed method, and the prices and the
corresponding percent errors computed by the Longstaff-
Schwartz method. For the proposed method, the computed
prices are accurate up to 2 decimal places; the percent
errors are bounded by 0.34%, and remain approximately
the same as the dimension increases. As a comparison, for
the Longstaff-Schwartz method, the percent errors deteri-
orate from 1% to 9% as the dimension increases from 7
to 20. If we keep increasing the dimension towards 100,
the Longstaff-Schwartz method encounters an out-of-memory
error, because, at d = 100, it requires storing ( d;X )CM =
3.3 x 10'? floating point numbers, or around 23 TB of mem-
ory.

The Longstaff-Schwartz algorithm combined with the
approaches in Thom (2009) and Broadie and Glasser-
man (1996) can be used to compute the deltas at r = 0.
Table 2 compares the deltas at + = 0 computed by our pro-
posed approach with the ones computed by the Longstaff-
Schwartz algorithm. For the Longstaff-Schwartz algorithm, as
the dimension increases from 7 to 20, the percent errors of the
deltas worsen from 1.6% to 12.7%; as the dimension contin-
ues to increase towards 100, an out-of-memory error occurs.
However, for our proposed method, the computed deltas are
accurate up to 3 decimal places; the percent errors do not
increase with the dimension and stay below 1.7%.

Furthermore, we compare the exercise boundaries com-
puted by the proposed neural network approach with the ones
computed by the Longstaff-Schwartz approach. Table 3 eval-
uates the f1-score of the exercise boundary classification, as
defined in (47). For the proposed method, the f1-score remains
around 0.95-0.98 as the dimension increases from 7 to 100.
For the Longstaff-Schwartz algorithm, the fl-score drops
from 0.78 to 0.42 as the dimension increases from 7 to 20.
This illustrates a more precise exercise boundary determined
by our proposed algorithm.

Figure 5 visualizes the exercise boundaries computed by
both algorithms. In order to visualize this, we start with
(°,1%) = (1.1K,0) and use the SDE (6)~(7) to generate
sample points on the entire spacetime, i.e. {(S),")|n =
0,...,Nym=1,...,M}; we classify each sample point using

+ We note that solving the equivalent one-dimensional option is not
sufficient for computing the d-dimensional delta except at the sym-
metric points s; = --- = s4. Interested readers can verify this by
straightforward algebra.
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Table 1. Multi-dimensional geometric average call options: Computed prices at 1 = 0, i.e. v(3°,0). OOM means ‘out-of-memory’.

Proposed method

Longstaff-Schwartz

s? Exact price v(s%, 0)

Computed price v(5°, 0)

Percent error Computed price v(5°, 0) Percent error

(i) 7-dimensional geometric average call option

90 5.9021 5.8822
100 10.2591 10.2286
110 15.9878 15.9738
(ii) 13-dimensional geometric average call option

90 5.7684 5.7719
100 10.0984 10.1148
110 15.8200 15.8259
(iii) 20-dimensional geometric average call option

90 5.7137 5.7105
100 10.0326 10.0180
110 15.7513 15.7425
(iv) 100-dimensional geometric average call option

90 5.6322 5.6154
100 9.9345 9.9187
110 15.6491 15.6219

0.34% 5.8440 0.98%
0.30% 10.1736 0.83%
0.09% 15.8991 0.55%
0.06% 5.5962 3.0%
0.16% 9.9336 1.6%
0.04% 15.6070 1.4%
0.06% 5.2023 9.0%
0.15% 9.5964 4.4%
0.06% 15.2622 3.1%
0.30% OOM OOM
0.16% OOM OOM
0.17% OOM OOM

Table 2. Multi-dimensional geometric average call options: Computed deltas at t = 0, i.e. %v(ﬁo, 0).

Proposed method

Longstaff-Schwartz

s? Exact delta Vv(3°, 0)

Computed delta Vv(3°, 0)

Percent error Percent error

(1) 7-dimensional geometric average call option

90 (0.0523, ..., 0.0523) (0.0516, ...,0.0516) 1.2% 1.2%
100 (0.0722, ..., 0.0722) (0.0710, ..., 0.0710) 1.7% 1.6%
110 (0.0912, ..., 0.0912) (0.0901, ..., 0.0901) 1.2% 1.4%
(ii) 13-dimensional geometric average call option

90 (0.0279, ..., 0.0279) (0.0277, ..., 0.0277) 0.76% 5.4%
100 (0.0387, ..., 0.0387) (0.0384, ..., 0.0384) 0.83% 3.7%
110 (0.0492, ..., 0.0492) (0.0486, ..., 0.0486) 1.1% 2.6%
(iii) 20-dimensional geometric average call option

90 (0.0180, ..., 0.0180) (0.0179, ..., 0.0179) 0.70% 12.7%
100 (0.0251, ..., 0.0251) (0.0248, ..., 0.0248) 1.2% 8.3%
110 (0.0320, ..., 0.0320) (0.0316, ...,0.0316) 1.2% 6.8%
(iv) 100-dimensional geometric average call option

90 (0.00359, ..., 0.00359) (0.00357, ..., 0.00357) 0.58% OOM
100 (0.00502, ..., 0.00502) (0.00495, ..., 0.00495) 1.3% OOM
110 (0.00639, ..., 0.00639) (0.00631, ...,0.00631) 1.3% OOM

Note: Note that all the reported deltas in the table are length-d vectors where all the elements are the same. The
column ‘Longstaff-Schwartz’ is the Longstaff-Schwartz method combined with Thom (2009) and Broadie and

Glasserman (1996). OOM means ‘out-of-memory’.

either our proposed method, i.e. (33), or the Longstaft-
Schwartz method; then we project these (d + 1)-dimensional
points onto the 2-dimensional points {(s",, ")}, where 5", =
(]_[?ZI(S,-)Z)I/" is the geometric average of the underlying
asset prices 3,’,’1. We use bold dark blue to mark the sam-
ple points that should be exercised but are misclassified as
continued, and bold dark red to mark the ones that should
be continued but are misclassified as exercised. The plots
show that the proposed neural network approach (top left and
bottom left) has fewer misclassified sample points than the
Longstaff-Schwartz approach (top right and bottom right). In
other words, the proposed neural network approach yields
more precise exercise boundaries.

Experiment 2 Confidence intervals by the proposed method.
We repeat the experiments of computing the prices and deltas
at t = 0 (tables 1-2) for 9 times. tables 4-5 report the mean

values of the computed prices and deltas, and the correspond-
ing 95% T-statistic confidence intervals. The last columns of
the tables show that, for both the prices and the deltas, the
deviations from the mean values remain a constant of £0.2%
as the dimension increases.

Experiment 3 Evaluation of computed spacetime prices and
deltas by the proposed method. Our proposed algorithm yields
not only the prices and deltas at t = 0, but also the prices and
deltas for the entire spacetime, which are directly extracted
from the output of the neural networks. We emphasize that
the computation of spacetime prices and deltas using the
Longstaff-Schwartz method is infeasible. The reason is that
using the Longstaff-Schwartz method to compute prices and
deltas for the entire spacetime would require repeating the
algorithm at every sample point, noting that the Longstaff-
Schwartz method at one sample point is already non-trivial.
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Table 3. Multi-dimensional geometric average call options: The f1-score of the exercise boundary classification.

Proposed method Longstaff-Schwartz
s? d=17 d=13 d =20 d =100 d=17 d=13 d =20 d =100
Geometric average call option
90 0.96 0.95 0.96 0.95 0.72 0.56 0.42 OOM
100 0.95 0.95 0.97 0.97 0.75 0.61 0.47 OOM
110 0.98 0.96 0.96 0.97 0.78 0.65 0.51 OOM

Note: OOM means ‘out-of-memory’.

(i) 7-dimensional geometric average call option

neural network Longstaff-Schwartz

0.00 — 0.00 —
0.25 1 0:25
0.50 1 0.50 1
0.75 1 0.75 1
& =
@ 1.00 1 @ 1.00 -
- £
< 1.251 + 1.25
1.50 - 1.50
i
1.75 1.75 &
; : o f
2.00 == . = . 210 m— — ; . —
50 100 150 200 250 50 100 150 200 250
geometric average of underlying asset prices (s’) geometric average of underlying asset prices (s)
(ii) 20-dimensional geometric average call option
neural network Longstaff-Schwartz
0.00 — = 0.00 —_ = =
0.25 1 0255
0.50 1 0.50
0.75 1 0.75 1
< =
@ 1.00 A @ 1.00
E e
S 1.254 + 1.251
1.50 1 1.50
o
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Figure 5. Multi-dimensional geometric average call options: Comparison of exercise boundaries between the proposed neural network
approach (top left and bottom left) and the Longstaff-Schwartz approach (top right and bottom right). All blue points: sample points that
should be exercised; all red points: sample points that should be continued; bold dark blue points: sample points that should be exercised
but are misclassified as continued; bold dark red points: sample points that should be continued but are misclassified as exercised. (i)
7-dimensional geometric average call option and (ii) 20-dimensional geometric average call option.

We also remark that although one may consider using the of the derivative (3v/ds')(s', 1) instead of the delta Vv(3, 1),
Longstaff-Schwartz regressed values as an estimate of the  pecause the exact values of the former can be computed by
spacetime prices, figure 1 in Bouchard and Warin (2012)  fipjte difference method spacetime-wise, but not the latter.
shows that using such regressed values as the spacetime Table 6 shows that the absolute errors of the spacetime prices
solution is inaccurate. and derivatives are around 0.04-0.07 and 0.01 respectively,

First we evaluate the absolute and percent errors of the  or in other words, the spacetime prices and derivatives are
spacetime price v(s, ) and the derivative (3v/ds")(s",f) com-  accurate up to 2 decimal places; the percent errors are less
puted by our proposed method. Here we evaluate the errors  than 1.2% and 3.8%, respectively. We note that the percent
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Table 4. Multi-dimensional geometric average call options: mean values and 95% T-statistic
confidence intervals (CIs) of the computed prices at t = 0, i.e. v(°,0), using the proposed
neural network method.

Exact price Mean of

Percent error 95% CI

d v(3°,0) computed prices
Geometric average call option, s? = 100
7 10.2591 10.2468
13 10.0984 10.0822
20 10.0326 10.0116
100 9.9345 9.9163

0.12% £0.0161 (£0.16%)
0.16% £0.0201 (£0.20%)
0.21% £0.0173 (£0.17%)
0.18% £0.0038 (£0.04%)

Table 5. Multi-dimensional geometric average call options: mean values of the computed deltas at t = 0, i.e. Vv(3°,0), using the proposed
neural network method, and the corresponding 95% T-statistic confidence intervals (CIs) of the first elements of deltas, i.e. (dv/ 3s1) G0, 0).

d Exact delta Vv(3°, 0)

Mean of computed deltas

Percent error 95% CI of g—s"l 32,0

Geometric average call option, s? =100

7 (0.0722, ..., 0.0722) (0.0717, ..., 0.0717) 0.67% +1.8 x 107* (£0.25%)
13 (0.0387, ..., 0.0387) (0.0384, ..., 0.0384) 0.70% +7.3 x 107 (£0.19%)
20 (0.0251, ..., 0.0251) (0.0249, ..., 0.0249) 0.78% +4.2 x 107 (£0.17%)
100 (0.00502, ..., 0.00502) (0.00498, ..., 0.00498) 0.76% +8.9 x 1070 (£0.18%)

Table 6. Multi-dimensional geometric average call options:
Spacetime prices and deltas (in terms of absolute and percent errors)
computed by our proposed method.

. Spacetime
Spacetime Iy
price v(3, 1) derivative e ', 1)
Absolute Percent Absolute Percent
s? error error error error
(1) 7-dimensional geometric average call option
90 0.0688 1.2% 0.0102 3.3%
100 0.0545 0.54% 0.0102 2.3%
110 0.0450 0.29% 0.0092 1.6%
(i1) 13-dimensional geometric average call option
90 0.0540 0.94% 0.0101 3.3%
100 0.0475 0.48% 0.0106 2.4%
110 0.0465 0.30% 0.0093 1.6%
(iii) 20-dimensional geometric average call option
90 0.0567 1.00% 0.0115 3.7%
100 0.0455 0.46% 0.0111 2.5%
110 0.0397 0.26% 0.0090 1.6%
(iv) 100-dimensional geometric average call option
90 0.0534 0.96% 0.0117 3.8%
100 0.0458 0.47% 0.0107 2.4%
110 0.0480 0.31% 0.0099 1.7%

errors of the spacetime prices and deltas (table 6) are slightly
larger than the percent errors of the prices and deltas at r = 0
(tables 1-2). This is expected, as the values at t = 0 are
computed by the improved approach described in Section 5.5.

To visualize the spacetime solutions, we consider the 100-
dimensional case, select three time slices t = 0.5, 1.0, 1.5,
and project the 100-dimensional sample points of v(s,1) and
Vv(s,1) to 1-dimensional points of v(s’,£) and (9v/3s")(s', 1),
as shown in figure 6. The spacetime option prices and deltas
computed by the proposed neural network approach (the
blue/red dots) agree well with the exact solutions by finite
difference methods (black lines). We note that small fluctua-
tions exist for the computed spacetime deltas (right subplots),

especially near the strike price K = 100. This is expected,
as the deltas of the payoff functions are discontinuous at the
strike price. Smoothing the payoff, as described in Section 5.1,
can mitigate this issue, although it does not eliminate the
fluctuations.

Experiment 4 Comparison between our proposed method
and the method in Sirignano and Spiliopoulos (2018). First we
compare the computed prices at t = 0; see table 7. Up to 200
dimension is tested. In particular, by comparing the last two
columns of the table, we observe that the percent errors com-
puted by our method are bounded by 0.17%, while the ones
computed by Sirignano and Spiliopoulos (2018) are bounded
by 0.22%.

Next we compare the computed spacetime prices by
the two approaches. Figure 7 compares the absolute errors
of the spacetime prices. To plot the figure, we start
with (5°,7°) = (K,0) and use the SDE (6)—(7) to gener-
ate sample points on the entire spacetime, i.e. {(S),,?") |n =
0,....Nym= 1,_; ..,M}. W_(; compute thg error at each
sample point, (S}, ") = [V(Sh, ") — Vexae: (S),, t")]. Then we
project {e(gz, ")} from (d + 1)-dimensional to 2-dimensional
space and get the sample points {e(s”),7")}, where s/ is
the geometric average of 3’,’1, From the discrete data points
{e(s',, ")}, we use interpolation to obtain a continuous error
function e(s’, ) and represent it by a heatmap (also known as
filled contour plot), where the x and y axes are the time ¢ and
the geometric average s, and the color represents the mag-
nitude of e(s’, ). The red, green and blue areas represent the
areas where the samples have large, median and small errors,
respectively. The white areas are the areas outside the convex
hull of the sampled points, where no value of e(s’, f) can be
interpolated from the sampled {e(s”) , #*)}. We remark that this
plotting procedure is the same as Sirignano and Spiliopou-
los (2018). Indeed, the right subplot of figure 7 is directly
taken from Sirignano and Spiliopoulos (2018). In addition,
we note that the colored areas of the left and right subplots
are not exactly the same. This is because the points on (or
near) the boundary of the convex hull are only sampled with
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Figure 6. 100-dimensional geometric average call option: Prices (left subplots) and deltas (right subplots) computed by the proposed neural
network approach at ¢+ =0.5, 1.0, 1.5. The blue/red dots are neural network output values of the exercised/continued sample points. The black

lines are the exact solutions computed by finite difference methods.

a small probability and would have a large variation under the
two independent stochastic sampling processes that generate
the two subplots.

Figure 7(left) shows that the absolute error computed
by our proposed approach is close to zero almost on the
entire spacetime domain. The error is slightly larger near

(t,5'/K) ~ (0.2,0.7) and bounded by 0.0072. The reason why
the error is slightly larger near t+ = O is that our proposed
approach computes the price in a backward manner, and
hence the error may accumulate near t = 0. As a comparison,
figure 7(right) shows that the error computed by Sirignano
and Spiliopoulos (2018) has a larger error in most of the
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Table 7. Multi-dimensional geometric average call options:
Computed prices at t = 0, i.e. v(s°,0). 5" = 100.

Sirignano and

Proposed method Spiliopoulos (2018)

Exact price  Computed  Percent Percent
d v(3%,0)  price v(s°,0)  error error
Geometric average call option, s? =100
3 10.7185 10.7368 0.17% 0.05%
20 10.0326 10.0180 0.15% 0.03%
100 9.9345 9.9187 0.16% 0.11%
200 9.9222 9.9088 0.14% 0.22%

Note: The percent errors reported in table 1 of Sirignano and
Spiliopoulos (2018) are also included in the last column of this
table.

spacetime domain. In particular, the error reaches 0.0126 near
(t,5'/K) ~ (2.0,2.7), which is larger than the upper bound of
our error, 0.0072.

proposed method
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Figure 8 compares the heatmaps of the corresponding per-
cent errors. Following Sirignano and Spiliopoulos (2018),
the percent errors are only plotted for the areas where
[Vexaet (8", 1)] > 0.05. Similar to figure 7, figure 8(left) shows
that our proposed approach yields zero error almost every-
where, except that near (z,5'/K) ~ (0.05,0.9) the error
reaches 5.6%. Figure S8(right) shows that the approach
in Sirignano and Spiliopoulos (2018) results in a larger
error, particularly near (¢,s'/K) ~ (2.0, 1.05), where the error
reaches 7.2%.

We emphasize that Sirignano and Spiliopoulos (2018) does
not compute deltas, whereas our proposed method does yield
the deltas. Table 8 reports the deltas at r = 0 computed by
our proposed method. The percent errors are bounded by
1.3%, and remain approximately the same as the dimen-
sion increases. Our approach also computes spacetime deltas,
which has been discussed in Experiment 3 and is thus skipped
here.

Sirignano and Spiliopoulos (2018)
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Figure 7. 20-dimensional geometric average call options: Heatmaps of the absolute errors of the computed spacetime prices. Left: absolute
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Table 8. Multi-dimensional geometric average call options: Com-
puted deltas at # = 0, i.e. Vv(3°,0). s¥ = 100.

Proposed method

- Computed Percent
d Exact delta Vv(5°, 0) delta Vv(3°, 0) error
Geometric average call option, s? = 100
3 (0.1702, ...,0.1702)  (0.1683, ..., 0.1683) 1.1%
20  (0.0251, ...,0.0251)  (0.0248, ..., 0.0248) 1.2%
100 (0.00502, ..., 0.00502) (0.00495, ...,0.00495) 1.3%
200 (0.00251, ..., 0.00251) (0.00250, ...,0.00250) 0.53%

Experiment 5 Delta hedging. We perform delta hedging
simulations over the period [0, 7] with our proposed method.
We evaluate the quality of the approach using the distribution
of the relative profit and loss (Forsyth 2017, He et al. 2006):
Relative P&L = e "TTI;/v(s°, 0), where Iy is the balance of
an initially-zero hedging portfolio at the expiry 7. For perfect
hedging, the relative P&L should be a Dirac delta function.
Due to the discretization of time, the relative P&L would be
close to a normal distribution, where the mean is zero and
the standard deviation is a small value depending on At. We
emphasize that the computation of the relative P&L must use
both prices and deltas for the entire spacetime. Hence, none
of the existing methods referenced in this paper, except our
proposed method, are designed to compute the relative P&L.

Table 10. 2-dimensional max call option: Computed prices at
t=0,ie.vG%0).

Proposed method Longstaff-Schwartz

Exact price Computed Percent Computed Percent
s? v(3°,0)  pricev(®,0) error  price v(3°,0)  error
2-dimensional max call option
90 4.2122 4.1992 0.31% 4.1748 0.89%
100 9.6333 9.6080 0.26% 9.5646 0.71%
110 17.3487 17.3313 0.10% 17.2751 0.42%

Table 9 shows the means and the standard deviations of the
relative P&Ls for all the 720000 simulation paths, computed
by our proposed method. The reported values are indeed close
to zero. Figure 9 illustrates the distributions of the relative
P&Ls. The resulting distributions are indeed approximately
normal distributions with zero means. These results confirm
the accuracy of the spacetime prices and the spacetime deltas
computed by the proposed method.

8.2. Multi-dimensional max options

Multi-dimensional max options are common in practical
applications. In this section, we report simulation results for
this type of options.

Table 9. Multi-dimensional geometric average call options: Computed means and standard deviations of the relative P&Ls, subject to 100
hedging intervals.

d=1 d=13 d =20 d =100
s? Mean Std Mean Std Mean Std Mean Std
Geometric average call option
90 —0.0023 0.1788 0.0017 0.1827 —0.0003 0.1877 —0.0021 0.1908
100 —0.0016 0.1159 0.0021 0.1170 —0.0007 0.1184 —0.0010 0.1184
110 —0.0001 0.0757 0.0013 0.0755 0.0005 0.0751 —0.0009 0.0763

20-dimensional geometric call

[ proposed method
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Figure 9. Multi-dimensional geometric call options: Distributions of the relative P&Ls computed by the proposed neural network approach,

subject to 100 hedging intervals.
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Table 11. 2-dimensional max call option: Computed deltas at ¢t = 0, i.e. %v(}o, 0).

Proposed method

Longstaff-Schwartz

s Exact delta Vv(3°,0)

Computed delta %v(EO, 0)

Percent error Percent error

2-dimensional max call option

90 (0.2062, 0.2062) (0.2025, 0.2019) 1.9% 5.2%
100 (0.3338, 0.3338) (0.3300, 0.3324) 0.84% 4.4%
110 (0.4304, 0.4304) (0.4252, 0.4277) 0.96% 3.3%

Note: ‘Longstaff-Schwartz’ is the Longstaff-Schwartz method combined with Thom (2009) and Broadie and

Glasserman (1996).

Table 12. 2-dimensional max call option: Spacetime
prices and deltas (in terms of absolute and percent errors)
computed by our proposed method.

Spacetime price v (s, ) Spacetime delta 6\/(3, 1)

Absolute Percent Absolute Percent
s? error error error error
2-dimensional max call option
90 0.0563 1.3% 0.0155 4.9%
100 0.0828 0.85% 0.0180 3.4%
110 0.0678 0.39% 0.0207 3.0%

Experiment 6 2-dimensional max call option. Consider
the 2-dimensional max call option from table 3 of Broadie
and Glasserman (1997), where the payoff function is f(5) =
max[max(s,s;) — K,0], and the parameters are p = 0.3,
o=02 r=0.05 6 =0.1, T = 1. The reason to consider
this example is that the exact prices and deltas are avail-
able spacetime-wise. More specifically, we approximate the
exact prices and deltas by the Crank-Nicolson finite differ-
ence method with 1000 timesteps and 2049 x 2049 space grid
points. Hence, we can again benchmark the values computed
by our approach with the exact ones.

Using our proposed method, the percent errors of the com-
puted prices at t = 0 are less than 0.31% (table 10); the
percent errors of the computed deltas at + = 0 are less than
1.9% (table 11). These errors are smaller than the correspond-
ing ones computed by the Longstaff-Schwartz method. In
addition, the percent errors of the computed spacetime prices
and deltas are less than 1.3% and 4.9% (table 12).

Here we also compare the exercise boundary computed
by the proposed approaches with the one computed by the
Longstaff-Schwartz method. Table 13 shows that the fl-
scores computed by our proposed method are around 0.94,
higher than the ones computed by the Longstaff-Schwartz
algorithm (around 0.76). Figure 10 plots the exercise bound-
aries at the time slices t = 0.75 and 0.5. Similar to figure 5,
here the misclassified sample points are highlighted by dark
cross markers, and we observe again that the proposed neu-
ral network approach has fewer misclassified points than
the Longstaff-Schwartz method. Both table 13 and figure 10
illustrate a more accurate exercise boundary determined
by our proposed method than by the Longstaff-Schwartz
method.

Table 13. 2-dimensional max call option: The
f1-score of the exercise boundary classification.

s? Proposed method  Longstaff-Schwartz

2-dimensional max call option

90 0.93 0.74
100 0.95 0.76
110 0.94 0.79

In addition, we compute the relative P&Ls by the finite
difference methodf and compare them with the values com-
puted by our approach. table 14 and figure 11 show the
means, standard deviations and the distributions of the relative
P&Ls computed by the proposed approach versus by finite
difference methods. The results computed by the proposed
approach are similar to the ones computed by finite difference
methods. This again verifies the accuracy of the spacetime
prices and deltas computed by our proposed algorithm.

Experiment 7 5-dimensional max call option. We study the
5-dimensional max call option from table 3.5 of Firth (2005),
where p;; =0, 0 =02, r =0.05,6 =0.1, T = 3. We note
that unlike the previous experiments, here the exact solu-
tions are not available. Table 15 reports the option prices
and deltas at t = 0 computed by the proposed method. The
table also includes the Longstaff-Schwartz prices reported in
Firth (2005). The prices given by the proposed algorithm and
the Longstaff-Schwartz method differ by 102, We note that
the Longstaff-Schwartz method is a low-biased method due
to its sub-optimal computed exercise boundary, as explained
in Longstaff and Schwartz (2001) and Firth (2005). The
proposed algorithm gives slightly higher prices.

9. Conclusion

We propose a neural network framework for high-dimensional
American option problems. Our algorithm minimizes the
residual of the backward stochastic differential equation that
couples both prices and deltas. The neural network is designed
to learn the differences between the price functions of the
adjacent timesteps. We improve the algorithm by various

T We note that even though finite difference methods yield nearly
exact spacetime prices and deltas, due to the finite number of hedg-
ing intervals, the resulting relative P&Ls are not a Dirac delta
distribution.
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Figure 10. 2-dimensional max call option: Comparison of exercise boundaries between the proposed neural network approach (top left and
bottom left) and the Longstaff-Schwartz approach (top right and bottom right). Note that only the time slices of # =0.75 and 0.5 are plotted.
All blue points: sample points that should be exercised; all red points: sample points that should be continued; bold dark blue points: sample
points that should be exercised but are misclassified as continued; bold dark red points: sample points that should be continued but are

misclassified as exercised.

Table 14. 2-dimensional max call option: Means and standard
deviations of the relative P&Ls by finite difference versus by the
proposed method, subject to 100 hedging intervals.

Finite difference Proposed method

0

s; Mean Std Mean Std
2-dimensional max call option

90 0.0025 0.1683 0.0022 0.1932
100 0.0014 0.0894 0.0016 0.0990
110 0.0011 0.0544 0.0016 0.0614

techniques, including feature selection, weight reuse, ensem-
ble learning, redefining training input ‘v’, etc. The proposed
algorithm yields not only the prices and deltas at r = 0,
but also the prices and deltas for the entire spacetime. The
cost of the proposed algorithm grows quadratically with the
dimension d, which mitigates the curse of dimensionality. In
particular, our algorithm outperforms the Longstaff-Schwartz
algorithm when d > 20.

2-dimensional max call option
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0l— . . - ; . . . S
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relative P&L

Figure 11. 2-dimensional max call option: Comparison of the dis-
tributions of the relative P&Ls computed by the proposed neural
network approach (blue) versus by finite difference method (red),
subject to 100 hedging intervals.
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Table 15. 5-dimensional max call option: Computed prices and
deltas at t = 0, i.e. v(s°,0) and Vv(s°,0).

Computed price v(s°, 0)

Computed delta Vv(3°,0) by
proposed method

Longstaff-

Proposed
x Schwartz

S method

5-dimensional max call option

90 16.8896 16.76 (0.1728, 0.1732, 0.1747, 0.1754, 0.1738)
100 26.4876 26.28 (0.2017, 0.2004, 0.1998, 0.2071, 0.2041)
110  37.0996 36.89 (0.2157, 0.2198, 0.2190, 0.2149, 0.2202)

Note: The column ‘Longstaff-Schwartz’ is the Longstaff-Schwartz prices
reported in Firth (2005).

We note that the main drawback of the proposed algorithm
is that the computational cost is quadratic (rather than linear)
in the number of the timesteps N, even though a mitiga-
tion is proposed in Section 4.3. A potential future work is to
re-design the architecture of the neural network in order to
improve this drawback.

A version of the code is provided at https://github.com/
yangangchen/Amer_Op_Neural_Net. This version of code is
written for CPU machines (rather than GPU machines). Inter-
ested readers are recommended to optimize the code based on
their GPU machines, noting that the way to optimize the code
can vary significantly from one GPU machine to another.
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