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Abstract. This paper proposes a numerical method for solving a non-rigid

image registration model based on optimal mass transport. The main contri-
bution of this paper is to address two issues. One is that we impose a proper

periodic boundary condition, such that when the reference and template im-
ages are related by translation, or a combination of translation and non-rigid

deformation, the numerical solution gives the underlying transformation. The

other is that we design a numerical scheme that converges to the optimal trans-
formation between the two images. As an additional benefit, our approach can

decompose the transformation into translation and non-rigid deformation. Our

numerical results show that the numerical solutions yield good-quality trans-
formations for non-rigid image registration problems.

1. Introduction. In many applications, one has to compare two images T (tem-
plate) and R (reference) which display the same object, but the object inside the
images is not spatially aligned, or the devices that record the two images are dif-
ferent. The image registration problem is to find a coordinate transformation φ
which transforms the image T to another image Tφ, such that Tφ is similar and
thus comparable to the image R.

One important application of image registration is to compare medical images of
the same patient, such as CT (computed tomography) and MRI (magnetic resonance
imaging) images of a damaged brain, which gives guidance for diagnosis and surgery
[35, 29]. Image registration can also be used for image fusion [30]. Multiple images
of the same object are taken, registered and then merged together, such that the
integrated image is clearer than the original ones. We refer readers to [26] for more
discussion on applications.
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Different approaches have been developed for image registration problems, in-
cluding parametrized transformation [7, 51], landmark-based registration [43], elas-
tic registration [6], fluid registration [14], diffusion registration [21], demon’s regis-
tration [47], flow of diffeomorphism [18, 50], etc. A substantial discussion of existing
methods can be found in [37, 45].

This paper considers a non-rigid image registration method based on Monge-
Kantorovich mass transport [27, 28, 23, 44, 12, 39]. The approach was first proposed
in [27, 28]. This image registration model treats two images R and T as two mass
densities. The goal is to find a mapping which transforms one mass density T to the
other R with mass conservation. Such transformation is non-unique. By defining a
transformation-dependent cost function and minimizing it, we can obtain a unique
optimal transformation. This optimal transformation has desirable properties. For
instance, it is usually diffeomorphic and does not introduce foldings and crossings.

The primary advantage of this image registration model is that, unlike many
other non-rigid methods that are only applicable for images with small deformations,
this model can be applied to images with large deformations. See Figures 1-2 in
[27] for an example of images with large deformations. Indeed, given any R and T ,
the transformed image Tφ under the mass transport formulation can be equal to R
[39].

Numerical methods have been developed for solving the image registration model
based on optimal mass transport. In [27] and [28], the authors construct an ini-
tial mass-preserving mapping φ0 by solving a nonlinear partial differential equation
(PDE), and obtain a second mass-preserving mapping φs by solving another nonlin-
ear PDE system, such that φ0◦φs is the optimal transformation. The entire process
involves many intermediate steps. Also, in general, a nonlinear PDE (or PDE sys-
tem) has multiple solutions. An immediate challenge is that the nonlinear PDE
system in [27] and [28] can give multiple transformations between R and T , which
may not be the optimal transformation1. To the best of our knowledge, it is unclear
whether the numerical scheme in [27] and [28] gives the optimal transformation.

An alternative approach for solving this image registration model is to solve an
equivalent Monge-Ampère equation, which is also a nonlinear PDE and thus has
multiple solutions. Among the multiple solutions, there exists a unique globally
convex solution. The gradient of this solution corresponds to the optimal trans-
formation between R and T [27, 31]. The convex solution itself is usually called a
scalar potential that generates the optimal transformation.

Some literature has investigated numerical schemes for the Monge-Ampère equa-
tion arising from the image registration model [23, 44, 12]. In [23], the author pro-
poses a finite difference scheme for the Monge-Ampère equation, and proves that
the resulting transformation between R and T is optimal. However, in order to
guarantee the optimality, the computational cost per pixel must increase to infinity
as the image size increases[19]. Hence the method is not practical for large images.
Other numerical schemes for the image registration model via the Monge-Ampère
equation can be found in [44] and [12]. We remark that although the methodology
in [12] is gradient descent, it ends up begin equivalent to solving the Monge-Ampère
equation using explicit pseudo-timestepping. Whether the transformations given in
[44] and [12] are optimal remains an open question.

1Although the optimality of “optimal transformation” may have various meanings, in this
paper, unless specified, optimality refers to the minimization of the cost function in the mass

transport.
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Another issue in the existing literature is boundary conditions. We note that
the transformation on the boundary of R and T cannot be determined from the
mass transport model and thus needs to be specified by model users. Since the
transformation on the boundary influences the transformation inside the images, it is
crucial to specify a proper boundary condition, such that the quality of the resulting
transformation is good. Here the transformation of good quality means that the
resulting transformation should reflect the physical movement of the object inside
R and T . For instance, if the object inside R and T is related by translation, then
the resulting transformation should be able to recover the underlying translation.

A common boundary condition considered in the literature, such as in [23], is
Neumann boundary condition, where the pixels on the boundary of one image stay
on the boundary of the other under the transformation. Alternatively, assuming
that R and T are periodic images, the authors in [44] use a periodic boundary
condition on the solution of the Monge-Ampère equation (namely, on the scalar
potential). However, under either of these boundary conditions, when R and T are
related by translation, or by a combination of translation and non-rigid deformation,
the resulting transformation may not be the underlying transformation. To the
best of our knowledge, no existing literature using the mass transport model has
registered translated images.

In this paper, we develop a numerical scheme for the image registration model
based on optimal mass transport by solving the equivalent Monge-Ampère equa-
tion. We resolve the two major issues in the existing literature - imposing a proper
boundary condition, and ensuring that the resulting transformation by a numerical
method is the optimal transformation.

More specifically, we propose to use another periodic boundary condition, where
we assume that the transformation (or the displacement of the pixels) on the bound-
ary of the images is periodic. Thus, for the Monge-Ampère equation, it means that
the gradient of the solution is periodic. This is different from [44] where periodicity
is imposed on the solution itself. We will show that, in contrast to the commonly
used Neumann boundary condition, our periodic boundary condition will recover
the underlying transformation for the images that are related by translation or by
a combination of translation and non-rigid deformation.

In order to ensure that our numerical scheme yields the optimal transformation
between R and T , we adopt the theory of viscosity solution [16, 15]. Viscosity solu-
tion of the Monge-Ampère equation is the solution that corresponds to the optimal
transformation between R and T [23, 24]. In this paper, we design a finite difference
scheme based on our previous work [13] and the theoretical framework in [1]. No-
tably, we prove that our numerical solution converges to the viscosity solution of the
Monge-Ampère equation. Consequentially, the resulting transformation computed
by our numerical scheme is the optimal one.

In addition to these two contributions, our numerical scheme can automatically
decompose the transformation between R and T into translation and non-rigid
deformation components. This extra information is useful in visualizing and under-
standing the underlying transformation.

This paper is organized as follows. In Section 2, we describe the image regis-
tration model based on optimal mass transport. In particular, we have a detailed
discussion on boundary conditions. Section 3 describes a finite difference discretiza-
tion for the Monge-Ampère equation arising from the mass transport image regis-
tration model. In Section 4, we propose a modified Levenberg-Marquardt algorithm
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to solve the discretized system. In Section 5, we prove that our numerical scheme
converges to the optimal transformation between R and T . Experimental results
in Section 6 show that our numerical scheme gives the optimal transformations,
and the results under our periodic boundary condition outperform those under the
commonly used Neumann boundary condition. Section 7 concludes the paper.

2. Image registration model based on optimal mass transport.

2.1. Image registration. In this paper, we use the following notation:

T Template image.
R Reference image.
ρT Intensity of template image T on domain ΩT ⊂ R2.
ρR Intensity of reference image R on domain ΩR ⊂ R2.
φ Coordinate transformation φ : ΩR → ΩT . φ ∈ R2×1.
φ∗ Optimal coordinate transformation.
Tφ Transformed image under the transformation φ.
ρTφ Intensity of transformed image Tφ on domain ΩR.
u Convex scalar potential. u ∈ C(ΩR).

The objective of image registration problem is to find a coordinate transformation
φ that minimizes the difference between ρTφ and ρR, which is usually measured by
some function such as sum of squared differences

(1) D(ρTφ , ρR) ≡ ‖ρTφ − ρR‖L2(ΩR).

For simplicity, we restrict our discussion on two square images of the same size,
or more specifically, ΩT = ΩR = [0, 1] × [0, 1]. In this paper, unless specified, we
will drop the superscripts in ΩT and ΩR and denote them as Ω.

2.2. Mass transport formulation. The mass transport problem considers trans-
forming one pile of soils T to another pileR with mass preservation. Mathematically,
let ρT and ρR be two bounded positive density functions on ΩT and ΩR respectively.
Suppose ρT and ρR have the same total mass

(2)

∫
ΩT

ρT (x̂)d2x̂ =

∫
ΩR

ρR(x)d2x.

The goal is to find a coordinate transformation φ : ΩR → ΩT , or φ(x) = x̂, such
that ρT is transformed to ρR while the total mass is preserved:∫

x∈ΩR
ρT (φ(x))d2φ(x) =

∫
ΩR

ρR(x)d2x,

or equivalently,

(3) ρT (φ(x)) det[Dφ(x)] = ρR(x),

where “det” is the determinant and Dφ(x) ∈ R2×2 is the Jacobian of the transfor-
mation φ(x).

Back to image registration, if we view the two images T and R as two piles
of soils with the densities ρT and ρR, then the image registration problem can be
interpreted as a mass transport problem. This idea motivates people to formulate
the image registration problem as follows [27, 28, 39]: solve the mass transport
problem (3) for the transformation φ(x), such that the template image ρT (x) is
transformed to a new image, defined by

(4) ρTφ(x) ≡ ρT (φ(x)) det[Dφ(x)],
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which equals to the reference image ρR(x).
There are two remarks regarding the mass transport registration model. One

is that ρTφ and ρR are always equal for any T and R. In other words, the error
measure, such as sum of squared differences (1), is zero. As a result, this method
can transform any template image T to any reference image R [39].

The other remark is that, according to (4), the image registration based on
mass transport consists of two components. One component is the movement of
pixels from x to φ(x), which transforms the image to ρT (φ(x)). The other com-
ponent, called morphing effect, changes the intensity at each moved pixel φ(x) by
a factor det[Dφ(x)], or more specifically, changes the intensity from ρT (φ(x)) to
det[Dφ(x)]ρT (φ(x)). We note that morphing effect is an essential part of the mass
transport model for two reasons. One is that if pixels can be treated as masses,
then after a movement of masses, the accumulation/dissipation of masses in certain
regions will inevitably cause an increase/decrease of the intensity. The other reason
is that, although the movement of pixels alone registers T and R, it is the morphing
effect that further corrects the registration error (e.g. sum of squared differences)
to zero and makes Tφ equals to R.

2.3. Optimal mass transport. The mass transport registration in Section 2.2
is ill-posed. More specifically, there exist multiple transformations that move the
soil ρT to the same ρTφ . Among all possible transformations, one of them requires
“least cost”, which is desirable. Following [27, 28, 2], we aim at finding the optimal
transformation φ∗(x) that minimizes the following cost function

(5) φ∗(x) ≡ arg min
φ(x)

∫
R2

‖x− φ(x)‖2ρR(x)d2x.

In other words, the optimal transformation φ∗(x) minimizes the total squared dis-
placements weighted by the masses, where the transport cost of heavier soil particles
is higher. In essence, (5) regularizes the mass transport registration and makes the
transformation between ρT and ρTφ unique.

2.4. Monge-Ampère equation with convexity constraint. It has been proved
in [31] that the optimal transformation that minimizes the cost function (5) can be
written as

(6) φ∗ = ∇u.

Here u ∈ C(ΩR) is a convex scalar potential field, where its gradient ∇u generates
the optimal transformation φ∗. Substituting (6) into (3), we have

det[D2u(x)] =
ρR(x)

ρT (∇u(x))
,(7)

u is convex,(8)

where D2u(x) ∈ R2×2 is the Hessian matrix of u(x). Equation (7) is called Monge-
Ampère equation.

We note that since the Monge-Ampère equation (7) is nonlinear, the equation
itself without the convexity constraint (8) can have multiple solutions [19, 3]. How-
ever, the solution of (7) that satisfies the convexity constraint (8) is unique [23],
which we will denote as u∗ whenever we need to distinguish it from the other solu-
tions. We emphasize that the convexity of u∗ is equivalent to the optimality of the
transformation φ∗ = ∇u∗ [27, 23].
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The convexity of u∗ implies the following desirable properties for the optimal
transformation φ∗:

(i) φ∗ does not introduce foldings or invert the order of pixels. For simplicity, we
consider one-dimensional images. The solution u∗ being convex means φ∗x = u∗xx > 0
on the entire computational domain. Then for any x1 < x2, their corresponding new
coordinates satisfy φ∗(x1) < φ∗(x2). This implies no foldings or inversion of pixel
order. We note that this property is a necessary condition for φ∗ to be bijective.

(ii) φ∗ is diffeomorphic under the assumption that ρT , ρR are continuous and φ∗

is bijective. Since u∗ is convex (or more precisely, strictly convex), the Jacobian
of the transformation Dφ∗ = D2u∗ is positive definite and thus non-singular on
the entire computational domain. Hence, φ∗ is invertible. Meanwhile, if ρT , ρR

are α-Hölder continuous, then u∗ ∈ C2(Ω)[23, 10], which implies that φ∗ = ∇u∗ is
differentiable. As a result, φ∗ is diffeomorphic. Diffeomorphism is observed in all
of our experiments.

2.5. Boundary conditions. Up to this point, the image registration model is still
incomplete. The transformation on the boundary cannot be derived from the mass
transport formulation, and it needs to be specified by model users. In terms of the
Monge-Ampère equation (7), it means that a boundary condition for the PDE is
yet to be specified.

A natural attempt is to specify the value of the solution u on the boundary,
called Dirichlet boundary condition. However, in the image registration context, u
is a scalar potential, and it is not clear what value of scalar potential to specify on
the boundary.

Alternatively, one can specify the value of the transformation φ∗ on the boundary.
For instance, [23] assumes that

for any x ∈ ∂ΩR, the new coordinate φ∗(x) ∈ ∂ΩT ,

where ∂ΩR and ∂ΩT are the boundaries of ΩR and ΩT , respectively. This means
that any pixels that are on the boundary of R must stay on the boundary of T under
the mapping. Since φ∗ = ∇u, and we have assumed that ΩR = ΩT = [0, 1]× [0, 1],
this boundary condition can be rewritten as

(9) ux|x=0 = 0, ux|x=1 = 1, uy|y=0 = 0, uy|y=1 = 1.

Equation (9) is called Neumann boundary condition.
However, under the Neumann boundary condition (9), the quality of the result-

ing transformation φ∗ may not be good. More specifically, assuming that R is a
translation of T , we expect the resulting φ∗ to be the underlying translation, but
in numerical experiments, the resulting φ∗ is not a translation; see Figure 1. The
reason is that under a translation, the boundary of ΩR = [0, 1] × [0, 1] cannot be
the boundary of ΩT = [0, 1]× [0, 1], which violates the assumption of the Neumann
boundary condition (9). More generally, when R and T are related by a combina-
tion of translation and non-rigid deformation, the resulting φ∗ may not reflect the
underlying transformation, which will be shown in Section 6.

It seems that specifying non-zero values in (9) might recover the underlying
transformation between T and R. However, feeding correct values for (9) requires
knowing in advance what the underlying transformation is, and normally we do not
know the answer (this is exactly what image registration tries to find), especially
when the two images are related by both translation and non-rigid deformation.
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(a) (b)

(c) (d)

Figure 1. An example of image registration using the Neumann
boundary condition. (a) Template image T . (b) Reference im-
age R. (c) Underlying transformation between T and R, which is a
pure translation. (d) Transformation given by the Neumann bound-
ary condition.

We remark that [44] considers another boundary condition “u(x) − 1
2 |x|

2 is pe-
riodic on ∂Ω”. Similar to (9), this boundary condition does not work for the regis-
tration problems that are mentioned in the previous paragraphs.

Our goal is to impose a proper boundary condition that will recover the under-
lying transformation when R and T are related by translation or by a combination
of translation and non-rigid deformation. We note that the backgrounds of many
images, especially medical images, display only one single color (black or white).
Such images can be viewed as periodic density functions, if the domain of the im-
ages are extended to R2. Motivated by this fact and a very brief discussion in [27]
and [28], we assume that

the displacement of a pixel, φ∗(x)− x, is periodic on ∂Ω.

To take one step further, we substitute φ∗ = ∇u and obtain

(10)
(ux − x)x=0 = (ux − x)x=1, (ux − x)y=0 = (ux − x)y=1,

(uy − y)x=0 = (uy − y)x=1, (uy − y)y=0 = (uy − y)y=1.

Equation (10) is a periodic boundary condition with respect to the gradient of u.
To the best of our knowledge, this paper is the first application of the gradient-
like periodic boundary condition (10) in the context of solving the Monge-Ampère
equation (7) for the image registration model.

3. Finite difference discretization. Next, we develop a numerical scheme for
the Monge-Ampère equation (7) under the convexity constraint (8), which yields
the optimal transformation φ∗ = ∇u. The convex solution of (7) is indeed a type
of solution that has been studied extensively, called viscosity solution [23, 24]. The
theory of viscosity solution can be found in [16, 15]. Our goal is to develop a
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numerical scheme that converges to the viscosity solution of the Monge-Ampère
equation (7).

Different numerical approaches have been developed to solve Monge-Ampère
equations det(D2u) = f . Some methods, such as [3, 41, 40, 24, 4, 5, 17, 20],
consider the case where f = f(x) does not depend on the gradient ∇u. Other
methods, including [8, 9, 23, 44], consider the case where f = f(∇u). However, it is
not obvious whether many of these methods can converge to the viscosity solution.

Very little work has been done for developing numerical schemes that are con-
vergent to the viscosity solution of the Monge-Ampère equation. A finite difference
method that can converge to the viscosity solution is proposed in [40, 24, 23]. How-
ever, the computational cost per grid point must increase to infinity as the grid size
increases in order to achieve convergence[19].

In our previous work [13], we propose a numerical scheme that converges to the
viscosity solution of the Monge-Ampère equation det(D2u) = f , where f = f(x)
does not depend on ∇u and the boundary condition is Dirichlet. In this paper, we
plan to extend our numerical method in [13] to the Monge-Ampère equation (7),
where f = f(∇u) and the boundary condition is periodic on ∇u. The basic idea is
to

(i) convert the Monge-Ampère equation (7) with the convexity constraint (8) into
an equivalent Hamilton-Jacobi-Bellman (HJB) equation;

(ii) perform a mixed standard 7-point stencil and wide stencil finite difference
discretization on the equivalent HJB equation; and

(iii) solve the discretized system.
Steps (i) and (ii) follow our previous work [13]. However, Step (iii) requires a

significant change, which will be discussed separately in Section 4.

3.1. HJB formulation of the Monge-Ampère equation. Step (i) is to convert
the Monge-Ampère equation (7) with the constraint (8) into an equivalent HJB
equation[32, 34]:

Theorem 3.1. Let u ∈ C2(ΩR) be convex, and let ρT ∈ C(ΩT ) and ρR ∈ C(ΩR)
be two positive functions. Then the Monge-Ampère equation (7) with the convexity
constraint (8) is equivalent to the following HJB equation

(11) max
(a(x),θ(x))∈Γ

{
La(x),θ(x)u(x) + 2

√
a(x)(1− a(x))

ρR(x)

ρT (∇u(x))

}
= 0.

Here (a(x), θ(x)) is a pair of control variables at point x ∈ ΩR, Γ ≡ [0, 1]× [−π4 ,
π
4 )

is a set of admissible controls, and

(12) La,θ u ≡ −α11(a, θ)uxx − 2α12(a, θ)uxy − α22(a, θ)uyy

is a second order differential operator with the coefficients

(13)

α11(a, θ) = 1
2 [1− (1− 2a) cos 2θ],

α22(a, θ) = 1
2 [1 + (1− 2a) cos 2θ],

α12(a, θ) = 1
2 (1− 2a) sin 2θ.

Proof. We refer interested readers to [13, 34].

The HJB equation (11)-(12) turns out to be more manageable for numerical
computation than the Monge-Ampère equation (7). The reason is that if we assume
that the control pair (a, θ) is given, then the differential operator (12) becomes
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linear, which is less difficult than the nonlinear operator det(D2u) in (7) in terms
of finite difference discretization.

3.2. Standard 7-point stencil and wide stencil discretizations. Next, we dis-
cretize the HJB equation (11)-(12) using finite difference. Interested readers can find
details in our previous work [13]. To sketch the idea, we denote the N×N grid points
by {xi,j ≡ (ih, jh), 1 ≤ i, j ≤ N}, where h = 1/N is the mesh size. We also denote
the finite difference approximations of u(xi,j), a(xi,j), θ(xi,j), α11(a(xi,j), θ(xi,j)),
α12(a(xi,j), θ(xi,j)) and α22(a(xi,j), θ(xi,j)) as Ui,j , ai,j , θi,j , (α11)i,j , (α12)i,j and
(α22)i,j , respectively. In addition, we introduce the forward/backward difference
operators:

D+
x Ui,j ≡

Ui+1,j − Ui,j
h

, D−x Ui,j ≡
Ui,j − Ui−1,j

h
,

D+
y Ui,j ≡

Ui,j+1 − Ui,j
h

, D−y Ui,j ≡
Ui,j − Ui,j−1

h
.

According to the theory in [1], in order to converge to the viscosity solution, we
intend to design a finite difference scheme that is monotone [1, 48]. We approx-
imate uxx(xi,j) and uyy(xi,j) using standard central differencing D+

xD
−
x Ui,j and

D+
y D
−
y Ui,j . Regarding the monotone discretization of the cross derivative uxy(xi,j),

one can verify the following:
(i) If the following condition is satisfied:

(14) (α11)i,j ≥ |(α12)i,j |, (α22)i,j ≥ |(α12)i,j |, (α12)i,j ≥ 0,

then uxy(xi,j) can be discretized monotonically by the standard 7-point stencil
scheme 1

2 (D+
xD

+
y + D−x D

−
y )Ui,j . Then the discretization of La(xi,j),θ(xi,j) u(xi,j),

namely the differential operator (12) at xi,j , reads

(15) − (α11)i,jD
+
xD
−
x Ui,j − (α22)i,jD

+
y D
−
y Ui,j − (α12)i,j(D

+
xD

+
y +D−x D

−
y )Ui,j .

The stencil points of (15) are shown in Figure 2(a).
(ii) If the following condition is satisfied:

(16) (α11)i,j ≥ |(α12)i,j |, (α22)i,j ≥ |(α12)i,j |, (α12)i,j ≤ 0,

then uxy(xi,j) can be discretized monotonically by another standard 7-point stencil
scheme 1

2 (D+
xD
−
y +D−x D

+
y )Ui,j . The discretization of La(xi,j),θ(xi,j) u(xi,j) becomes

(17) − (α11)i,jD
+
xD
−
x Ui,j − (α22)i,jD

+
y D
−
y Ui,j − (α12)i,j(D

+
xD
−
y +D−x D

+
y )Ui,j .

The stencil points of (17) are shown in Figure 2(b).
In general, however, neither Condition (14) nor (16) is satisfied. In order to

obtain a monotone scheme, we consider performing a local coordinate rotation on
La(xi,j),θ(xi,j) u(xi,j) to eliminate the cross derivative. As shown in Figure 2(c), we
apply a clock-wise local coordinate rotation by the angle θi,j , which rotates the local
axes ((ex)i,j , (ey)i,j) to new axes ((ez)i,j , (ew)i,j). Then the differential operator
(12) is transformed into

La(xi,j),θ(xi,j) u(xi,j) = −ai,juzz(xi,j)− (1− ai,j)uww(xi,j),

where uzz and uww are the directional derivatives along ((ez)i,j , (ew)i,j) axes. Then
uzz(xi,j) can be approximated by central differencing:

D+
z D
−
z Ui,j ≡

1

h

(
IhU |xi,j+

√
h(ez)i,j

− 2Ui,j + IhU |xi,j−
√
h(ez)i,j

)
.
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  xi , j

xi , j

i i+1i−1

j−1

j

j+1

j−1

j

j+1

i i+1i−1

θi , j

(ew)i , j

(e z)i , j

xi , j

xi , j+√h(ez)i , j

xi , j−√h(e z)i , j

xi , j+√h(ew)i , j

xi , j−√h(ew)i , j

(a)

(b) (c)

Figure 2. Standard 7-point stencil and wide stencil discretizations.
(a) The stencil points of the discretization (15). (b) The stencil points
of the discretization (17). (c) Wide stencil discretization: We apply a
local coordinate rotation at the grid point xi,j by the angle θi,j . The grey
dashed lines are the orthogonal axes {(ez)i,j , (ew)i,j}. The stencil length

is
√
h (
√
h > h). The grey stars are the stencil points xi,j±

√
h(ez)i,j and

xi,j±
√
h(ew)i,j . The unknowns at these stencil points are approximated

by the bilinear interpolation from the neighboring points (black dots).

Here the stencil length is chosen as
√
h to maintain consistency, which will be proved

in Section 5. The stencil points xi,j ±
√
h(ez)i,j may not coincide with any grid

point, so we approximate the unknown values at these stencil points using bilinear
interpolation, denoted as IhU |xi,j±

√
h(ez)i,j

; see Figure 2(c) for details. We note

that uww(xi,j) can be discretized in a similar fashion as D+
wD
−
wUi,j . As a result,

La(xi,j),θ(xi,j) u(xi,j) can be discretized monotonically by

(18) − ai,jD+
z D
−
z Ui,j − (1− ai,j)D+

wD
−
wUi,j .

Since the stencil lengths of D+
z D
−
z Ui,j and D+

wD
−
wUi,j are both

√
h, which is greater

than h, we call (18) wide stencil discretization.
The advantage of the wide stencil discretization (18) is that it is unconditionally

monotone. One may apply the wide stencil discretization at every grid point. How-
ever, we will prove that (18) is only first order accurate, while the standard 7-point
stencil discretizations (15) and (17) are second order accurate. Considering this, we
will only apply the wide stencil discretization (18) at the grid points where neither
(14) nor (16) is satisfied. For the other grid points where (14) and (16) are fulfilled,
we will apply the standard 7-point stencil discretizations (15) and (17), such that
monotonicity still holds and the numerical scheme is as accurate as possible.

3.3. The complete discretized system. A complete finite difference discretiza-
tion of (11)-(12) based on (15), (17) and (18) gives rise to a discrete system. Define

a vector of the unknowns U ≡ {Ui,j | 1 ≤ i, j ≤ N} ∈ RN2×1, and correspondingly,

vectors of the controls a ∈ RN2×1, θ ∈ RN2×1. Similar to [13], we can write the
discretized system into the following matrix form:

(19) max
(a,θ)∈Γ

{A[a, θ]U − F (a, θ;U)} = 0.

Inverse Problems and Imaging Volume 12, No. 2 (2018), X–XX
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Here A[a, θ] ∈ RN2×N2

is the matrix that assembles the coefficients of {Ui,j} in

(15), (17) and (18), which depends on the controls (a, θ). F (a, θ;U) ∈ RN2×1 is the

vector coming from the discretization of 2
√
a(xi,j)(1− a(xi,j))

ρR(xi,j)
ρT (∇u(xi,j))

plus the

boundary terms in (15), (17) and (18). F depends on both the controls (a, θ) and
the unknown U .

4. Solving the discretized system. In this section, we solve the nonlinear dis-
cretized system (19) using iterative methods. Suppose the approximation of the
solution U at the k-th iteration is U (k), and the corresponding optimal controls are

(20) (a(k), θ(k)) = arg max
(a,θ)∈Γ

{
A[a, θ]U (k) − F (a, θ;U (k))

}
.

This is a nonlinear optimization problem. Interested readers can refer to [13, 22]
for how to solve this problem. We define the residual of (19) as

(21)
R(U (k)) ≡ max(a,θ)∈Γ

{
A[a, θ]U (k) − F (a, θ;U (k))

}
= A[a(k), θ(k)]U (k) − F (a(k), θ(k);U (k)).

We also define the Jacobian matrix of (19) as

J[U (k)] ≡ dR(k)

dU (k)
=
∂R(k)

∂U (k)
+
∂R(k)

∂a(k)

∂a(k)

∂U (k)
+
∂R(k)

∂θ(k)

∂θ(k)

∂U (k)
,

where R(k) ≡ R(U (k)). Since (a(k), θ(k)) are the optimal controls, which implies

that ∂R(k)

∂a(k)
= 0, ∂R

(k)

∂θ(k)
= 0, the Jacobian can be simplified as

(22) J[U (k)] =
∂R(k)

∂U (k)
= A[a(k), θ(k)]− δF a

(k),θ(k) [U (k)],

where δF a
(k),θ(k) [U (k)] represents the Fréchet derivative of F with respect to the

vector U (k), given the fixed controls (a(k), θ(k)).
A standard approach of solving (19) is to apply Newton’s method, which reads

E(k) ≡ −(J(k))−1R(k),

U (k+1) = U (k) + E(k),

where J(k) ≡ J[U (k)]. It turns out that Newton’s method fails to converge, since
the Jacobian is singular.

To explain the reason behind singular Jacobian, we note that the differential oper-
ator La,θ u under the periodic boundary condition (10) has two linearly-independent
zero kernels. One is the function v1(x, y) ≡ x, which satisfies La,θ v1 = 0. The other
is the function v2(x, y) ≡ y, which satisfies La,θ v2 = 0. v1 and v2 correspond to the
translations along x and y directions respectively2. These two translation kernels
are desirable, since they allow pure translation to be a solution of the image regis-
tration problem where R and T are related by translation. Furthermore, since the
Jacobian J[U ] is related to the discretization of La,θ u, it has discrete translation

kernels3 V1 ∈ RN2×1 and V2 ∈ RN2×1, where

(23) (V1)i,j ≡ xi, (V2)i,j ≡ yj .

2Or more explicitly, ∇v1 = (1, 0)T and ∇v2 = (0, 1)T are the unit translations along x and y
directions respectively.

3To be precise, the zero kernels of the Jacobian are similar to but not equal to V1 and V2, since
its zero kernels are perturbed by the Fréchet derivative of F in (19).
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12 Yangang Chen and Justin W. L. Wan

This results in a singular Jacobian.
In the event of a singular Jacobian, one may consider replacing the inverse of the

Jacobian by its pseudo-inverse. Then the iteration becomes

Solve (J(k))TJ(k)E(k) = −(J(k))TR(k) for E(k),

U (k+1) = U (k) + E(k).

More generally, we may consider introducing a regularizer:

(24)
Solve [λI + (J(k))TJ(k)]E(k) = −(J(k))TR(k) for E(k),

U (k+1) = U (k) + E(k).

This indeed leads to a known algorithm, called “Levenberg-Marquardt algorithm”
[33, 36].

One advantage of using Levenberg-Marquardt algorithm (24) is that convergence
of this iterative solver has been proved[36]. The parameter λ can be changed dy-
namically to make the algorithm not only convergent, but also more efficient. More
specifically, when the approximated solution U (k) is not close to the solution U ,
λ can be increased, such that the algorithm behaves like a gradient descent and
is less likely to diverge. Conversely, when U (k) is close to U , λ can be decreased,
such that the algorithm behaves like Newton’s method and can converge faster [36].
In particular, Levenberg-Marquardt algorithm is able to converge even when the
Jacobian becomes singular.

Despite the fact that Levenberg-Marquardt algorithm (24) converges, it may not
converge to the solution of the discretized system (19). To explain this, we note that
the algorithm is indeed designed for solving nonlinear least square problems. In the
context of solving (19), the algorithm attempts to find a solution that minimizes

the residual, which means that it attempts to solve U = arg minÛ‖R(Û)‖2. Its
global minimum, which satisfies R(U) = 0, is the solution of (19). It is known that
Levenberg-Marquardt algorithm may converge to a local minimum rather than the
global minimum, depending on the initial guess U (0). In terms of image registration,
this issue is observed when the two images are related by translation. The algorithm
may be stuck in a local minimum solution that does not correspond to translation.

The local minimum issue using Levenberg-Marquardt algorithm (24) can be
traced back to the two translation kernels V1 and V2. If we define the “transla-
tion components” of a vector U as the projections of U to the translation kernels,
then an initial guess U (0) and the solution U usually have different translation com-
ponents. Levenberg-Marquardt algorithm turns out to be inefficient in correcting
the translation components.

In order to fix this problem, we add an additional step before each Levenberg-
Marquardt iteration (24). In this additional step, we explicitly correct the trans-
lation components of the approximated solution U (k). The amount of correction is
added such that the corrected solution, denoted as U (k+ 1

2 ), minimizes the residual
R(U). This gives rise to our final algorithm for solving the discretized system (19);
see Table 1 for the algorithm.

We remark that in Line 5 of the algorithm, (c
(k)
1 , c

(k)
2 ) is the amount of corrected

translation components along the x and y directions. In order to find (c
(k)
1 , c

(k)
2 ),

we can use simple search, which means to discretize Π into a discrete set and then

search for the minimum on the discrete set. Also, in practice, if (c
(k)
1 , c

(k)
2 ) =

(0, 0) or sufficiently small at the k-th iteration, which means that correction for the
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1: Start with an initial guess U (0) = 1
2 (x2 + y2).

2: Set (c
(−1)
1 , c

(−1)
2 ) = (∞,∞), Π ≡ [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ].

3: for k = 0, 1, ... until convergence do

4: if (c
(k−1)
1 , c

(k−1)
2 ) 6= (0, 0) then

5: (c
(k)
1 , c

(k)
2 ) = arg min

(c1,c2)∈Π

‖R(U (k) + c1V1 + c2V2)‖.

6: U (k+ 1
2 ) = U (k) + c

(k)
1 V1 + c

(k)
2 V2.

7: end if
8: Compute (a(k+ 1

2 ), θ(k+ 1
2 )) by (20).

9: Compute R(k+ 1
2 ) ≡ R(U (k+ 1

2 )) by (21).

10: Compute J(k+ 1
2 ) ≡ J[U (k+ 1

2 )] by (22).
11: Solve

[λI + (J(k+ 1
2 ))TJ(k+ 1

2 )]E(k+ 1
2 )

= −(J(k+ 1
2 ))TR(k+ 1

2 ).

for E(k+ 1
2 ).

12: U (k+1) = U (k+ 1
2 ) + E(k+ 1

2 ).
13: end for

Table 1. Modified Levenberg-Marquardt algorithm.

translation components of the approximated solution is completed, then Line 4-7
can be skipped for future iterations. It turns out that Line 4-7 only needs to be
implemented for very few steps (typically, around 1-3 steps in our experiments).

An additional benefit of this algorithm is that it decomposes the resulting trans-
formation φ∗ = ∇u into a pure translation component and a non-rigid deforma-
tion component. The pure translation component is given by the accumulation of
the corrections of the translation kernels, or more precisely, the accumulation of

(c
(k)
1 , c

(k)
2 ):

(25) φtran ≡
∑
k≥0

(
c
(k)
1 , c

(k)
2

)T
.

Subtracting φtran from the resulting transformation yields the remaining non-rigid
deformation component.

Finally, to link the theory with the experiments, we summarize the complete im-
plementation of our numerical scheme as follows:

1: Normalize ρR and ρT in order to satisfy (2).
2: Discretize the Monge-Ampère equation (7) as described in Section 3, yielding

the discrete system (19).
3: Solve (19) using the modified Levenberg-Marquardt algorithm (Table 1), yield-

ing the convex scalar potential u.
4: Compute the transformation φ∗ = (ux, uy)T .
5: Decompose the transformation into translation component φtran and the non-

rigid deformation component by (25).
6: Compute the transformed image (4).
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5. Convergence to the optimal transformation. In this section, we prove that
the transformation between R and T , given by our numerical scheme, is the optimal
transformation that minimizes the cost function (5).

Lemma 5.1 (Consistency). The numerical scheme (19) is locally consistent. In
other words, when h→ 0, the local truncation error of (19) goes to 0.

Lemma 5.2 (Monotonicity). The numerical scheme (19) is a monotone scheme.
More specifically, the left hand side of (19) at a grid point xi,j is an increasing
function of Ui,j and a non-increasing function of Up,q for any (p, q) 6= (i, j).

Interested readers are referred to the Appendix for the proofs of Lemma 5.1 and
5.2. The key point of introducing these two lemmas is that it leads to our main
theoretical result:

Theorem 5.3 (Optimal transformation). Suppose u is given by the numerical solu-
tion of (19) arising from the finite difference scheme in Section 3, and assume that
u is bounded in the max norm4. Then the transformation φ∗ = ∇u is the optimal
transformation that minimizes the cost function (5).

Proof. Since the numerical scheme (19) satisfies consistency (Lemma 5.1), mono-
tonicity (Lemma 5.2) and the boundedness of the solution, by the theorem in [1], the
solution is guaranteed to converge to the viscosity solution of the Monge-Ampère
equation (7). We refer readers to [1] for a complete proof. Then by [23, 24], the
viscosity solution u satisfies the convexity constraint (8). Hence, φ∗ = ∇u is the
optimal transformation.

6. Experimental results. This section includes several experimental results of
image registration.

6.1. Evaluation criteria. One basic error measure for registered images is sum
of squared differences (1). For mass transport registration model, (1) is always
zero. The reason is that ρR equals to ρTφ∗ by (3) and (4). In other words, the
transformed image Tφ∗ and the reference R are always the same. This can be seen
in Examples 2-7 in the following sections, where the mass transport registration
under the periodic boundary condition is applied.

Table 2 reports the sum of the squared differences for the images before regis-
tration ‖ρT − ρR‖L2(Ω), and after registration ‖ρTφ∗ − ρR‖L2(Ω). From Table 2, we
notice that the error after the registration is significantly smaller than before the
registration. Also, the error after the registration is not exactly but close to zero
in practice, although it should be zero in theory. The reason is that Levenberg-
Marquardt algorithm is implemented to solve the Monge-Ampère equation, which
requires choosing a stop tolerance for convergence5.

Other than sum of squared differences, another criteria of evaluating the quality
of the registration is the quality of the resulting transformation φ∗. We expect φ∗

to reflect the underlying transformation between the two images, especially when
T and R are related by translation, or by a combination of translation and non-
rigid deformation. We will evaluate the resulting transformations qualitatively in
Sections 6.2, 6.3 and 6.4, and also discuss the quantitative evaluation separately in
Section 6.5.

4This is fulfilled in all our numerical experiments.
5We choose the tolerance to be 10−4.
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Examples Example 2 Example 3 Example 4
‖ρT − ρR‖L2(Ω) 0.47 0.52 0.61
‖ρTφ∗ − ρR‖L2(Ω) 0 2× 10−5 1× 10−3

Examples Example 5 Example 6 Example 7
‖ρT − ρR‖L2(Ω) 0.64 0.69 0.59
‖ρTφ∗ − ρR‖L2(Ω) 7× 10−4 9× 10−4 8× 10−3

Table 2. Sum of the squared differences before registration ‖ρT −
ρR‖L2(Ω), and after registration ‖ρTφ∗ − ρR‖L2(Ω). The values are com-
puted for Examples 2-7 in Sections 6.3, 6.4 and 6.6. For each example,
‖ρR‖ has been normalized to 1. The approach is the mass transport
registration under the periodic boundary condition.

net flow of
mass/pixels

area change
of a square

element

change of
mass/pixels

intensity

morphing
magnitude

µ

color of
a square
element

zero invariance invariance µ = 0 white
inflow compressed increase µ > 0 red

outflow expanded decrease µ < 0 blue

Table 3. A summary of morphing effect at a point (or an infinitesimal
element).

An additional criteria to consider is morphing effect, which is the change of inten-
sity at each moved pixel. We refer readers to the end of Section 2.2 for a description
of morphing effect. We emphasize again that morphing effect is an essential com-
ponent of the mass transport registration. However, in some image registration
applications where the physical object inside the two images is incompressible and
cannot be treated as masses, morphing effect may misinterpret the physics of the
deformation, and is thus undesirable. Considering this, it is good to suppress mor-
phing effect under the framework of mass transport. We will see that this can be
achieved by imposing our periodic boundary condition (10).

To quantify the morphing effect, we define morphing magnitude:

µ ≡ log10 det[Dφ∗(x)],

which is the (logarithmic) ratio of the intensity before and after morphing at a
moved pixel x → φ∗(x). We visualize the morphing magnitude µ using color scale
in Figure 4–10 in the following sections. We note that µ = 0, or white color, means
no morphing effect; the larger |µ| is, or the more intense the red/blue color is, the
more severe the morphing effect is. Table 3 summarizes some basic features of
morphing effect, which can be derived from the theory in Section 2.2.

6.2. Optimal versus non-optimal transformations.

Example 1 (Figure 3). In this simple example, we assume that both the template
image T and the reference image R are the same constant image, or, ρT = ρR = 1 on
the entire Ω = [0, 1]× [0, 1]. The transformation given by our monotone numerical
scheme is the optimal transformation, which is the identity mapping φ∗(x) = x and
maps a square grid to itself. However, a non-monotone finite difference scheme in
[3] gives a non-optimal transformation, which severely deforms a square grid.
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(a) (b) (c)

Figure 3. Optimal versus non-optimal transformations. (a) Con-
stant images R and T , where ρT = ρR = 1. (b) The optimal transfor-
mation φ∗ obtained by our monotone numerical scheme. It is an identity
mapping. The figure shows the deformed image of a square grid under
φ∗, which is the square grid itself. (c) The non-optimal transforma-
tion φ obtained by a non-monotone finite difference scheme in [3]. The
figure shows that a square grid is severely deformed under φ.

6.3. Periodic versus Neumann boundary conditions.

Example 2 (Figure 4). We revisit the case where R is a translation of T . Here we
let the true underlying translation φ∗true be6

(φ∗true)
−1(x) ≡ x + (0.05, 0.05)T , x ∈ ΩT .

There is a clear distinction between the transformation φ∗ returned by the two
boundary conditions. The periodic boundary condition yields a constant translation
on the entire image, as expected; see Figure 4(d). Figure 4(e) shows that a square
grid is translated under (φ∗)−1 and remains a square grid. In particular, we observe
the translation of the boundary of [0, 1]× [0, 1], highlighted by the thick black lines.
Also, the entire Figure 4(e) is white, which indicates that no morphing effect occurs.
This is a natural consequence of φ∗ being a pure translation. On the contrary,
under the Neumann boundary condition, the resulting transformation in Figure
4(f) is not a constant translation. In Figure 4(g), we observe that in some regions,
red/blue color is intense and square elements are severely compressed/expanded.
This indicates that the registration under the Neumann boundary condition relies
heavily on morphing effect.

Example 3 (Figure 5). We consider two images R and T that are related by a com-
bination of translation and dilation. We specify a true underlying transformation
φ∗true that satisfies

(φ∗true)
−1(x) ≡ λ

[
x−

(
0.45
0.45

)]
+

(
0.5
0.5

)
, x ∈ ΩT ,

with the scaling (or dilating) factor

λ ≡
{

1.12, if ‖(φ∗true)−1(x)− (0.5, 0.5)T ‖2 ≤ 0.332,
1, otherwise.

The resulting transformation under the periodic boundary condition is shown in
Figure 5(d1). To better understand this resulting transformation, we use (25) and
decompose it into translation and non-rigid deformation components, represented
by green and red arrows respectively in Figure 5(d2). We observe that the non-rigid

6The reason why we define φ∗true in terms of (φ∗true)
−1 is that it is more intuitive to express

the mapping from ΩT to ΩR, whereas φ : ΩR → ΩT .
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(a) T

‖ρTφ∗ − ρR‖
(b) R,

‖ρT − ρR‖ = 0.47

(c) Tφ∗ ,

‖ρTφ∗ − ρR‖ = 0

(d) Periodic: Displacement

morphing
µ

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(e) Periodic: Deformed grid

(f) Neumann: Displacement

morphing
µ

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(g) Neumann: Deformed grid

Figure 4. Image registration using the periodic and Neumann bound-
ary conditions, where T and R are related by translation. (a) Tem-
plate image T . (b) Reference image R. (c) Transformed image Tφ∗

under the periodic boundary condition. (d) Displacement of pixels
from T to Tφ∗ under the periodic boundary condition, which is a pure
translation. (e) A deformed grid obtained by applying the transfor-
mation (φ∗)−1 on a square grid. (φ∗)−1 is computed under the periodic
boundary condition. The thick black lines show where the boundary
of Ω = [0, 1] × [0, 1] is moved to under (φ∗)−1. The color bar is the
morphing magnitude µ. The intensity of the color shows the degree of
morphing effect under (φ∗)−1. (f) Displacement of pixels from T to
Tφ∗ under the Neumann boundary condition. (g) A deformed grid ob-
tained by applying the transformation (φ∗)−1 on a square grid. (φ∗)−1

is computed under the Neumann boundary condition.

deformation component (red arrows) is clearly a dilation. Figure 5(e) shows once
again that the boundary of Ω = [0, 1]× [0, 1] (the two thick black lines) is translated
under (φ∗)−1. Also, the deformed grid is a symmetric and isotropic dilation with
respect to the center of the circle. However, if we use the Neumann boundary
condition, then we cannot identify the underlying combination of translation and
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dilation in Figures 5(f) and 5(g). In addition, by a comparison between Figures 5(e)
and 5(g), we observe that morphing effect under the periodic boundary condition
is mild compared to the Neumann boundary condition.

(a) T

‖ρTφ∗ − ρR‖
(b) R,

‖ρT − ρR‖ = 0.52

(c) Tφ∗ ,

‖ρTφ∗ − ρR‖ =2x10−5

(d1) Periodic: Displacement (d2) Decomposition of (d1)

morphing
µ

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(e) Periodic: Deformed grid

(f) Neumann: Displacement

morphing
µ

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(g) Neumann: Deformed grid

Figure 5. Image registration using the periodic and Neumann bound-
ary conditions, where T and R are related by a combination of trans-
lation and dilation. (a) Template image T . (b) Reference image
R. (c) Transformed image Tφ∗ under the periodic boundary condition.
(d1) Displacement of pixels from T to Tφ∗ under the periodic boundary
condition. (d2) Decomposition of the displacement into a combination
of translation component (green) and dilation component (red). (e)
A deformed grid obtained by applying the transformation (φ∗)−1 on a
square grid. (φ∗)−1 is computed under the periodic boundary condition.
The thick black lines show where the boundary of Ω = [0, 1] × [0, 1] is
moved to under (φ∗)−1. The color bar is the morphing magnitude µ.
The intensity of the color shows the degree of morphing effect under
(φ∗)−1. (f) Displacement of pixels from T to Tφ∗ under the Neumann
boundary condition. (g) A deformed grid obtained by applying the
transformation (φ∗)−1 on a square grid. (φ∗)−1 is computed under the
Neumann boundary condition.
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(a) T

‖ρTφ∗ − ρR‖
(b) R,

‖ρTφ∗ − ρR‖ = 0.61

(c) Tφ∗ ,

‖ρTφ∗ − ρR‖ =1x10−3

(d1) Periodic: Displacement

p
1

p
2

p
3

p
4

O
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(e) Periodic: Deformed grid

(f) Neumann: Displacement

morphing
µ
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(g) Neumann: Deformed grid

Figure 6. Image registration using the periodic and Neumann bound-
ary conditions, where T and R are related by a combination of trans-
lation and rotation. (a) Template image T . (b) Reference image
R. (c) Transformed image Tφ∗ under the periodic boundary condition.
(d1) Displacement of pixels from T to Tφ∗ under the periodic boundary
condition. (d2) Decomposition of the displacement into a combination
of translation component (green) and local rotation component (red).
(e) A deformed grid obtained by applying the transformation (φ∗)−1 on
a square grid. (φ∗)−1 is computed under the periodic boundary condi-
tion. The thick black lines show where the boundary of Ω = [0, 1]× [0, 1]
is moved to under (φ∗)−1. The color bar is the morphing magnitude
µ. The intensity of the color shows the degree of morphing effect under
(φ∗)−1. (f) Displacement of pixels from T to Tφ∗ under the Neumann
boundary condition. (g) A deformed grid obtained by applying the
transformation (φ∗)−1 on a square grid. (φ∗)−1 is computed under the
Neumann boundary condition.

Example 4 (Figure 6). We consider two images R and T where the true underlying
transformation

(φ∗true)
−1(x) ≡

(
cos π

20 sin π
20

− sin π
20 cos π

20

)[
x−

(
0.45
0.45

)]
+

(
0.5
0.5

)
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is a combination of translation and rotation. Similar to the explanation in Example
3, Figure 6(d2) shows the translation and non-rigid deformation components under
the periodic boundary condition. The non-rigid deformation (red arrows) is a local
rotation. More explicitly, these red arrows rotate the pixels from p1 to p2 and from
p3 to p4 around the center of rotation O. We note that the resulting transformation
is not a global rotation. In other words, rotation does not occur in the black back-
ground area. Since the mass accumulates at p2 and p4, the intensity will further
increase after the pixels are moved toward them. Conversely, the intensity at p1

and p3 will further decrease after the pixels are moved away from them. Figure
6(e) illustrates such morphing effect. As a comparison, for the Neumann bound-
ary condition, Figures 6(f) and 6(g) do not reflect the underlying combination of
translation and rotation. Once again, morphing effect under the periodic boundary
condition is much less severe compared to the Neumann boundary condition.

One may consider incorporating global rotation into the mass transport registra-
tion model. However, since the optimal transformation field φ∗ = ∇u is curl-free,
it would require modifying the mass transport model, which is beyond the scope of
this paper.

6.4. Mass transport registration versus empirical two-step registration.
In this section, we apply mass transport image registration on medical images
and compare it with the empirical two-step registration, which consists of a pre-
registration (rigid transformation) followed by an elastic registration.

Example 5 (Figure 7). To evaluate the performance of our approach, we perform
the following test: We first specify a certain underlying transformation φ∗true; see
Figure 7(e). Then we apply this underlying transformation to an image T , which
gives the reference image R; see Figure 7(a)-(b). Once obtaining T and R, we regis-
ter these two images using mass transport registration with the periodic boundary
condition. We expect that the numerical scheme gives a transformed image Tφ∗ that
is the same as R and recovers the pre-specified underlying transformation. As ex-
pected, the resulting transformed image Tφ∗ is the same as R, where the magnitude
of the error is 10−4; see Figure 7(c)-(d). Moreover, the resulting transformation
given by our numerical scheme, as shown in Figure 7(f), is a good approximation
of the pre-specified underlying transformation.

We also register T and R using the empirical two-step registration, which consists
of a pre-registration (rigid transformation) followed by an elastic registration. It
is implemented by FAIR package [38]. The results are shown in Figure 8. The
error between the transformed image Tφ and the reference image R by the empirical
approach is not as small as mass transport model. The reason is that mass transport
registration applies an additional morphing, which further corrects the registration
error to (nearly) zero. The resulting transformation in Figure 8(c) also recovers the
underlying transformation in Figure 7(e), although the numerical transformation in
the black background area is not the same as the underlying one.

Compared to the more empirical approach, our approach does not require two-
step process. In addition, our approach makes the non-rigid model more universal
(capable of handling both translation and non-rigid deformation) than the individ-
ual method employed in each step of the empirical approach.

6.5. Quantitative evaluation for the transformations. To quantitatively mea-
sure the accuracy of the resulting transformations, we compute

(26) ‖φ∗(x)− φ∗true(x)‖L2(Ω),

Inverse Problems and Imaging Volume 12, No. 2 (2018), X–XX



Numerical Method for Image Registration 21

which is the difference between the resulting transformation φ∗ and the true un-
derlying transformation φ∗true in L2 norm. We note that the evaluation of (26)
requires knowing in advance the true underlying transformation, which is usually
unavailable in practice. However, in Examples 2-5, we pre-specify the underlying
transformations between T and R, which allows us to perform such evaluation. Ta-
ble 4 reports the errors of the transformations. In each example, the error given by

(a) T

‖ρTφ∗ − ρR‖
(b) R,

‖ρT − ρR‖ = 0.64

(c) Tφ∗

‖ρTφ∗ − ρR‖
(d) Tφ∗ −R,

‖ρTφ∗ − ρR‖ =7x10−4

(e) Underlying displacement (f) Numerical displacement (g) Numerical deformed grid

Figure 7. Mass transport registration under periodic boundary con-
dition. (a) Template image T . (b) Reference image R. (c)
Transformed image Tφ∗ . (d) Difference between transformed image
Tφ∗ and R. (e) Pre-specified underlying transformation between T
and R. (f) Transformation given by the numerical scheme, which is
a good approximation to the pre-specified underlying transformation in
(e). (g) A deformed grid obtained by applying the transformation
(φ∗)−1 on a square grid.
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(a) Tφ
‖ρTφ − ρR‖

(b) Tφ −R,

‖ρTφ − ρR‖ = 0.05

(c) Numerical displacement (d) Deformed grid

Figure 8. Empirical two-step registration, where T and R are the
same as Figure 7(a)-(b). The registration is implemented by FAIR pack-
age [38]. (a) Transformed image Tφ. (b) Difference between trans-
formed image Tφ and R. (c) Transformation given by the empirical
approach, consisting of a rigid pre-registration (green arrows) and a non-
rigid elastic deformation (red arrows). (d) A deformed grid obtained
by applying the transformation φ−1 on a square grid.

the mass transport registration with the periodic boundary condition is compared
against either Neumann boundary condition or two-step empirical registration. Ta-
ble 4 shows that the errors of the motion fields by the mass transport registration
with the periodic boundary condition are the smallest. We note that the error for
Example 4 is relatively large even under periodic boundary condition, since the
mass transport model does not recover global rotation.

6.6. More examples. This section includes three more image registration exam-
ples that use the mass transport registration under the periodic boundary condition.
In these examples, the true underlying transformations are unknown so we focus on
the qualitative evaluation only.

Example 6 (Figure 9). We register two images taken from the brain of a patient.
The transformed image Tφ∗ (Figure 9(c)) is the same as the reference image R
(Figure 9(b)). Regarding the resulting transformation, the numerical scheme can
automatically translate T toward R, followed by a non-rigid deformation; see Fig-
ures 9(d)-(e). The two figures also indicate that in the segments where T and R look
different, the non-rigid deformation and the morphing effect are relatively big. The
big morphing effect in these distinct segments can be explained as follows: Moving
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Examples Example 2 Example 3

‖φ∗(x)− φ∗true(x)‖L2(Ω)
Periodic: 0 Periodic: 0.0053
Neumann: 0.056 Neumann: 0.056

Examples Example 4 Example 5

‖φ∗(x)− φ∗true(x)‖L2(Ω)
Periodic: 0.066

Mass transport,
periodic: 0.0055

Neumann: 0.088
Two-step empirical:
0.011

Table 4. The errors of the motion fields (26). The values are com-
puted for Examples 2-5 in Sections 6.3 and 6.4. In each example, the
mass transport registration under the periodic boundary condition is
compared against either Neumann boundary condition or elastic regis-
tration.

the pixels alone may not be able to make these segments in T look the same as
their counterparts in R. The mass transport model let pixels flow into/out of these
segments, resulting in an increase/decrease of intensity, such that the corresponding
segments of T and R can look the same.

Example 7 (Figure 10). In this example, the two medical images are very different.
Consequentially, the registration between them requires big non-rigid deformation
and big morphing effect. This can be seen in Figures 10(d)-(e).

A noticeable fact is that under the transformation, the boundary of Ω = [0, 1]×
[0, 1], marked by the thick black lines in Figure 10(e), is not only translated, but
also curved. Such curvature shows that the deformation from the actual object
(dark background excluded) in T to its counterpart in R is smoothly propagated
into the dark background. In other words, the transformation between the actual
objects inside R and T is not influenced by the events in the dark background.
This is different from the Neumann boundary condition, where the transformation
between the actual objects is affected by the transformation imposed artificially on
the boundary.

Example 8 (Figure 11). This example is from [27]. The objective is to register the
template image, Lena, to the reference image, Tiffany. Figure 11 shows that our
proposed algorithm is able to translate Lena’s face towards Tiffany’s face before
performing non-rigid deformation. The resulting transformed image of Lena is
the same as the reference image, Tiffany, even if the original images are distinct.
Reference [27] also achieves this. We note that to the transformed and reference
images look very similar due to the combined effect of displacement of pixels and
morphing effect, as described in Section 2.2.

6.7. Unmorphed images. In some registration problems, morphing effect may be
prohibited. In this case, we may want a transformed image without morphing cor-

rection, namely, ρT
unmorph
φ∗ (x) ≡ ρT (φ∗(x)). When the morphing magnitude of the

underlying non-rigid deformation is small (e.g. |µ| < 0.2), the unmorphed trans-

formed image Tunmorphφ∗ may still look similar to the reference image R, and the

difference between Tunmorphφ∗ and R is visually negligible. Figure 12 shows that the

unmorphed image Tunmorphφ∗ by the mass transport model under the periodic bound-
ary condition has the smallest error, compared to Neumann boundary condition or
rigid registration only.
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(a) T

‖
(b) R,

‖ρT − ρR‖ = 0.69

(c) Tφ∗ ,

‖ρTφ∗ − ρR‖ =9x10−4

(d) Displacement

morphing
µ

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(e) Deformed grid

Figure 9. Medical image registration using the periodic boundary
condition. (a) Template image T . (b) Reference image R. (c)
Transformed image Tφ∗ . (d) Decomposition of the displacement into
a combination of translation component (green) and non-rigid deforma-
tion component (red). (e) A deformed grid obtained by applying the
transformation (φ∗)−1 on a square grid. (φ∗)−1 is computed under pe-
riodic boundary condition.
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(a) T

‖
(b) R,

‖ρT − ρR‖ = 0.59

(c) Tφ∗ ,

‖ρTφ∗ − ρR‖ =8x10−3

(d) Displacement

morphing
µ

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(e) Deformed grid

Figure 10. Medical image registration using the periodic boundary
condition. (a) Template image T . (b) Reference image R. (c)
Transformed image Tφ∗ . (d) Decomposition of the displacement into
a combination of translation component (green) and non-rigid deforma-
tion component (red). (e) A deformed grid obtained by applying the
transformation (φ∗)−1 on a square grid. (φ∗)−1 is computed under pe-
riodic boundary condition.
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(a) T

‖
(b) R,

‖ρT − ρR‖ = 0.60

(c) Tφ∗ ,

‖ρTφ∗ − ρR‖ =4x10−3

(d) Displacement

 

 
morphing

µ

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(e) Deformed grid

Figure 11. Image registration from Lena to Tiffany using the periodic
boundary condition. (a) Template image T . (b) Reference image
R. (c) Transformed image Tφ∗ . (d) Decomposition of the displace-
ment into a combination of translation component (green) and non-rigid
deformation component (red). (e) A deformed grid obtained by ap-
plying the transformation (φ∗)−1 on a square grid. (φ∗)−1 is computed
under periodic boundary condition.
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(a) T −R,
‖ρT − ρR‖ = 0.52

‖

(b) Rigid: Tφ −R,

‖ρTφ − ρR‖ = 0.32

‖

(c) Periodic,

unmorphed: Tφ∗ −R,

‖ρTφ∗ − ρR‖ = 0.029

(d) Neumann,

unmorphed: Tφ∗ −R,

‖ρTφ∗ − ρR‖ = 0.25

Figure 12. Image registration using the periodic and Neumann
boundary conditions, where T and R are given in Figure 5(a) and Fig-
ure 5(b). (a) Difference between T and R. (b) Difference between
Tφ and R, where Tφ is a transformed image under rigid registration
only (or, Tφ is a translation of T to align with R). (c) Difference be-

tween unmorphed transformed image Tunmorphφ∗ and R under the periodic

boundary condition. (d) Difference between unmorphed transformed

image Tunmorphφ∗ and R under the Neumann boundary condition.

A modification of the mass transport model, which aims at leaving out the mor-
phing effect, is proposed in [28] and [39]. However, modifying the mass transport
formulation for the purpose of dropping morphing effect is beyond the scope of this
work.

6.8. Computational complexity. We first test the computational complexity of
the modified Levenberg-Marquardt algorithm (Table 1) for Example 3 with image
sizes of 100×100, 200×200, 400×400 and 800×800 using MATLAB. The number
of steps for convergence is roughly a constant 3 as the image size increases. We
record the CPU time of (i) corrections of translation kernels (Line 4-7 of Table 1),
and (ii) the primary nonlinear solver (Line 8-12 of Table 1) separately. Table 5
shows that as the image size (number of pixels) increases by 4, the CPU time for
(i) and (ii) increases by a factor of 8 and (approximately) 16 respectively. The total
CPU time for 800× 800 image is around 20 minutes.

We also test the computational time for different images of the same size 600×600.
Since the translation components across different images are different, which is
difficult to compare fairly, we skip the comparison of the CPU time for (i). Table 6
shows that for the images where the non-rigid deformation components are relatively
larger, the number of steps for convergence and the CPU time for the primary
nonlinear solver are also larger.

In addition, we report the convergence of residual versus the number of iteration
k; see Table 7.

7. Conclusion. The objective of this paper is to propose a numerical scheme to-
gether with a boundary condition for the mass transport registration model. The
main contributions of this paper include that

• our numerical scheme gives an optimality-guaranteed transformation for the
mass transport image registration; and

• our periodic boundary condition incorporates both translation and non-rigid
deformation into the mass transport model.
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Example Example 3
Image size 100x100 200x200 400x400 800x800

Number of steps
for convergence

5 3 3 3

CPU time for corrections of
translation kernels (sec)

1.0 4.6 30 259

CPU time for the primary
nonlinear solver (sec)

3.1 7.3 58 1083

Total CPU time (sec) 4.1 11.9 88 1342

Table 5. Number of steps for convergence (residual tolerance 10−4),
and CPU time for Example 3 with different image sizes. Here (i) cor-
rections of translation kernels refer to Line 4-7 of Table 1, and (ii) the
primary nonlinear solver refers to Line 8-12 of Table 1. The experiments
are run in MATLAB.

Examples Example 3 Example 4 Example 5
Image size 600x600

Number of steps
for convergence

3 3 10

CPU time for the primary
nonlinear solver (sec)

147 152 668

Examples Example 6 Example 7
Image size 600x600

Number of steps
for convergence

10 19

CPU time for the primary
nonlinear solver (sec)

627 1613

Table 6. Number of steps for convergence (residual tolerance 10−4),
and CPU time for nonlinear solver only for Examples 3-7 with the same
image sizes. The experiments are run in MATLAB.

The number of iteration k 1 2 3 4 5
Residual 1382 195 2.32 1.71 0.131

The number of iteration k 6 7 8 9 10
Residual 0.0236 0.00492 9.50x10−4 3.42x10−4 9.41x10−5

Table 7. Residual versus the number of iteration k for Example 5.

We note that the standard mass transport model using the conventional boundary
conditions can only do non-rigid registration. Our computation method can also
provide translation component as a by-product.

In the course of achieving these two contributions, we design a mixed standard
7-point stencil and wide stencil finite difference discretization, and prove mathe-
matically that the solution u is guaranteed to produce the optimal transformation.
Also, due to the periodic boundary condition, Jacobian for the discretized system
becomes singular. To address this, we propose a modified Levenberg-Marquardt
algorithm.
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In the experimental results, we first show that our numerical scheme yields the
optimal transformation, whereas a non-monotone finite difference scheme gives a
non-optimal transformation. In addition, the deformed grid images (Figure 4(e),
5(e), 6(e), 7(g), 9(e) and 10(e)) are smooth and do not contain foldings or crossings.
Since these properties are possessed by the optimal transformations, they provide
evidences that the resulting transformations are optimal.

We also show in the results that the periodic boundary condition outperforms
the Neumann boundary condition. Under the periodic boundary condition, the
transformed images Tφ∗ are the same as the reference images R. Moreover, φ∗

recovers the underlying combination of translation and non-rigid deformation. In
addition, the morphing effect is mild compared to the Neumann boundary condition.

There are two major limitations of the mass transport registration model. One
is that morphing effect may misinterpret the physics of the deformation in some
applications. The other is that the mass transport model does not recover rotation
globally, although it recovers rotation locally. Fixing these limitations is beyond
our objective of developing numerical scheme and choosing boundary condition.
It would require modifying the mass transport model itself. Nevertheless, model
modification, and furthermore, a numerical scheme for the modified model, could
be future works. For instance, one possible approach to incorporate global rotation
into the mass transport model would be to introduce Killing energy minimization,
as investigated by the coauthor of this paper in [11].

Regarding the numerical scheme, the computation could be sped up by multilevel
approaches [46, 38] or multigrid algorithms [49], which is another potential future
work.

Appendix A. Proofs of Lemma 5.1 and 5.2.

Proof of Lemma 5.1. The proof follows our previous work in [13]. For the standard
7-point stencil discretizations (15) and (17), the truncation errors are both O(h2),
since the truncation errors for D+

xD
−
x Ui,j , D

+
y D
−
y Ui,j ,

1
2 (D+

xD
+
y +D−x D

−
y )Ui,j and

1
2 (D+

xD
−
y +D−x D

+
y )Ui,j are all O(h2).

For the wide stencil discretization (18), the truncation error is O(h). To prove it,
we introduce a smooth test function ϕ(x) ∈ C∞(Ω). Taylor expansion shows that

ϕzz(xi,j)−
1

h

[
Ihϕ|xi,j+

√
h(ez)i,j

− 2ϕ(xi,j) + Ihϕ|xi,j−
√
h(ez)i,j

]
= O(h),

since the bilinear interpolation Ihϕ|xi,j±
√
h(ez)i,j

alone introduces truncation error

O(h2), and the central difference with the stencil length
√
h is overall O

(
(
√
h)2
)

=

O(h) accurate. This leads to O(h) truncation error for (18).
We will also prove that the discretization of the periodic boundary condition (10)

does not introduce any truncation error. Without loss of generality, we only check
the discretization of (ux − x)x=0 = (ux − x)x=1, which is D+

x U0,j = D+
x UN,j − 1..

The associated truncation error is then

[(ϕx(xN,j)− 1)− ϕx(x0,j)]−
[
(D+

x ϕN,j − 1)−D+
x ϕ0,j

]
=

1

2
[ϕxx(x0,j)− ϕxx(xN,j)]h+

1

6
[ϕxxx(x0,j)− ϕxxx(xN,j)]h

2 + ... = 0,

Notice that the periodic boundary condition (10) already implies that ϕxx(x0,j) =
ϕxx(xN,j), ϕxxx(x0,j) = ϕxxx(xN,j), etc. In fact, such equalities hold for any
derivatives equal to or higher than second order. As a result, the entire expression
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equals to 0, or, the discretization of the periodic boundary condition (10) induces
zero truncation error.

Based on these truncation error analysis, we can follow the proof in [13, 22] and
conclude that the local truncation error of the numerical scheme (19) goes to 0 when
h→ 0.

Proof of Lemma 5.2. Following the procedure in [13], one can verify the following:
for the discretized differential operators (15), (17) and (18) under any admissible
controls (ai,j , θi,j) ∈ Γ, the coefficient of Ui,j is positive, while the coefficients of
{Up,q|(p,q) 6=(i,j)} are non-positive. Hence, the discretized differential operators (15),
(17) and (18) are monotonically increasing in Ui,j , and monotonically decreasing in
{Up,q|(p,q) 6=(i,j)}.

The gradient term ρT (ux(xi,j), uy(xi,j)) can be discretized by standard upwind-
ing scheme (see [48]), or more generally, Godunov scheme (see [25, 48, 42]). It is
well-known that these two schemes are monotone [48].

Eventually, we can follow [13, 22] to conclude that the complete discretized sys-
tem (19) is monotone.
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