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Abstract. We analyze a class of Krylov projection methods but mainly concentrate on a specific
conjugate gradient (CG) implementation by Smith, Peterson, and Mittra [IEEE Transactions on
Antennas and Propogation, 37 (1989), pp. 1490–1493] to solve the linear system AX = B, where
A is symmetric positive definite and B is a multiple of right-hand sides. This method generates a
Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the
seed system, by the CG method and then projects the residuals of other systems orthogonally onto
the generated Krylov subspace to get the approximate solutions. The whole process is repeated
with another unsolved system as a seed until all the systems are solved. We observe in practice a
superconvergence behavior of the CG process of the seed system when compared with the usual CG
process. We also observe that only a small number of restarts is required to solve all the systems if the
right-hand sides are close to each other. These two features together make the method particularly
effective. In this paper, we give theoretical proof to justify these observations. Furthermore, we
combine the advantages of this method and the block CG method and propose a block extension of
this single seed method.

Key words. linear systems, multiple right-hand sides, Krylov space, Lanczos algorithm, conju-
gate gradient method
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1. Introduction. We want to solve the following systems:

AX = B,(1)

where A is a real symmetric positive definite matrix of order n and B = [b(1) · · · b(N)]
is a number of right-hand sides to be solved. If we solve (1) using LU factorization,
we first decompose A at a cost of O(n3) operations and then solve for each right-hand
side at a cost of O(n2). So, for direct methods, the main cost is the decomposition of
A and each right-hand side is solved efficiently by making use of this decomposition.
However, for iterative methods like CG, we may have to solve the N right-hand sides
independently. This process can be speeded up if we can find good initial guesses for
the unsolved systems and find some efficient refinement process to correct the initial
guesses.

If the right-hand sides are arbitrary, we have nearly no hope of doing that. For
example, if the right-hand sides are eigenvectors, there is hardly any information
shareable among the right-hand sides when the systems are solved by the CG. Yet in
practice, for example, in the wave-scattering problem [18], time-marching methods for
PDEs [2], or structural mechanics problems [1], the right-hand sides are not arbitrary.
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They are usually discrete values of some function b(t). In other words,

b(j) = b(tj), j = 1, . . . , N.

Assume that b(t) ∈ Ck and let x(j) be the solution of Ax(j) = b(j). Then x(j) can
be shown to be discrete values of some function x(t) ∈ Ck. So, if the b(j)’s are
close, we may also expect the x(j)’s to be close. For these situations there are several
approaches to solve (1). An obvious approach is to solve the right-hand side one-
by-one using the CG method with initial guess given by extrapolation of previous
solutions if the right-hand sides are values of a known Ck function b(t). This method
is effective only when the b(j)’s are close, which may impose a severe restriction on
the step size of t. Another approach is to select one seed system and solve it by the
Lanczos or the CG method. Then one performs a Galerkin projection of the residuals
onto the Krylov subspace generated by the seed to obtain approximate solutions for
the unsolved ones. The approximate solutions are then refined by the Lanczos or the
CG again with, hopefully, fewer steps. This Lanczos–Galerkin scheme is discussed by
Parlett [9] and Saad [12]. In addition, they modify the refinement process so that
each refinement continues the previous Lanczos run instead of starting a new Lanczos
process each time. However, this method requires a lot of memory storage for the
Lanczos vectors.

Based on this projection idea, various approaches have been introduced to get
rid of the storage requirement if the right-hand sides are assumed to be available
simultaneously. Papadrakakis and Smerou [8] still use the Lanczos vectors to do the
projection but derive a recursive update for the solution of each right-hand side so that
no storage of the Lanczos vectors is needed. Instead of using the Lanczos vectors, van
der Vorst [20] uses the residual vectors generated from CG to do the projection. Smith,
Peterson, and Mittra [18] give a simplified CG version by using the direction vectors
to do the projection. They also introduce a systematic implementation of the seed
method and discuss some seed selection strategies. Similar ideas are also discussed
by Smith [17] and Joly [5]. Mathematically, all these methods are equivalent. They
only differ in implementation.

We may also use the block CG method, discussed in detail by O’Leary [7], to solve
(1). In fact, we need not assume the b(j)’s to be close in this case. However, if the b(j)’s
are really close, linear dependence may arise among the right-hand sides. This makes
the block CG method ineffective and the method may even break down. Special
treatment is needed to handle this situation. For example, Nikishin and Yeremin
[6] proposed to use variable block CG method, where the current block size can be
reduced at each block iteration. Besides, one may also use block Lanczos method [3],
but then we have to face the storage problem again.

Simoncini and Gallopoulos [15, 16] combine the idea of the seed method and
hybrid techniques to solve (1) when A is nonsymmetric and they present numerous
comparisons with other methods together with comprehensive numerical experiments.

Among all these methods, we observe in practice that the single seed method
proposed by Smith, Peterson, and Mittra [18] is a very effective implementation of the
projection method. There are several practical advantages for this method. First of
all, we observe a superconvergence behavior of the CG process of the seed system when
compared with the usual CG process. Another advantage is that if the right-hand
sides are close, it usually takes very few restarts to solve all the systems. Moreover,
it requires no storage for the Lanczos or the direction vectors doing the projection.
These features, especially the first two, make this method very effective.
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To the best of our knowledge, no theoretical analysis has been given to explain
these phenomena. In this paper, we analyze these two properties and give analytical
explanations for them. Furthermore, we combine the advantages of the seed method
and the block CG method and propose a block generalization of this single seed
method. Instead of selecting a single seed, we select several systems as seed. This
block seed method enjoys the fast convergence of the block CG while preserving the
basic properties of the single seed method.

In sections 2 and 3, we describe the algorithm of the single seed method and
present an analysis of it. In sections 4 and 5, we describe the algorithm of the block
seed method and give analogous results for it. Numerical experiments are given in
section 6 to justify the analysis in sections 3 and 5. Finally, conclusions are made in
section 7.

Throughout the paper we adopt the following notations. The eigenvalues and the
normalized eigenvectors of A are denoted by λi and zi, respectively, and 0 < λ1 ≤
λ2 ≤ · · · ≤ λn. The acute angle between the vectors a and b is denoted by ∠(a, b)
while the acute angle between the vector a and the vector subspace V is denoted by
∠(a, V ). We also denote O(hs) to be a scalar, a vector, or a matrix whose norm is of
order O(hs) for convenience.

In this paper, we restrict our attention to symmetric positive definite A’s.

2. Single seed method. The idea of the single seed method is that for each
restart a seed system is selected from the unsolved one and is then solved by the CG
method. Meanwhile, an approximate solution of the nonseed system is obtained from
the space of direction vectors pi such that the residual is minimized in the A-norm
in the direction pi. In other words, the approximate solution is obtained by Galerkin
projection of the residuals onto the Krylov subspace generated by the seed system.
After the seed system is solved to desired accuracy, a new seed system is selected and
the whole procedure is repeated. Details of the algorithm can be found in [18]. We
summarize it in the following algorithm.

Single Seed Method for Solving Multiple Right-Hand Sides

for k=0, 1, 2 . . . until all the systems are solved
Select the k + 1th system as seed
for i=0, 1, 2, . . . , mk+1 % CG iteration

for j=k + 1, k + 2, k + 3, . . ., N % each remaining unsolved RHS
if j=k + 1 then perform usual CG steps

δk,ki = (rk,ki )T rk,ki /(rk,ki−1)T rk,ki−1
pk,ki = rk,ki +δk,ki pk,ki−1
σk,ki = (rk,ki )T rk,ki /(pk,ki )TApk,ki
xk,ki+1 = xk,ki +σk,ki pk,ki
rk,ki+1 = rk,ki –σk,ki Apk,ki

else perform Galerkin projection
ηk,ji = (pk,ki )T rk,ji /(pk,ki )TApk,ki
xk,ji+1 = xk,ji +ηk,ji pk,ki
rk,ji+1 = rk,ji –ηk,ji Apk,ki

end if
end for

end for
end for
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FIG. 1. (a) The convergence behaviors of the CG process with projected solution as initial guess
and with random vector as initial guess. (b) The convergence behaviors of all the systems when the
right-hand sides are the cyclic rotation of its elements.

We now make a few remarks about the algorithm. We assume, without loss
of generality, that the k + 1st system is the seed for the kth restart. We use the
first superscripts to denote the kth restart, the second superscripts to denote the jth
system, and the subscripts to denote the ith step of the CG method. We also assume
that mk steps are used to solve the kth system within some given tolerance. These
notations are used throughout the following sections.

What is so special about this method is the interesting phenomena shown in
Fig. 1. We apply the above algorithm to solve Ax = b(1) and Ax = b(2), where
A=diag(1,. . .,100) and b(1), b(2) are just some random vectors. Suppose the first
system is solved and an approximate solution for the second system is computed by
the Galerkin projection onto the previous Krylov subspace. The result of using this
projected solution as initial guess and that of using a random initial guess having
the same residual norm is shown in Fig. 1(a). We see from the plot that the one
using the projected solution as the initial guess converged much faster than the other.
This is the superconvergence phenomenon that we referred to earlier. Essentially, the
reason is that the projection process kills off the extreme eigenvector components of
the initial error. More precisely, we know that the Ritz values approach the extreme
eigenvalues rapidly in a few steps of the Lanczos process [10]. Usually the Krylov
subspace generated by the first few steps also contains the extreme eigenvectors well.
As a result, after the Galerkin projection, the effective spread of the spectrum of A is
narrower which in turn increases the rate of convergence. We shall prove this claim
in section 3.2.

Another special phenomenon is the small number of restarts needed to solve
all the systems. Let us solve the linear systems with A as before and b

(j)
i (t) =

sin(t + (i + j − 2)∆t), i = 1, . . . , 100, and j = 1, . . . , 10, where ∆t = 2π/100. So b(j)

is just obtained by shifting the components of b(j−1) by one position and the first
component is replaced by the last one. The result is shown in Fig. 1(b). The single
seed method only needs one restart to solve all the systems. The explanation is that if
B is rank k, then the single seed method only needs about k−1 restarts to solve all the
systems. In fact, one can easily prove that the right-hand sides B generated by cyclic
rotation of the components is only rank 2. We shall prove this claim in section 3.3.



1702 TONY F. CHAN AND W. L. WAN

3. Analysis of the single seed method. In this section, we analyze two prop-
erties of the single seed method. The first one is to prove the superconvergence of
the seed system in our previous example. Before we go on to our analysis, we state
some facts about the Lanczos algorithm which will be used in the following sections.
Details of the following can be found in [4].

3.1. Lanczos connection. Suppose we solve Ax = b by the Lanczos algorithm.
Let the columns of Vi = [v1 · · · vi] be the orthonormal Lanczos vectors of the i-dim
Krylov subspace Ki generated by i steps of the algorithm. Then we have the following
well-known recurrence:

AVm = VmTm + βm+1vm+1e
T
m, m = 1, . . . , n− 1,(2)

where Tm = V TmAVm is a tridiagonal matrix, em is the mth column of the identity
matrix, and βm+1 is a scalar. Moreover, the solution at step m is given by

xm = x0 + VmT
−1
m V Tm r0,

where x0 is the initial guess and r0 = b − Ax0. Suppose we have another system:
Ax̃ = b̃. Then the solution obtained from projection onto Km is given by

x̃m = x̃0 + VmT
−1
m V Tm r̃0,(3)

where x̃0 is some initial guess and r̃0 = b̃−Ax̃0 (see [12] for proof). The following is
a useful lemma for our later analysis.

LEMMA 3.1. The projected solution of the nonseed systems given by the formula
in the single seed algorithm is

xk,ji = xk,j0 + V ki (T ki )−1(V ki )T rk,j0 ,

where V ki are the Lanczos vectors generated by i steps of the Lanczos algorithm if the
kth system was solved by the Lanczos algorithm instead.

Proof. Smith, Peterson, and Mittra [18] proved that the formula given in the
algorithm computes the projected solution in the subspace generated by the direction
vectors {pk,ki }. But this subspace is exactly the subspace spanned by the columns of
V ki [4]. So, the result follows immediately from the formula (3).

In the following sections, the superscript k for V ki and T ki is assumed to be the
restart number and so it is dropped.

3.2. Rate of convergence of the seed system. In this section, we shall prove
that if the previous Krylov subspace contains the extreme eigenvectors well, then the
initial convergence rate of the seed is increased in a way as if the extreme ends of
the spectrum of A are cut off. The technique of the proof is similar to that in [19]
which estimates the rate of convergence of the CG process. We will compare the
error reduction after i steps of the CG process with the error reduction of another
CG process starting with an initial error vector obtained from the error vector of the
original process by deleting the first l eigenvector components.

Remark. Saad also discussed the convergence of the seed system but from a
different point of view (see [12] for details).

LEMMA 3.2. Consider only the first two systems: Ax(1) = b(1) and Ax(2) = b(2).
Suppose the first system is solved in m1 CG steps. Let x1,2

0 be the solution obtained
by the projection of b(2) on Km1 and let x̄1,2

0 be such that x(2) − x̄1,2
0 is the projection
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of x(2) − x1,2
0 on span{zk : k ∈ I}⊥, where zk is the unit eigenvector corresponding to

the eigenvalue λk and I={1, . . . , l}. Let x̄1,2
i be the ith iterate of the CG process for

Ax(2) = b(2) with x̄1,2
0 as initial guess. Then, for any i, we have

‖x(2) − x1,2
i ‖2A ≤ ‖x(2) − x̄1,2

i ‖2A + δ1,(4)

where

δ1 = ‖P⊥m1
x(2)‖2

∑
k∈I

λkp̄
2
i (λk) sin2 ∠(zk,Km1),

P⊥m1
≡ I − Vm1T

−1
m1
V Tm1

A is the A-orthogonal projection onto K⊥m1
, and p̄i is a poly-

nomial of degree at most i and constant term 1.
Proof. Using x0,2

0 = 0 as the initial guess for the second system, by Lemma 3.1
we get

x1,2
0 ≡ x0,2

m1
= Vm1T

−1
m1
V Tm1

b(2).

Since x(2) solves the second system Ax(2) = b(2), we have

x(2) − x1,2
0 = (I − Vm1T

−1
m1
V Tm1

A)x(2)(5)

= P⊥m1
x(2).

Let the eigendecomposition of x(2) − x1,2
0 be

x(2) − x1,2
0 =

n∑
k=1

φkzk.(6)

Therefore, by the definition of x̄1,2
0

x(2) − x̄1,2
0 =

n∑
k=l+1

φkzk.

It is well known [4] that there exists a polynomial p̄i(t) of degree at most i and constant
term 1 such that

x(2) − x̄1,2
i = p̄i(A)(x(2) − x̄1,2

0 )

=
n∑

k=l+1

p̄i(λk)φkzk.

This implies that

‖x(2) − x̄1,2
i ‖2A =

n∑
k=l+1

p̄2
i (λk)φ2

kλk.

Since p̄i(t) is a polynomial of degree at most i, by the minimization property of the
CG iterate we have

‖x(2) − x1,2
i ‖2A = min

pi
‖pi(A)(x(2) − x1,2

0 )‖2A(7)
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≤ ‖p̄i(A)(x(2) − x1,2
0 )‖2A(8)

=

∥∥∥∥∥
n∑
k=1

p̄i(λk)φkzk

∥∥∥∥∥
2

A

=
n∑
k=1

p̄2
k(λk)φ2

kλk

=
n∑

k=l+1

p̄2
i (λk)φ2

kλk +
∑
k∈I

p̄2
i (λk)φ2

kλk

= ‖x(2) − x̄1,2
i ‖2A +

∑
k∈I

p̄2
i (λk)φ2

kλk.

From (5) and (6) we can calculate φk to be

|φk| = |(P⊥m1
x(2)) · zk|

= ‖P⊥m1
x(2)‖‖zk‖| cos∠(zk, P⊥m1

x(2))|
≤ ‖P⊥m1

x(2)‖| cos∠(zk,K⊥m1
)|

= ‖P⊥m1
x(2)‖| sin∠(zk,Km1)|.

Substituting into (8), we obtain inequality (4).
Lemma 3.2 tells us that if the last term of (4) is small, then the convergence

rate will be increased in a way as if the first l eigenvalues of A have been removed.
Since the Lanczos process captures the extreme eigenspaces, the Galerkin projection
will kill off the extreme eigenvector components. So we may expect ∠(zk,Km1) to be
small for k close to one. In fact, we can bound sin∠(zk,Km1) with the help of the
estimates given by Parlett [10] and Saad [13].

LEMMA 3.3. Let θk = ∠(b(1), zk) and τk = λk−λk+1
λk+1−λn , k = 1, . . . , l. Then

sin∠(zk,Km1) ≤ ωk tan θk,(9)

where

ωk =
1

Tm1−k(1 + 2τk)

k−1∏
p=1

λp − λn
λp − λk

, k = 1, . . . , l,

and Tq(x) is the Chebyshev polynomial of degree q.
Proof. Since

sin∠(zk,Km1) ≤ tan∠(zk,Km1),

the result follows from Theorem 12-4-1 in [10] and Theorem 6.3 in [13].
First observe that θk is fixed. So, Lemma 3.3 tells us that if ωk is small, then

sin∠(zk,Km1) is small. If we assume the eigenvalues of A are distinct, then τk > 0.
So, Tm1−k(1 + 2τk) and Tm1+k−n+1(1 + 2τk) grow exponentially. This implies ωk
decays exponentially if m1 is large enough. That means sin∠(zk,Km1) is very small
for sufficiently large m1.

Using these two lemmas, we can now show that the bound for the convergence
rate is in fact the classical CG bound but with the extreme ends of the spectrum of
A being cut off, plus a small perturbation term.
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THEOREM 3.4. The bound for the A-norm of the error vector after i steps of the
CG process is given by

‖x(2) − x1,2
i ‖2A ≤ 4‖x(2) − x̄1,2

0 ‖2A
(√

κR − 1
√
κR + 1

)2i

+ δ2,

where

δ2 = ‖P⊥m1
x(2)‖2

∑
k∈I

λkω
2
k tan2 θk,

and the bound for δ2 is independent of the number of iterations i. Here, κR = λn
λl+1

is
the reduced condition number.

Proof. From Lemma 3.2 we have the following inequality:

‖x(2) − x1,2
i ‖2A ≤ ‖x(2) − x̄1,2

i ‖2A + δ1,(10)

δ1 = ‖P⊥m1
x(2)‖2

∑
k∈I

λkp̄
2
i (λk) sin2 ∠(zk,Km1).

The term ‖x(2) − x̄1,2
i ‖2A can be bounded by the classical CG error estimate

‖x(2) − x̄1,2
i ‖2A ≤ 4‖x(2) − x̄1,2

0 ‖2A
(√

κR − 1
√
κR + 1

)2i

.(11)

Now, we analyze the δ1 term. First, from Lemma 3.3 we can bound δ1 by

δ1 = ‖P⊥m1
x(2)‖2

∑
k∈I

λkp̄
2
i (λk) sin2 ∠(zk,Km1)(12)

≤ ‖P⊥m1
x(2)‖2

∑
k∈I

λkp̄
2
i (λk)ω2

k tan2 θk

≤ ‖P⊥m1
x(2)‖2 max

k∈I
p̄2
i (λk)

∑
k∈I

λkω
2
k tan2 θk.

Now, we bound the value of maxk∈I p̄2
i (λk). Recall that p̄i is the optimal CG poly-

nomial when solving Ax(2) = b(2) using x̄1,2
0 as initial guess (cf. proof of Lemma 3.2).

It can be shown that p̄i(t) has the following form [19, property 2.8]:

p̄i(t) =
(θ̄(i)

1 − t) · · · (θ̄
(i)
i − t)

θ̄
(i)
1 · · · θ̄

(i)
i

,

where θ̄
(i)
1 < θ̄

(i)
2 < · · · < θ̄

(i)
i are the Ritz values of A with respect to Ki, the

Krylov subspace generated by r̄1,2
0 = b − Ax̄1,2

0 . By property of Ritz values, λl+1 ≤
θ̄

(i)
j ≤ λn, j = 1, . . . , i. From the formula of p̄i(t) above, for 0 < t < λl+1, we

have 0 < p̄i(t) < 1. Thus, maxk∈I p̄2
i (λk) < 1. The desired inequality follows from

substituting (11) and (12) into (10).
Hence, if the Krylov subspace of the previous seed system contains the extreme

eigenvectors well, then ωk is small. On the other hand, the quantity ‖P⊥m1
x(2)‖ is

bounded by ‖x(2)‖. (In fact, if we make additional assumptions on b(1) and b(2), then
we can estimate the bound for ‖P⊥m1

x(2)‖. This is discussed in section 3.4). So, the
whole perturbation term is small which implies the initial rate of convergence can be
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as fast as if the extreme ends of the spectrum of A are being cut off. This explains
the superconvergence behavior shown in Fig. 1(a).

Remark. For the proof of the lemmas, we have made no assumptions about
the right-hand sides. So the theorem is still true for arbitrary right-hand sides. This
property suggests that the single seed method may be useful in solving general multiple
right-hand sides.

3.3. Rate of convergence of the nonseed system. Now we come to our
second analysis. We prove that the systems are almost solved after k − 1 restarts of
the CG process if the rank of B is k. This result is the central idea of the following
analysis that explains why the single seed method only needs a few restarts to solve
all the systems if the right-hand sides are close to each other.

THEOREM 3.5. Suppose B = [b(1) · · · b(N)] and rank(B) = k < N . Then there
exists α > 0, independent of the iteration numbers mp, such that the residual of the
nonseed systems after k − 1 restarts of the single seed method satisfies

‖r̃k,j0 ‖ ≤ α
k∑
p=1

|βmp+1|, j = k + 1, . . . , N,(13)

where βmp+1 comes from the Lanczos recurrence formula (2) if the pth seed is thought
of solved by the Lanczos algorithm, p = 1, . . . , k.

Proof. Let B =
∑k
i=1 σiuiw

T
i be the outer product form of a singular value

decomposition of B, where σi, ui, and wi are the singular values and left and right
singular vectors of B, respectively. So the jth system b(j) can be written as

b(j) =
k∑
i=1

σi(wTi ej)ui,(14)

where ej is the jth column of the identity matrix I. Let

r̃0,j
0 = b(j), x̃0,j

0 = 0, j = 1, 2, . . . , N,(15)

ζ0,j
i = σiw

T
i ej , u0

i = ui, i = 1, 2, . . . , k.

Notice that

|ζ0,j
i | ≤ σi, j = 1, . . . , N.(16)

We take the first system as seed and suppose that it is solved in m1 CG steps.
By Lemma 3.1, the approximate solution of the nonseed systems obtained from the
Galerkin projection is

x̃1,j
0 = x̃0,j

0 + Vm1T
−1
m1
V Tm1

r̃0,j
0 , j = 1, . . . , N,

and

r̃1,j
0 = b(j) −Ax̃1,j

0(17)

= (I −AVm1T
−1
m1
V Tm1

)r̃0,j
0

= (I − Vm1V
T
m1
− βm1+1vm1+1e

T
m1
T−1
m1
V Tm1

)r̃0,j
0

= (I − Vm1V
T
m1

)r̃0,j
0 − βm1+1vm1+1e

T
m1
T−1
m1
V Tm1

r̃0,j
0 .
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We want to express r̃0,j
0 in terms of r̃0,1

0 since we know that

(I − Vm1V
T
m1

)r̃0,1
0 = 0.

Without loss of generality, we may assume that

|ζ0,1
1 | = max

1≤i≤k
|ζ0,1
i |.(18)

From (14) and (16) we write r̃0,j
0 as

r̃0,j
0 = ζ0,j

1 u0
1 +

k∑
i=2

ζ0,j
i u0

i .

In particular, we have

r̃0,1
0 = ζ0,1

1 u0
1 +

k∑
i=2

ζ0,1
i u0

i .

Now, we rearrange the terms of r̃0,j
0 and rewrite it in terms of r̃0,1

0 :

r̃0,j
0 = ζ0,j

1 (ζ0,1
1 )−1r̃0,1

0 +
k∑
i=2

[ζ0,j
i − ζ

0,j
1 (ζ0,1

1 )−1ζ0,1
i ]u0

i .(19)

Let

ζ1,j
i = ζ0,j

i − ζ
0,j
1 (ζ0,1

1 )−1ζ0,1
i , i = 2, . . . , k.

Then, by (16) and (18) we have

|ζ1,j
i | ≤ |ζ

0,j
i |+ |ζ

0,j
i ||ζ

0,1
i /ζ0,1

1 |,
≤ 2σi.

Now, from (19) we get

r̃0,j
0 = ζ0,j

1 (ζ0,1
1 )−1r̃0,1

0 +
k∑
i=2

ζ1,j
i u0

i .(20)

Combining (17) and (20) we have

r̃1,j
0 = (I − Vm1V

T
m1

)
k∑
i=2

ζ1,j
i u0

i + γ1,j
1 vm1+1,

where

γ1,j
1 = −βm1+1e

T
m1
T−1
m1
V Tm1

r̃0,j
0

= α1βm1+1,

where

α1 ≡ −eTm1
T−1
m1
V Tm1

r̃0,j
0 .
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We now show that α1 is independent of m1. Obviously, eTm1
is bounded by one.

Besides, it is well known [4] from the interlacing property of the eigenvalues of the
consecutive T ′ks that the spectrums of T ′ks are bounded by the spectrum of A. Thus,

‖T−1
m1
‖ ≤ ‖A−1‖.

Next, because the columns of Vm1 are orthogonal we have

‖Vm1‖ ≤ 1.

Finally, it is clear that

‖r̃0,j
0 ‖ ≤ ‖B‖.

So, α1 is bounded independent of m1. In other words, it does not grow unboundedly
as the iteration goes on.

Let

u1
i = (I − Vm1V

T
m1

)u0
i .

Then we further simplify r̃1,j
0 as

r̃1,j
0 =

k∑
i=2

ζ1,j
i u1

i + γ1,j
1 vm1+1.(21)

So after one solve, the rank of the remaining columns of B is effectively reduced by
one if γ1,j

1 is small. We proceed in the same manner for the other seeds. Inductively,
after l − 1 restarts the residual for the nonseed system is

r̃l,j0 =
k∑

i=l+1

ζl,ji uli +
l∑

p=1

γl,jp

l∏
q=p+1

(I − VmqV Tmq )vmp+1,(22)

where

ζl,ji = ζl−1,j
i − ζl−1,j

l (ζl−1,l
l )−1ζl−1,l

i ,

uli = (I − VmlV Tml)u
l−1
i ,

γl,jp = γl−1,j
p − ζl−1,j

l (ζl−1,l
l )−1γl−1,j

l , p = 1, . . . , l − 1,

γl,jl = −βml+1e
T
ml
T−1
ml
V Tml r̃

l−1,j
0 .

Notice that |ζl,ji | ≤ 2lσi since |ζl−1,j
i | ≤ 2l−1σi, which can be derived inductively. In

particular, when l = k we have from (22) that the first term vanishes and

r̃k,j0 =
k∑
p=1

γk,jp

k∏
q=p+1

(I − VmqV Tmq )vmp+1,(23)

where γk,jp is a constant multiple of βmp+1. As explained before, these constants are
independent of the mp’s. So, we can find α > 0 such that

|γk,jp | ≤
α

k
|βmp+1|.(24)
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Moreover, for any q, I − VmqV Tmq are projections and vmp+1 is of unit length. So,∥∥∥∥∥
k∏

q=p+1

(I − VmqV Tmq )vmp+1

∥∥∥∥∥ ≤ 1.(25)

We obtain (13) from (24), (25), and (23).
If B has near-rank deficiency, then we have a similar result but with an extra

perturbation term.
COROLLARY 3.6. Suppose the singular values of B are such that

σ1 ≥ σ2 ≥ · · · ≥ σk > ε ≥ σk+1 ≥ · · · ≥ σN ≥ 0.

Then there exists α′ > 0, independent of the mp’s, so that

‖r̃k,j0 ‖ ≤ α′

(
k∑
p=1

|βmp+1| + ε

)
.

Proof. By (22) with k = N , l = k, we have

r̃k,j0 =
N∑

i=k+1

ζk,ji uki +
k∑
p=1

γk,jp

k∏
q=p+1

(I − VmqV Tmq )vmp+1.(26)

Since |ζk,ji | ≤ 2kσi and σi ≤ ε, i = k + 1, . . . , N , by Theorem 3.5 we get

‖r̃k,j0 ‖ ≤
N∑

i=k+1

|ζk,ji |‖uki ‖+ α
k∑
p=1

|βmp+1|

≤ (N − k)2kε+ α
k∑
p=1

|βmp+1|.

The result follows if we let α′ = max(α, (N − k)2k).
Remarks.
1. In practice, a stopping criterion of the following form is used:

‖rp,pmp‖ ≤ tol ‖b(p)‖.

It is well known [4] that

‖rp,pmp‖ = |βmp+1||eTmpT
−1
mpe1|‖b(p)‖.

Hence, |βmp+1| can be bounded as

|βmp+1||eTmpT
−1
mpe1| ≤ tol.

If |eTmpT−1
mpe1| is not small, then |βmp+1| is the same order of tol. So, Theorem 3.5

really means that the systems would be solved to the order of accuracy of tol in only
k − 1 restarts if rank(B)=k.

2. Consider the special case that B = [b(1) · · · b(N)], b(j) = b(tj), and

b(t) = c1(t)a1 + · · ·+ ck(t)ak,
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where ci(t) are some bounded functions, not necessarily continuous, and ai are some
linearly independent vectors. Then Theorem 3.5 implies that B is almost solved after
k − 1 restarts. In particular, if b(t) is a polynomial of degree k − 1, then B could be
solved in about k − 1 restarts.

3. In general, if b(t) is not a polynomial, Corollary 3.6 ensures that we can still
have a similar result for b(t) a continuous function. We rewrite this remark into the
following theorem.

THEOREM 3.7. If b(t) is a continuous function on [t1, tN ], then given ε > 0, there
exist integers k ≤ N and α′ such that

‖r̃k,j0 ‖ ≤ α′

(
k∑
p=1

|βmp+1| + ε

)
.

Proof. Since b(t) is continuous, by the Weierstrass approximation theorem [14]
there exists a polynomial f(t) of degree (k − 1) such that

‖b(t)− f(t)‖2 < ε/
√
N ∀ t ∈ [t1, tN ].(27)

Notice that we can always find a polynomial of degree (N − 1) such that (27) is true
since B has only N columns. So, we always have k ≤ N . We now estimate the size
of σk+1.

Let

B̃ = [f(t1) · · · f(tN )].

Then rank(B̃)=k. By the minimization property of σk+1 (see [4]) we have

σk+1 ≤ ‖B − B̃‖2.

But by (27) we have ‖B − B̃‖2 ≤ ‖B − B̃‖F ≤ ε. The result follows from Corollary
3.6.

This theorem points out an important property. If b(t) is continuous and the
b(j)’s are close to each other, we may expect that rank(B) < N . That means we
can find a low-order polynomial to approximate b(t). Theorem 3.7 tells us that the
single seed method will automatically exploit this fact. One may suggest using a QR
factorization of B and then solving the linearly independent right-hand sides. But
this is only effective when the rank is much smaller than N . Otherwise it is costly
to do the factorization and reconstruction. Furthermore, in practice, it is hard to tell
the numerical rank of B. The usefulness of this method is that we do not need to
determine the rank by ourselves and it will automatically take care of it.

The number k somehow reveals the effective rank of B. If the b(j)’s are close to
each other, this number is usually much smaller than N . That is why, in practice,
the single seed method only takes a few restarts to solve all the systems.

3.4. Error of the initial guess. In this section, we want to estimate the error
of the initial guess given by the Galerkin projection, assuming that b(t) is smooth.
Saad [12] also estimated the error of the projected solution but in a more general
context. Since the right-hand sides of the nonseed systems differ from that of the seed
system by O(h), we can show that the initial guess given by projection also has O(h)
error.

THEOREM 3.8. Assume that b = b(t) and b(j) = b(t1 + (j − 1)h). Suppose we
have applied m1 CG steps to the first system: Ax(1) = b(1) and obtain Km1 . Let x̃1,j

0
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be the projected solution of Ax(j) = b(j) onto Km1 and x0,j
m1

be the solution given by
applying m1 CG steps to the jth system with initial guess zero. Then

‖x̃1,j
0 − x0,j

m1
‖ = O(h).

Proof. Since b(t) is smooth, the approximation of b(j) by b(1) satisfies

b(j) = b(1) +O(h).

Then, by Lemma 3.1, the projected solution of b(j) with zero initial guess is

x̃0,j
0 = Vm1T

−1
m1
V Tm1

b(j)

= x0,1
m1

+O(h).

Since x0,1
m1
− x0,j

m1
= O(h), the theorem is proved.

This theorem shows that ‖P⊥m1
x(2)‖ in Theorem 3.4 is only O(h) if the right-hand

sides have smooth dependence.

4. Block seed method. In this section, we propose a block generalization of
the single seed method. In the last section, we note that the initial guess given by the
Galerkin projection requires h to be very small in order to have a good approximation
since the approximation is only of first order. So the performance of the single seed
method will be improved when the step size of b(t) is small. Practically, we may
need to take large steps which may deteriorate the performance of the single seed
method. A natural solution to this problem is to select more than one system as seed
so that the subspace generated by the seed is larger and the initial guess obtained
from the projection onto this subspace is hopefully better. Moreover, if we use the
block CG method to solve the seed systems, the convergence rate is also improved.
These statements will be made more precise in the following sections.

The block seed algorithm is exactly the same as the single seed method except the
seed is a block of s systems. The seed is solved by the block CG method [7] while an
approximate solution for the nonseed system is obtained by the Galerkin projection
onto the the subspace generated by the seed. The algorithm of the block seed method
is as follows.

Note that the second superscript for a matrix denotes the jth subblock of B.
A drawback of the block method is that it may break down when singularity of

the matrices (Rk,ki−1)TRk,ki−1 and (P k,ki )TAP k,ki occurs. On the other hand, in addition
to the fast convergence inherited from the block CG, the block seed method possesses
all the basic properties of the single seed method discussed in previous sections. In
fact, the bounds obtained are better than those for the single seed method. Analogous
theorems are stated in the following sections.

From now on we adopt additional notations for our discussion of the block seed
method. The block size is assumed to be s and the matrix A is assumed not to
have eigenvalues with multiplicity greater than s. After m steps of the block CG,
we let Vm = [U1 · · ·Um] whose columns denote the orthonormal blocks of Lanczos
vectors and Km denotes the subspace spanned by columns of Vm. Let Pm and P⊥m be
the A-orthogonal projection onto Km and K⊥m, respectively. Lowercase letters denote
vectors while uppercase letters denote matrices.
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Block Seed Method for Solving Multiple Right-Hand Sides

for k=0, 1, 2 . . . until all the systems are solved
Select the ks+ 1, . . . , ks+ sth systems as seed
for i=0, 1, 2, . . ., mk+1 % block CG iteration

for j=k + 1, k + 2, k + 3, . . ., dN/se % each remaining unsolved block of RHS
if j=k + 1 then perform usual block CG steps

∆k,k
i = (Rk,ki )TRk,ki ((Rk,ki−1)TRk,ki−1)−1

Pk,ki = Rk,ki +∆k,k
i Pk,ki−1

Σk,ki = (Rk,ki )TRk,ki ((Pk,ki )TAPk,ki )−1

Xk,k
i+1 = Xk,k

i +Σk,ki Pk,ki

Rk,ki+1 = Rk,ki –Σk,ki Pk,ki
else perform block Galerkin projection

Hk,j
i = (Pk,ki )TRk,ji ((Pk,ki )TAPk,ki )−1

Xk,j
i+1 = Xk,j

i +Hk,j
i Pk,ki

Rk,ji+1 = Rk,ji –Hk,j
i APk,ki

end if
end for

end for
end for

5. Analysis of the block seed method. In the following sections, we give the
analogous results of the single seed case. Since the techniques of the proofs are similar
to the nonblock case, we shall skip them.

5.1. Rate of convergence of the seed system. We show below that the
bound for the convergence rate of the seed systems is superior to that of the single
seed method. This is due to the fact that the block Lanczos method gives a better
bound for the extreme eigenvalues than that of the classical Lanczos method. Yet the
statement and the proof of the theorem is analogous to Theorem 3.4. Before we go
on we state a fact about the minimization property of the block CG iterate proved
by O’Leary [7].

THEOREM 5.1. Let Xm be the approximate solution given by the block CG and
X∗ be the true solution. Then Xm minimizes tr[(X − X∗)TA(X − X∗)] over all X
such that X −X0 ∈ Km.

Since the minimization property of the block CG algorithm is on all the systems
together, we can only estimate the convergence rate of the seed systems indirectly.
That means we cannot bound the errors of the individual systems except by blocks.
Like before, we show the effect of the extreme l eigenvalues.

LEMMA 5.2. Consider two systems: AX(1) = B(1) and AX(2) = B(2). Suppose
the first systems are solved to desired accuracy after m1 steps of the block CG process.
Let X0,2

0 , X̄0,2
0 , X0,2

i , X̄0,2
i , and I be defined similarly as in Lemma 3.2 and x(j) be

the solution of the jth system of X(2). Then for any i we have

tr[(X(2) −X1,2
i )TA(X(2) −X1,2

i )] ≤ tr[(X(2) − X̄1,2
i )TA(X(2) − X̄1,2

i )] + δ3,(28)

where

δ3 =
s∑
j=1

‖P⊥m1
x(j)‖2

∑
k∈I

λkp̄
2
j (λk) sin2 ∠(zk,Km1).

We can also estimate sin∠(zk,Km1) by the bounds given by Saad [11].
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LEMMA 5.3. Suppose that P1zj are linearly independent for j = k, . . . , k + s− 1,
k ≤ l. Let x̂k ∈ K1 be defined such that

zTj x̂k = δkj

for j = k, . . . , k + s − 1, k ≤ l. Let θ̂k = ∠(zk, x̂k) and τ̂k = λk−λk+s
λk+s−λn , k = 1, . . . , l.

Then

sin∠(zk,Km1) ≤ ω̂k tan θ̂k,(29)

where

ω̂k =
1

Tm−k(1 + 2τ̂k)

∏
λ∈Λk

λ− λn
λ− λk

, k = 1, . . . , l.

Here, Λk is the set of the first k − 1 distinct eigenvalues.
Remark. Since |λk−λk+s| ≥ |λk−λk+1|, we have τ̂k ≥ τk. This implies ω̂k ≤ ωk.

Besides, the subspace Vm1 is bigger than the subspace Vm1 , and so we may expect
‖P⊥m1

x(j)‖ ≤ ‖P⊥m1
x(j)‖, too (cf. Lemmas 3.2 and 3.3).

By these two lemmas we may give an indirect bound similar to Theorem 3.4 for
the convergence rate of the seed systems.

THEOREM 5.4. The bound for the sum of the error vector in the A-norm after i
steps of the block CG process is given by

tr[(X(2) −X1,2
i )TA(X(2) −X1,2

i )] ≤ 4
s∑
j=1

ρj

(√
κR − 1
√
κR + 1

)2i

+ δ4,

where

δ4 =
s∑
j=1

‖P⊥m1
x(j)‖2

∑
k∈I

λkω̂
2
k tan2 θ̂k

for some constant ρj.
This bound looks almost the same as the bound in Theorem 3.4 except ωk and

θk change to ω̂k and θ̂k. But from the previous remark ω̂k ≤ ωk and ‖P⊥m1
x(j)‖ ≤

‖P⊥m1
x(j)‖. This shows that the bound for the convergence rate of the seed systems

in the block case is better than that in the single seed case.

5.2. Rate of convergence of the nonseed system. We now state two other
analogous theorems of the block seed method. It says that all the systems are almost
solved in dk/se − 1 restart of the block seed method if rank(B)=k.

THEOREM 5.5. Suppose we want to solve the same problem as in Theorem 3.5 by
the block seed method. Then there exists α > 0, independent of the mp’s, such that
the residual of the nonseed systems after dk/se − 1 restarts satisfies

‖r̃dk/se,j0 ‖ ≤ α

dk/se∑
p=1

‖β̂mp+1‖, j = k + 1, . . . , N,

where β̂mp+1 comes from the recurrence of the block Lanczos algorithm [3],

AVmp = VmpTmp + Ump+1β̂mp+1E
T
mp , p = 1, . . . , dk/se.
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Finally, if b(t) is continuous, we can bound the residual in the same way as in
Theorem 3.7.

THEOREM 5.6. If b(t) is a continuous function in t on [t1, tN ], then given ε > 0,
there exist integers k and α′ such that the residual of the nonseed systems, after
dk/se − 1 restart of the block seed method, satisfies

‖r̃dk/se,j0 ‖ ≤ α′

dk/se∑
p=1

‖β̂mp+1‖+ ε

 .

The results of Theorems 5.5 and 5.6 are not surprising since each solve of the block
CG generates a subspace s times bigger than CG does. So the number of restarts
should be reduced by a factor of s for the block seed method.

5.3. Error of the initial guess. We point out in section 4 that the initial guess
given by the single seed method is good only if the right-hand sides are really close.
In fact, the initial guess is only O(h) accurate to the mth iterate given by the CG
process. We now prove that the initial guess given by the block seed method is O(hs)
accurate to the extrapolate approximation of x(j) given by the solutions of the seed
systems.

THEOREM 5.7. Assume b(j) = b(t1 + (j − 1)h) as in Theorem 3.8. Suppose we
have applied m1 block CG steps to the seed systems: AX(1) = B(1) and obtain Km1 .
Let x̃1,j

0 be the projected solution of Ax(j) = b(j) onto Km1 . Then x̃1,j
0 is an sth-order

approximation of the extrapolation of the columns of X0,1
m1

which are obtained from
applying m1 block CG steps to the first subblock of B.

Proof. Since b(t) is smooth, the extrapolate approximation of b(j) by b(i)’s, i =
1, . . . , s, is of order s. So, there exist χi such that

b(j) =
s∑
i=1

χib
(i) +O(hs).

Then, by the block version of Lemma 3.1 the projected solution of b(j) with initial
guess zero is

x̃1,j
0 = Vm1T −1

m1
VTm1

b(j)

=
s∑
i=1

χiVm1T −1
m1
VTm1

b(i) +O(hs)

=
s∑
i=1

χix
(i)
m1

+O(hs).

The result follows from the fact that
∑s
i=1 χix

(i)
m1 is actually the extrapolated approx-

imation given by X0,1
m1

.
Higher order of accuracy means the size of h need not be too small in order to get

a good initial guess. This suggests that the block seed method is useful in the case
when the right-hand sides are not close to each other.

6. Numerical experiments. In this section, we present four examples to il-
lustrate the analysis in sections 3 and 5 and also compare the performance of these
methods applied to an acoustic scattering problem.
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All the experiments were performed in MATLAB with machine precision 10−16.
The stopping criterion is ‖rk,ji ‖ < tol∗‖b(j)‖, where the tolerance, tol, is set to be
10−8.

Example 1. In this example, we show the effective cutoff of the spectrum of A
and the convergence rate of the seed systems. More precisely, we are going to verify
the analysis of Theorem 3.4 which tells us that the convergence of the CG process
using projected solution as the initial guess behaves like that of using the same initial
guess but with the extreme l eigenvector components of the initial error being cut
off. Meanwhile, we also verify Theorem 5.4, the block counterpart of Theorem 3.4. In
order to show that this property does not depend on the smoothness of b, we simply
use random vectors for B. Our test problem is

AX = B,

where A = diag(1, 2, . . . , 100) and B is a random matrix with four columns.
Let bj denote the jth column of B. For the single seed method we solve b1 by the

CG method (in 55 iterations) and project the other three systems to obtain an initial
guess. Then each one is solved by the CG again. We only consider the behavior
of the last system b4. Before discussing the convergence behavior, let us see what
has happened to b4 after projection. Figure 2(a) shows the components of b4 before
the projection while Fig. 2(b) shows the situation after the projection. Figure 2(b)
clearly reveals that the first couple of eigenvector components of b4 are killed off by
the projection. This illustrates that the effective spectrum of A is narrower than
before which in turn increases the convergence rate. In fact, the result is shown in
Fig. 3(a). The solid line denotes the convergence behavior of the last system using the
projected solution as initial guess. The dotted line denotes the convergence behavior
of the same system using the same projected solution as initial guess but whose error
vector is such that the extreme l eigenvector components are cut off. We choose l = 5
because Fig. 2(b) shows that the first five eigenvector components have essentially
gone. Figure 3(a) indeed shows that the convergence behavior of both initial guesses
are almost identical as predicted by Theorem 3.4.

For the block seed method we solve b1 and b2 by the block CG method (in 40
iterations) and project the other two systems to obtain an initial guess. Then the
last two are solved by the block CG again. Again, we only concentrate on the last
system. The situation is similar to the single seed case. Let us first see the effect of
the block projection of b4. Figure 2(c) shows that more eigenvector components are
killed off by the block projection. This implies more extreme eigenspaces are being
captured by one solve of the block CG than by the usual CG. The effect of this on the
convergence behavior is shown in Fig. 3(b). It shows that the convergence behavior
of the last system is actually slightly better than the case l=5 and almost the same
as the case l=10. This verifies that the block seed method has a better convergence
bound than the single seed method as stated in the discussion after Theorem 5.4.

Example 2. In this example, we show the convergence rate of the nonseed systems.
Our test problem is

Ax(t) = b(t),

where A = diag(1, 2, . . .,100) and b(t) = a0 + ta1 + t2a2 + t3a3; a0, a1, a2, and a3 are
some linearly independent vectors of unit length. So, rank(B) = 4 in this case. We
choose t1 = 1, ∆t = 0.1, and tj = t1 + (j − 1)∆t, j = 1, . . . ,10, and bj = b(tj).
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RHS before projection(a)
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RHS after projection(b)
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FIG. 2. Size distribution of the components of (a) the original vector b4, (b) b4 after the
projection, and (c) b4 after the block projection.
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FIG. 3. The convergence behavior of the CG/block CG process with different initial guess. (a)
The single seed method, and (b) the block seed method. Solid lines denote seed/block seed method.
Dotted lines denote the case l = 5. Dashed dotted lines denote the case l = 10.
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FIG. 4. The convergence behavior of all the systems (10 right-hand sides) when solving Ax(t) =
b(t), where A = diag(1:100) and b(t)=a0 + ta1 + t2a2 + t3a3 by (a) the single seed method, and (b)
the block seed method.

Theorems 3.5 and 5.5 tell us that all the systems should be almost solved in three
restarts for the single seed method and in one restart for the block seed method.
The convergence behaviors of all the systems are shown in Figs. 4(a) and (b). From
the plot, each steepest declining line denotes the convergence of a seed and also for
the nonseed in the last restart. Figure 4(a) shows that four seeds (corresponding
to three restarts) are used to solve all the systems. Figure 4(b) shows that, in the
block seed case, only two seeds (corresponding to one restart) are used to solve all the
systems. This result exactly matches the prediction given by Theorems 3.5 and 5.5.
Note that we plot the residual norm against the cost (the number of matrix–vector
multiply) in place of the iteration number as in Example 1 so that we may compare
the effectiveness of these methods by the cost. In this case, the block seed method is
slightly better.

Example 3. In this example, we apply the single seed method and the block seed
method to solve an acoustic-scattering problem. The object is assumed to be circular
and the wave number is arbitrarily chosen as five. The Helmholtz equation or the
reduced wave equation is solved by the double-layer potential, using the trapezoidal
rule to discretize the integral. We show the efficiency of both methods and illustrate
the effect of ∆t, the change of the incident angle t, on them. More precisely, our test
problem is

Ax(t) = b(t),

where A = ÃÃT and Ã is a particular nonsingular complex matrix of order 128×128
arising from the acoustic-scattering problem. b(t) is the right-hand side which depends
on the incident angle t and corresponds to the boundary data that accompany the
circle geometry. The formula for the ith component of the right-hand side is

bi(t) = − cos(5 cos(t− 2(i− 1)π/128))−
√
−1 sin(5 cos(t− 2(i− 1)π/128)).

We solve the problem in two cases. The first case corresponds to ∆t = 1◦ and the
second case corresponds to ∆t = 10◦. The number of right-hand sides is still 10.

The result of the first case is shown in Figs. 5(a) and (b). In our previous analysis,
we learn that the initial guess given by the block seed method is better than that of
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FIG. 5. The convergence behavior of all the systems when solving Ax(t) = b(t), where b(t)
corresponds to the boundary data of a radar scattering problem and ∆t = 1◦ by (a) the single seed
method, and (b) the block seed method.

the single seed method when ∆t small. Figures 5(a) and (b) show that the residual of
the initial guess given by the single seed method is O(10−1) while that given by the
block seed method is O(10−2). However, since the right-hand sides are close when ∆t
is small, the performance of the block seed method is not especially good since some
matrices are near singular. In fact, both methods solve the problem using nearly the
same cost.

In Fig. 5(a), we can easily see that the single seed method only takes six CG runs
to solve all the systems. Actually, the first four CG runs nearly solve all the systems.
The last two are just minor corrections of the unsolved systems. In fact, the first
four singular values of B are 35.24, 6.18, 0.37, and 0.02 and the remaining ones are
only O(10−4) or less. So, this experiment verifies the discussion following Theorem
3.7 that the single (and the block) seed method will automatically exploit the rank
deficiency of B and save a lot of CG solves.

For the second case the result is shown in Figs. 6(a) and (b). Since ∆t is large,
we can expect that the initial guesses given by the single seed method are not good.
Also, because ∆t is large, b(j)’s are not close to each other and B has full rank. These
unfavorable conditions weaken the performance of the single seed method. But for the
block seed method, it uses two instead of one right-hand sides to generate a subspace
in each restart, so the subspace is larger, which is good for the convergence of the seed
systems as well as for reducing the residual of the nonseed systems by projection. So
Figs. 6(a) and (b) clearly show that the block seed method performs much better in
this case. This example illustrates that the single seed method depends heavily on
the closeness of the right-hand sides while the block seed method depends less.

Example 4. In this example, we show the performance of the block seed method
with block size s = 3, 4. We use the same matrices A and B as in example 3 and
choose ∆t = 10◦. Figures 7(a) and (b) show the result of s = 3 and 4, respectively.
When compared to Figs. 6(a) and (b), we see that the convergence rate of the seeds
for s = 3, 4 is better than for s = 1, 2. Actually, we can see a trend of increasing
convergence rate with increasing s. But the problem for large block size is that near
singularity of some matrices may produce unstable results. In fact, we can see from
Figs. 7(a) and (b) that some systems did not converge. From our experience, s = 2
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FIG. 6. The convergence behavior of all the systems (10 right-hand sides) when solving Ax(t) =
b(t), where b(t) corresponds to the boundary data of a radar scattering problem and ∆t = 10◦ by (a)
the single seed method, and (b) the block seed method.
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FIG. 7. The convergence behavior of all the systems when solving Ax(t) = b(t), where b(t)
corresponds to the boundary data of a radar-scattering problem and ∆t = 10◦ by the block seed
method with (a) s = 3, and (b) s = 4.

is an optimal choice. Although it still has the chance of near singularity, it is rarely
the case when compared with the other choices of s.

7. Conclusion. We have claimed that the single seed method possesses two
merits that make it an effective method to solve multiple right-hand sides with smooth
dependence on t. One is the superconvergence of the seed system and the other is that
it only takes a few number of restarts to solve all the systems. These two properties are
essentially derived from the intrinsic property of the Galerkin projection. The single
seed method automatically makes use of this property and improves the efficiency of
solving multiple right-hand sides. We have proved these two properties analytically
and also estimated the initial error of the projected solution. We have also performed
numerical experiments to justify the theoretical analysis and to show that the single
seed method is effective to solve this problem when the right-hand sides are close to
each other.
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On the other hand, we have also noted the weakness of the single seed method
when the right-hand sides are not close to each other. We therefore proposed a block
generalization of the single seed method. The basic idea of this block seed method
is to exploit a larger subspace by the block seed systems. We have proved that the
block seed method possesses the same properties of the single seed method and found
that the bounds are better than those for the single seed method. We have estimated
the initial errors as well. However, we have noted that the block seed method inherits
both the advantages and disadvantages of the block CG method. Actually, we have
shown numerically that the performance of the block seed method is very good when
the right-hand sides are not close to each other but not that good in the opposite case.
In fact, in that case, the subspace generated by the block seed systems is no better
than the subspace generated by a single seed. Nevertheless, the block seed method is
shown to be an attractive alternative to the single seed method when the right-hand
sides are not close to each other.
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