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Abstract

We survey the literature on robust multigrid methods which have been developed in recent years for solving second-order
elliptic PDEs with nonsmooth coe�cients. We highlight the key ideas of designing robust multigrid methods which are
able to recover the usual multigrid e�ciency for nonsmooth coe�cient PDEs on structured or unstructured grids. In
particular, we shall describe various approaches for constructing the interpolation and the smoothing operators, and the
coarse grid points selections. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Multigrid methods are multilevel techniques for solving partial di�erential equations (PDEs) by
eliminating errors in di�erent parts of the spectrum on a sequence of coarse grids, or more gener-
ally, coarse subspaces. The basic principle is based on the interplay of smoothing and coarse grid
correction which complement each other; the smooth errors not being reduced by smoothing are
eliminated by coarse grid corrections. These techniques can generally be applied directly to PDEs
but are of most interest when applied to the linear systems arising from their discretizations. Multi-
grid methods have been widely used in a broad variety of applications, from Poisson equations
to full Navier–Stokes equations, from two-dimensional square domains to three-dimensional unstruc-
tured airfoil grids, etc. Multigrid has proved itself as a powerful and successful numerical technology
for fast and e�cient computations. In contrast with many other iterative methods such as classical
relaxation methods, multigrid o�ers the capability of solving elliptic PDE problems with complexity
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Fig. 1. A spectrum of multigrid methods.

and storage proportional to the number of unknowns, and its convergence rate is often independent
of the problem size.
In this article, we survey robust multigrid methods in the literature which have been developed

in recent years for solving second-order elliptic PDEs with nonsmooth coe�cients. While multigrid
converges rapidly for model problems such as the Poisson equation on a square, its convergence
rate can be severely a�ected by PDEs with highly nonsmooth coe�cients, or problems de�ned on
complicated geometries, and unstructured grids. Unfortunately, these types of problems often arise
in industrial applications, and hence traditional multigrid methods must be redesigned for them. The
primary focus of this paper is in the design of robust multigrid methods which are able to retain
the usual multigrid e�ciency for smooth coe�cient PDEs on structured grids. In particular, we shall
describe various approaches for constructing the interpolation and the smoothing operators, and the
coarse grid points selections.
General surveys of multigrid methods for solving di�erent kinds of applications can be found in

Brandt [20,21,23]. A survey on multilevel methods on unstructured grids can be found in Chan et al.
[28]. Also, see [61,70] for a survey of parallel implementation of multigrid, which is not within the
scope of this paper. Surveys on other aspects of multigrid methods can be found in [24,54,60,93]. We
also note that the introductory note by Wagner [90] contains a lot of the details of the interpolation
approaches discussed in this paper. Finally, we refer the readers to MGNet http://www.mgnet.org
for a database of an extensive collection of multigrid papers in the literature.
The idea of multigrid was introduced and analyzed by Brakhage [15], and Fedorenko [47,48]

in the 1960s, followed by Bachvalov [5]. Multigrid methods have not been paid much attention
in the 1970s until the works of Astrachancer [2], Bank and Dupont [6], Brandt [19], Hackbusch
[53], Nicolaides [74], and others showed that multigrid is indeed a very useful technique practically
and theoretically. An enormous amount of progress has been achieved since then. Various multigrid
methods have been developed, ranging from geometry speci�c to purely algebraic black box methods,
and a spectrum of methods exist between the two extremes; see Fig. 1. We refer to this spectrum of
methods as gray box methods: they require more information about the problem (e.g. grids, matrix
graph, etc.) than a complete black box approach, but on the other hand, they can produce better
robustness and performance.
Close to the geometric-dependent end of the spectrum where Cartesian grid was used, Alcou�e

et al. [1] was one of the earliest papers to address the issue of nonsmooth coe�cient PDE problems,
and proposed robust interpolation methods for multigrid; see also [62]. Along this line were also the
black box multigrid method by Dendy [38,39], and matrix-dependent approaches by de Zeeuw [102]
and Reusken [76,77]. Other related approaches include frequency decomposition by Hackbusch [56],
and �ltering decomposition by Wittum [96,97]. The purely algebraic methods, on the other end of
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the spectrum, were �rst proposed by Brandt et al. [25], and then popularized by Ruge and St�uben
[79]. There is a recent resurgence of interest in AMG and other multigrid algorithms with focuses
on parallel implementation and memory hierarchy aspects [26,36,37,43,44,64,75,87]. An introduction
to AMG is recently given by St�uben [84]. See also the algebraic multilevel methods by Axelsson
and Vassilevski [3,4], and an additive version of AMG by Grauschopf et al. [49]. The geometric
unstructured multigrid methods were studied by Bank and Xu [9], Chan et al. [32], Guillard [52],
Lallemand et al. [65], Morano et al. [72], and Xu [100]. The recent interest in energy minimization
was studied by Brezina et al. [26], Brezina et al. [67,68], Chan et al. [33] with a local minimization
perspective, and Wan et al. [92] with a global minimization perspective. Another recent interest is
in the direction of bridging the gap between Gaussian elimination and multigrid; see [8,78]. Other
multilevel methods include the hierarchical basis multigrid methods proposed by Yserentant [101],
and Bank et al. [7], and the BPX method proposed by Bramble, Pasciak and Xu [17]. In Griebel [50],
multilevel methods including multigrid and BPX were viewed as iterative methods on semide�nite
systems. General multigrid references can be found in the books of Bramble [16], Briggs [27],
Hackbusch [55], Smith et al. [80], and Wesseling [94]. Finally, we note that we are not able to
survey the many more references in the literature here.
This paper is organized as follows: Section 1 begins with the basic principles of multigrid, and

its classical convergence analysis. The design of robust multigrid will be discussed component by
component. In Section 2, the construction of various sophisticated interpolation operators is described.
Section 3 concerns the robustness and e�ciency of smoothers. Algebraic and geometric coarsening
strategies are covered in Section 4. Finally, Section 5 summarizes the current and future research
on robust multigrid methods for elliptic linear systems.
In the rest of this section, we introduce the model problem and notation used in this paper,

followed by the standard multigrid algorithm and the classical convergence analysis for smooth
coe�cient problems.

1.1. Elliptic PDEs

Elliptic PDE problems are among the most extensively investigated problems in applied math-
ematics. Their relation to many physical models is well known and the theoretical and numerical
results obtained in this area are very useful in practice. The design of numerical methods for such
model problems can often be adapted and applied to more complicated situations. Elliptic problems
are also important in their own right, for instance, in the solution of the pressure equation arising
from incompressible 
uid problems, implicit time integration schemes, etc.
The model problem of primary interest is the following elliptic PDE which exhibits the funda-

mental properties and challenges that the elliptic problems above generally experience:

−3 · a(x)3u(x) = f(x) x ∈ 
;
u= 0 x ∈ @
;

where 
⊂Rd; d=2; 3, is a polygonal or polyhedral domain, and a(x), in general, is a d×d symmetric
positive-de�nite matrix whose eigenvalues are bounded uniformly on �
, and its coe�cients can be
oscillatory or discontinuous with large jumps across the interfaces. We note that Dirichlet boundary
condition is used just for simplicity, and other boundary conditions are also permissible.
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Many of the multigrid methods discussed in this paper apply to the discretization matrices given
by �nite element, �nite di�erence or �nite volume methods. For easy exposition, we set up notations
based on �nite element discretization. Let H 1(
) be the standard Sobolov space consisting of square
integrable functions with square integrable derivatives of �rst order, and H 1

0 (
) the subspace of
H 1(
) whose functions vanish on @
. Solving the PDE problem is equivalent to �nding u ∈ H 1

0 (
)
such that

a(u; v) = (f; v) ∀v ∈ H 1
0 (
); (1)

where

a(u; v) =
∫


a(x)3u ·3v dx; (f; v) =

∫


fv dx:

Suppose 
 is triangulated by quasi-uniform nonoverlapping simplices �i with size h, i.e., 
=
⋃
i �i.

De�ne the �nite element subspace by

V h = {vh ∈ H 1
0 (
): v

h|�i ∈ P1(�i); ∀i};
where P1(�i) is the set of linear functions on �i. The �nite element approximation is the function
uh ∈ V h such that

a(uh; vh) = (f; vh) ∀vh ∈ V h: (2)

De�ne a linear operator Ah : V h → V h by

(Ahuh; vh) = a(uh; vh) uh; vh ∈ V h:
Then (2) is equivalent to

Ahuh = fh; (3)

where fh is the projection of f on V h. Let {�hj}nj=1 be the set of nodal basis of V h. Write uh =∑n
j=1 �

h
j�

h
j , and f

h =
∑n

j=1 bj�
h
j . Then (3) is equivalent to the linear system

Ah�h = bh; (4)

where Ah is the sti�ness matrix, �h = (�h1; : : : ; �
h
n)
T, bh =Mh(bh1; : : : ; b

h
n)
T, and Mh the mass matrix.

It is well known that the condition number of Ah grows in the order of O(h−2), and hence classical
iterative methods converge very slowly for large-scale problems. In the next sections, we describe
a fast solution procedure – multigrid – for solving (4) whose convergence rate is often independent
of the mesh size h.

Remark. We distinguish Ah, a linear operator of V h, from Ah, the corresponding sti�ness matrix.
The multigrid algorithms discussed in this paper are fast solution methods for solving the matrix
equation (4).

1.2. Basic principles of multigrid

The idea of multigrid consists of two main components: smoothing and coarse grid correction.
The smoothing process, usually carried out by a few iterations of a relaxation method, damps away
the high frequency error components. The coarse grid correction process, carried out by a restriction,
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a coarse grid solve, and an interpolation, eliminates the low-frequency error components. Hence, the
key of multigrid is that smoothing and coarse grid correction complement each other. As a result,
the combination of the two yields a signi�cant error reduction, resulting in a fast solution procedure.
Moreover, we gain e�ciency since the coarse grid solves are less expensive than the �ne grid one.
The two-grid solution process is made more precise in the following.
We begin with an initial guess �h and we smooth the error by applying a relaxation iteration

�h1 = �
h +Rh(bh −Ah�h); (5)

where Rh is the approximate inverse of Ah given by the relaxation method. Then, we improve �h1
by a coarse grid correction consisting of the following steps (Eqs. (6)–(8)): First, we restrict the
residual to the coarse grid VH :

rH =IH
h (b

h −Ah�h1); (6)

where IH
h is the restriction operator. Second, we solve the coarse grid error equation:

AHeH = rH ; (7)

where the coarse grid matrix AH is formed by the Galerkin process: AH =IH
h A

hIh
H . The Galerkin

approach can be shown to be optimal for symmetric positive-de�nite elliptic problems. Here Ih
H =

(IH
h )

T is the interpolation operator. The coarse grid error is then interpolated back to the �ne grid
and the �ne grid approximation is updated by

�h2 = �
h
1 +IH

h e
H : (8)

Finally, we apply a post-smoothing at the end:

�hnew = �
h
2 +Rh(bh −Ah�h2): (9)

Combining (5)–(9), the entire process can be summarized by the following result.

Lemma 1.1. The iteration matrix Mtg of the two-grid method with �1 steps of pre-smoothing and
�2 steps of post-smoothing is given by

Mtg = (I −Rh
2A

h)�2 (I −IH
h (A

H)−1IH
h A

h)(I −Rh
1A

h)�1 ; (10)

where RH
1 and Rh

2 denote the approximate inverses of A
h given by the pre- and post-smoother;

respectively.

If we solve the coarse grid problem (7) recursively by the same two-grid method, we obtain a
multigrid algorithm. We use the following notations for the multilevel methods in the next sections.
Let VJ = V h be the �ne grid space, and V1⊂V2⊂ · · ·⊂VJ be a sequence of nested coarse grid
subspace of V h. On each level k, Ak : Vk → Vk is the restriction of AJ =Ah on Vk , and Rk : Vk → Vk
is an approximate inverse of Ak given by the smoother. Their corresponding sti�ness matrix is
denoted by Ak and Rk , respectively. Let I kk−1 : Vk−1 → Vk be the interpolation operator and its
adjoint I k−1k : Vk → Vk−1 the restriction operator. Their matrix representation is denoted by Ik

k−1 and
Ik−1
k = (Ik

k−1)
T, respectively.

In addition, associated with each Ak , we de�ne the A-inner product by (·; ·)Ak ≡ (Ak ·; ·). Let
Qk : Vj → Vk and Pk : VJ → Vk be the projection operators with respect to the L2 and A inner
products, respectively.
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1.3. Convergence theory

In view of (10), the classical convergence analysis involves the norm estimates of

‖I −RhAh‖ and ‖I −IH
h (A

H)−1IH
h A

h‖:
See [16,22,55,71] for details. Here, we summarize the results in the literature based on the subspace
correction framework developed by Xu [99]. The convergence of multigrid is governed by two
constants K0 and K1 de�ned as
K0: For any v ∈ V , there exists a decomposition v=∑J

i=1 vi for vi ∈ Vi such that
J∑
i=1

(R−1
i vi; vi)6K0(Av; v); (11)

where Ri is the approximate inverse operator given by the smoother.
K1: For any S ⊂{1; : : : ; J} × {1; : : : ; J} and ui; vi ∈ V for i = 1; : : : ; J ,

∑
(i; j)∈S

(Tiui; Tjuj)A6K1

(
J∑
i=1

(Tiui; ui)A

)1=2 J∑
j=1

(Tjvj; vj)A



1=2

; (12)

where Ti = Ri Ai Pi.

Theorem 1.2. Let Mmg be the iteration matrix given by the V -cycle multigrid. Then

‖Mmg‖2A61−
2− !1

K0(1 + K1)2
;

where !1 = max16i6J � (RiAi).

Proof. See [99].

By Theorem 1.2, the convergence rate can be improved by producing a smaller K0 or K1. By
de�nition, it can be easily proved the following result.

Lemma 1.3.

K16!1J:

Proof. See [99].

Thus, the estimate of K0 is crucial. We analyze K0 from the domain decomposition perspective.
For second order scaler elliptic PDEs, K0 depends on two inequalities:

‖Q1v‖2A +
J∑
k=2

‖(Qk − Qk−1)v‖2A6C0‖v‖2A; (13)

‖(Qk − Qk−1)v‖6C0hk−1‖Qkv‖A; k ¿ 1; (14)

where Qk : V → Vk is the L2 projection. More precisely, we have the following estimate:
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Lemma 1.4. Suppose (13) and (14) are satis�ed. Then

K06
C0
!0
;

where !0 = min16k6j �min(R−1
k Ak).

Proof. See [99].

The stability inequality (13) is known as the partition lemma [66,69] which plays an essential
role in the convergence analysis of domain decomposition methods. It requires that for any given
v ∈ V , we must be able to decompose it into vk ∈ Vk such that the total energy of all the pieces
vk is bounded by a small constant factor of the original energy of v. In the multigrid context, it
can be translated into the following: the coarse grid basis functions must have small energy. The
approximation inequality (14) requires that the functions on the coarse grids approximate the �ne
grid functions to at least �rst-order accuracy. A su�cient condition is that the coarse subspace
contains constant functions.
In conclusion, one major approach of improving robustness is to devise multigrid methods which

lead to a small K0. For instance, the constructions of the robust interpolation operators described in
Section 2.5 are based on the stability and approximation inequalities.

1.4. Multigrid for nonsmooth coe�cient PDEs

The success of multigrid hinges on the choice of coarse grids, and the smoothing, interpolation
and coarse grid operators. In standard multigrid, full coarsening, damped Jacobi or Gauss–Seidel
smoothing, and linear interpolation are often used. Classical convergence theory and practice shows
that these simple choices are enough to achieve mesh independent convergence.
For PDE problems with nonsmooth coe�cients, however, mesh-independent convergence does

not necessarily result in fast convergence. The nonsmoothness of the PDE coe�cients typically
lead to a large constant C0 in (13) and (14). Thus, multigrid converges slowly when the coe�-
cients exhibit anisotropy [55], large jumps in discontinuity [1,19,38,39], or large oscillations [46,85].
Special techniques such as line Gauss–Seidel [19], semi-coarsening [40,41,81], algebraic multigrid
[14,25,76,79,83], frequency decomposition [42,56,85], and homogenization [46], are used to han-
dle some of these cases. In the next sections, we survey the state-of-the-art of each individual
multigrid components and discuss how they bring insight into the design of robust multigrid meth-
ods.

2. Interpolation

Sophisticated designs of interpolation have been the key in developing robust multigrid methods.
The many di�erent methods can be generally divided into four categories ranging from geometric
speci�c to purely algebraic. The structured grid approach takes advantages of the special PDE and
algebraic structures associated with the Cartesian grids. The unstructured grid approach exploits
the given grid information to derive interpolations. The algebraic multigrid approach, on the other
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Fig. 2. Linear interpolation makes an O(h) error for a typical solution of the PDEs whose coe�cient is piecewise constant.

hand, focuses on the algebraic aspect and derives interpolation from the residual equations. A recent
approach constructs interpolation based on energy minimization which exploits the properties of the
underlying PDEs while allowing general computational domains.
In the following, without loss of generality, we only discuss interpolation from coarse to �ne,

since the Galerkin process will automatically generate a multigrid method; see Section 1.2. Thus,
superscripts h or H are used to denote quantities in the �ne or coarse grid. Moreover, we sometimes
describe the construction of coarse grid basis functions rather than the interpolation operators since
they are essentially the same. In the �nite element context, the coarse grid space VH is often a
subspace of V h. Thus, if {�hj}nj=1 and {�Hi }mi=1 are the nodal basis for V h and VH , respectively, then
we have the following equality:

[�H1 · · ·�Hm ] = [�h1 · · ·�hn]IH
h ;

where IH
h is the interpolation matrix. Hence, the set of coarse grid basis functions de�nes an inter-

polation, and vice versa. In particular, in the subsequent sections on the agglomeration unstructured
grid approach and energy minimization approach, we shall describe the constructions of the coarse
grid basis in place of interpolation. We note that the coarse grid subspaces need not be nested, for
instance, in geometric unstructured grid multigrid methods. However, multigrid methods resulting
from nested coarse subspaces are generally more robust, and hence we shall focus on this case in
the next sections.
Before going on, we �rst discuss a well-known interpolation technique in one dimension, which

is one of the earliest attempts to construct robust interpolation operator for nonsmooth coe�cients.
It turns out the basic design strategies in higher dimensions can be viewed as trying to extend this
one-dimensional approach.

2.1. One dimension

For nonsmooth coe�cient PDEs, linear interpolation is not able to accurately approximate the
irregular shape of the numerical solutions during the multigrid process. For example, Fig. 2 shows
a typical solution of the PDEs whose coe�cient is piecewise constant. In the worst case, linear
interpolation can make an O(h) error, which is much poorer than the usual O(h2) error.
A robust interpolation can be constructed by solving local PDEs [55]. Given the values v2i and

v2i+2 at the coarse grid points x2i and x2i+2, respectively, the value v2i+1 is computed by solving a
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homogeneous two-point boundary value problem:

− d
dx
a(x)

d
dx
v(x) = 0; x ∈ (x2i ; x2i+2);

v(x2i) = v2i ; v(x2i+2) = v2i+2: (15)

Suppose a(x) is piecewise constant, for instance, a(x) ≡ a−; x2i ¡ x¡x2i+1; and a(x) ≡ a+; x2i+1
¡x¡x2i+2. Then the �nite element solution of (15) yields

v2i+1 =
a−

a− + a+
v2i +

a+

a− + a+
v2i+2: (16)

The new interpolated solution is more accurate at the discontinuities. It is well known that the
resulting multigrid is very robust and converges rapidly for nonsmooth coe�cient a(x).
The local PDE approach has the property of preserving 
ux continuity. It can be proved [55] that

the interpolated v given by (16) satis�es the jump condition

lim
x→x−2i+1

a(x)v′(x) = lim
x→x+2i+1

a(x)v′(x)

at x2i+1 which the exact solution does. In fact, the converse is also true; that is, if v satis�es the
jump condition, then it solves the local PDE (15).
The interpolation can be interpreted by pure linear algebra. Ordering the noncoarse grid points �F

and then the coarse grid points �C, we can write the permuted matrix, still denoted by Ah, in a
2× 2 block form[

A11 A12

A21 A22

] [
�F
�C

]
=
[
bF
bC

]
;

where A11 is a diagonal matrix. After eliminating �F, we obtain the Schur complement equation for
�C:

S�C = bC −A21A
−1
11 bF; (17)

where S=A22 −A21A
−1
11 A12. De�ne the interpolation and restriction matrices, respectively, by

Ih
H =

[−A−1
11 A12

I

]
; and IH

h = (I
h
H)

T = [−A21A
−1
11 ; I ]: (18)

Then S =IH
h A

hIh
H is precisely the coarse grid matrix AH in the multigrid context, and (17) is

the usual coarse grid equation for �C with the right-hand side given by restriction: IH
h [bF; bC]

T. The
noncoarse grid values �F are obtained by backward substitution:

�F =−A−1
11 A12�C +A−1

11 bC: (19)

Using (19), we can write [�F; �C]
T as[

�F
�C

]
=Ih

H�C +
(
A−1

11 0
0 0

)
(bh −AhIh

H�C): (20)

Thus, the backward substitution can be interpreted as applying a Jacobi relaxation smoothing on the
noncoarse grid points to the interpolated solution Ih

H�C.
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We note that the block Gaussian elimination can be also written as block LU form:

Ah =
[
A11 A12

A21 A22

]
=
[
I 0
A21A

−1
11 I

] [
A11 0
0 AH

] [
I A−1

11 A12

0 I

]
;

where the interpolation Ih
H and the restriction IH

h operators are related to the upper and lower
triangular factors, respectively.
To summarize, the block Gaussian elimination process is a two-level multigrid with Ih

H and IH
h

de�ned as in (18), and post-smoothing step (20). Furthermore, the inversion of the Schur complement
in (17) can be done by recursively applying the previous procedure to S. The resulting algorithm
is known as cyclic reduction, and the corresponding multigrid method is a backslash cycle [99].
Moreover, it can be easily veri�ed that the particular matrix-dependent interpolation matrix de�ned
in (18) is precisely the one obtained by solving local PDEs.
Lastly, one may interpret the local PDE solve as an energy minimization to be described in

Section 2.5. These four interpretations of the same interpolation: local PDE solve, 
ux continuity,
the Schur complement, and energy minimization constitute the basic design principles of constructing
the robust interpolations discussed in the following sections.
Finally, we remark that convergence analysis of robust multigrid methods in general is very limited

in the literature since the interpolation operator is usually complicatedly de�ned. However, in one
dimension, we have the following result [91].

Theorem 2.1. If the interpolation operator discussed above is used together with damped Jacobi
or Gauss–Seidel smoothers, the resulting multigrid convergence is independent of the mesh size
and the PDE coe�cient a(x).

The proof uses the fact that the coarse grid basis functions from all the levels form an A-orthogonal
hierarchical basis, and hence the damped Jacobi and Gauss–Seidel smoothers give an optimal constant
bound for K0 and K1 which are the essential elements for estimating multigrid convergence by
Theorem 1.2. Details can be found in [91].

2.2. Structured grid approaches

Structured grids, in particular, Cartesian grids, have been very popular in applications for their
regularity in geometry and in the algebraic structure of the resulting discretization matrix. Thus
e�cient numerical methods can be easily derived and employed. This approach also includes nested
�nite element grids obtained by recursive re�nement where the discontinuities of the PDE coe�cients
are aligned with all the coarse grids. As a result, according to the domain decomposition theory
[18,45,98], it can be proved that the convergence rate is independent of the size of the jumps in the
coe�cient using even the linear interpolation. However, in general, the discontinuities do not align
with some of the coarse grids. Then other approaches are needed; see Sections 2.3–2.5.
Assuming Cartesian grids, the structured grid multigrid methods can generally be categorized into

two: the stencil and Schur complement approaches.
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Fig. 3. A portion of a �ne grid with coarse grid points denoted by circles, and noncoarse grid points by crosses.

2.2.1. Stencil
The one-dimensional local PDE technique cannot be applied directly to higher dimensions. Con-

sider a portion of the �ne grid with coarse grid points denoted by circles as shown in Fig. 3. In
contrast to one dimension, the noncoarse grid points are not enclosed by only coarse grid points, and
hence a local boundary value problem similar to (15) cannot be set up. The challenge of extending
the one-dimensional technique to higher dimensions is to set up local PDEs appropriately.
Alcou�e et al. [1] used special harmonic averaging techniques to construct operator-induced in-

terpolations, and in black box multigrid, Dendy [38,39] simpli�ed the interpolation procedure by
considering the stencil of the discrete operators. The key of the stencil approach is to �rst de�ne
interpolation on edges, i.e. noncoarse grid points lying on coarse grid lines (nodes 1–4 in Fig. 3),
and then the interpolation at the interior (node 5) can be de�ned by a local PDE solve. In par-
ticular, black box multigrid de�nes the interpolation on the edges by preserving the continuity of

ux across the interfaces. Thus, this multigrid method is e�cient for PDE problems with discon-
tinuous coe�cients; the convergence rate is often independent of the mesh size and the size of the
jumps.
The construction is as follows. Consider the nine-point stencil at the noncoarse grid points, for

instance, node 1 (Fig. 3) lying on a horizontal edges:

�(1)NW �(1)N �(1)NE

�(1)W �(1)C �(1)E

�(1)SW �(1)S �(1)SE


 :

The �rst and third rows are lumped to the second row, thus producing a one-dimensional three-point
stencil. The 
ux preserving interpolation (16) yields

ṽ−h2i+1;2j+1 =
�(1)NW + �

(1)
W + �(1)SW

�(1)N + �(1)C + �(1)S
vHi; j+1 +

�(1)NE + �
(1)
E + �(1)SE

�(1)N + �(1)C + �(1)S
vHi+1; j+1: (21)

The lumping is used to preserve the continuity of the 
ux on the average along the vertical segment
through nodes 1 and 2. The interpolation on vertical coarse grid lines (nodes 3 and 4) are de�ned
analogously. Finally, since all the values on the edges are known, the interpolated value at node 5
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can be obtained by solving a local PDE problem as in (15) where the solution is given by

ṽ2i+1;2j+1 =
�(5)NW
�(5)C

vHi; j+1 +
�(5)N
�(5)C
ṽh2i+1;2j+2 +

�(5)NE
�(5)C
vHi+1; j+1 +

�(5)W
�(5)C
ṽh2i;2j+1

+
�(5)E
�(5)C
ṽh2i+2;2j+1 +

�(5)SW
�(5)C

vHi; j +
�(5)S
�(5)C
ṽh2i+1;2j +

�(5)SE
�(5)C
vHi+1; j : (22)

Another stencil-based method is the matrix-dependent prolongation proposed by de Zeeuw [102].
It di�ers from the previous method in that the interpolated values on the edges are de�ned based on
a decomposition of the nine-point stencil. Viewing the stencil as a 3×3 matrix, it can be written as a
linear combination of nine basis matrices, or equivalently, stencils. De Zeeuw considered a particular
set of basis stencils corresponding to the discretization of the �rst and second derivatives. The
interpolation formula which depends on the coe�cients of the linear combination is very technical,
and we refer the interested readers to [90,102] for details. This approach coincides with the black
box multigrid of Dendy [38] for solving the model equation (1), and can be directly applied to
certain nonsymmetric problems such as convection di�usion equations.

2.2.2. Schur complement and lumping
In this approach, we exploit the special algebraic structure associated with the discretization matrix

arising from Cartesian grids. As in one dimension, the �ve-point stencil matrix in two dimensions
can be written in a 2× 2 block form:

Ah =
[
A11 A12

A21 A22

]
;

where A11 is diagonal if the red-black ordering is used. However, the coarse grid matrix AH =S=
A22 −A21A

−1
11 A12 now corresponds to a nine-point stencil instead. Thus the algorithm cannot be

repeated recursively.
In order to recover a �ve-point stencil structure, Reusken [76,77] applies a lumping strategy to the

nine-point stencil coarse grid operator as follows. He replaced the nine-point stencil at a noncoarse
grid point by a �ve-point stencil:

 �NW �N �NE
�W �C �E
�SW �S �SE


→


 0 �N 0
�W �C �E
0 �S 0


 ;

where

�N = �N + �NW + �NE; �W = �W + �NW + �SW ;

�C = �C − (�NW + �NE + �SW + �SE); �E = �E + �NE + �SE;

�E = �S + �SW + �SE:

The lumping procedure essentially substitutes the unknowns vHi−1; j+1; v
H
i+1; j+1; v

H
i−1; j−1, and v

H
i+1; j−1 by

the unknowns vHi; j−1; v
H
i; j+1; v

H
i−1; j ; v

H
i+1; j, and v

H
i; j in the �nite di�erence equation corresponding to the

coarse grid point (xHi ; y
H
j ) based on a linear approximation; for instance, v

H
i−1; j+1 ≈ −vHi; j+vHi; j+1+vHi−1; j :

In matrix form, the resulting discretization matrix becomes

Ã
H
=

[
Ã11 Ã12
Ã21 Ã22

]
;
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where Ã11 is now a diagonal matrix. Moreover, the interpolation and restriction operators given by
(18) are local, and the entire procedure can be repeated recursively.

2.3. Unstructured grid approaches

Unstructured gridding, which has a high 
exibility of capturing complex geometrical shapes and
providing adaptive local re�nements, are useful for solving problems involving rapidly changing
solutions, irregular boundaries, and multiscale geometries. However, as a result, the computational
grids do not have any particular nested grid hierarchical structure to be exploited. Thus, the structured
grid multigrid methods must be redesigned to handle the irregularity without losing too much in terms
of complexity and performance.
The two main di�culties of designing multigrid methods on unstructured grids are the extraction

of a hierarchy of coarser grids from a given �ne grid, and the de�nition of the interpolation operators
between grids. In the following sections, we describe several approaches of solving the two problems
with increasing mathematical structures and decreasing intuition.

2.3.1. Independent grids
The �rst approach is based on independently generated coarse grids and piecewise linear inter-

polation between the grids. Thus, one can use the grid generator which generates the unstructured
�ne grid to generate a sequence of coarser grids. Moreover, since the coarser grids consist of the
usual �nite elements, for instance, linear elements on triangles, linear interpolation and the coarse
grid operator can be easily de�ned.
The advantage of this approach is convenience; the coarse grids can be generated by using the

same grid generator which produced the original �ne grid. The disadvantage is that the construction
of the interpolation operator is very expensive since one has to identify which coarse triangles
the noncoarse grid points are in. Another disadvantage is nonblack box nature of the coarse grid
construction; the user is required to manually generate the grids.

2.3.2. Node nested grids
An alternative approach [29,32,52] is based on generating node-nested coarse grids, which are

created by selecting subsets of a vertex set, retriangulating the subset, and using piecewise linear
interpolation between the grids. This provides an automatic way of generating coarse grids and a
simpler implementation (O(n)) of the interpolation. The main disadvantage is that critical geometrical
details may be lost through the coarsening and retriangulation process, and hence special treatments
are needed to preserve the important geometric features of the �ne grid. Moreover, the coarse
grid boundaries may not match that of the �ne grid, and hence the boundary conditions must be
incorporated properly, especially for Neumann boundary condition [30]. Another drawback is that in
three dimensions, retetrahedralization can be problematic.

Remark. Both the independent grid and node nested grid approaches are not designed to be robust
for PDE problems with nonsmooth coe�cients since linear interpolation is used.
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Fig. 4. Typical macroelements in a computational domain.

2.3.3. Agglomeration
To avoid the problem of losing geometrical details, a promising agglomeration technique [65,89]

motivated by �nite volume based methods is introduced. Instead of regenerating the coarse grids,
neighboring �ne grid elements are agglomerated together to form macroelements; see Fig. 4. For
�rst order PDE problems, Venkatakrishnan and Mavriplis [89] used piecewise constant interpolation.
More precisely, let �i be a macroelement and �Hi =

⋃
j∈Ni �

h
j , where Ni is the set of neighboring nodes.

Then

vhj = ci ≡ constant; j ∈ Ni:
However, their constant interpolation approach leads to slow convergence for second-order PDE
problems since the basis is not stable. Within each macroelement, we need more robust weightings
which mimic linear interpolation on structured grids.
In general, the coarse space VH can be de�ned as the subspace spanned by a set of coarse grid

basis functions {�Hi } constructed as follows. For each coarse grid point i, de�ne
�Hi =

∑
j∈Ñ i

whij�
h
j + �

h
i ; (23)

where whij are appropriately chosen constants for robust interpolation, and

Ñ i = { j: Ah
i; j 6= 0; and line segment [xi; xj] is an edge of a macroelement}:

Thus, the coarse grid basis functions are linear combinations of the �ne grid basis, and VH is
a subspace of V h; that is, we obtain a nested sequence of subspaces by recursive construction.
Moreover, the interpolation weights are given by the coe�cients whij. To summarize, the construction
of VH consists of two parts. We agglomerate the �ne grid elements to form macroelements, and
then we de�ne robust coarse grid basis functions on the macroelements.
Smoothed aggregation: For second-order PDEs, the piecewise constant basis functions are not

e�ective since they possess large energy norm due to the discontinuities. Van�ek et al. [88] proposed
the smoothed aggregation approach which applies a relaxation method to smooth the piecewise
constant basis, and hence reducing the energy norm. More precisely, similar to agglomeration,
the computational nodes are aggregated into disjoint aggregates based on the AMG coarsening
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technique (cf. Section 4.2). Trying to achieve the approximation property (14), one de�nes a tentative
interpolation operator as the piecewise constant prolongator:

(Ĩ
h

H )ij =
{
1 if i ∈ �j;
0 otherwise;

where �j is the jth aggregate. Since the induced piecewise constant basis functions exhibit large
energy, the stability property (13) is violated. One may smooth the basis by applying a damped
Jacobi smoother to Ĩ

h

H and obtain

Ih
H = (I − !(Dh)−1AF)Ĩ

h

H ;

where AF is the �ltered matrix of Ah de�ned as

AF
ij =



Ah

ij if j ∈ Ni(�); i 6= j;
Ah

ii −
n∑

j=1; j 6=i
(Ah

ij −AF
ij) i = j;

0 otherwise

and Ni(�)={j: |Ah
ij|¿�

√
Ah

iiA
h
jj}. Basically, AF is obtained by lumping the small entries in Ah to

the diagonal, thus controlling the number of nonzeros in the interpolation and coarse grid operators.
Due to the smoothing e�ect of damped Jacobi, it smears the sharp edges of the coarse grid basis
functions obtained from the piecewise constant prolongator, and hence the energies are reduced.
Moreover, it can be proved that Ih

H preserves constant if Ĩ
h

H does.

2.3.4. Others
Other unstructured grid multigrid approaches have also been proposed. Bank and Xu [9] developed

an e�ective coarsening and interpolation strategy using the geometrical coordinates of the �ne grid.
The basic idea is to treat the �ne grid as if it came from a re�nement procedure, and then recover
the re�nement structure through a symbolic Gaussian elimination. Another multigrid method based
on incomplete Gaussian elimination was proposed by Reusken [78]. Hackbusch and Sauter [57]
constructed a triangulation for the computational domain by adaptively re�ning a coarse triangulation
of a rectangular domain covering the computational domain. Thus, a hierarchy of coarse grids is
naturally embedded in the �ne triangulation.

2.4. Algebraic multigrid approaches

The structured and unstructured grid approaches make use of the grid information either explicitly
or implicitly and hence are geometry dependent. The algebraic multigrid (AMG) approach [79], on
the other hand, exploits the algebraic information of the discretization matrix. This approach was
�rst introduced by Brandt et al. [25] and later popularized by Ruge and St�uben [79]. Other related
work have been studied by Huang [59], and Chang et al. [34] to extend AMG to matrices which
are not symmetric M -matrices.
The success of AMG is that for symmetric positive-de�nite M -matrices, for instance, matrices

arising from discretization of the Laplacian operator, AMG is able to identify algebraically the
smooth errors obtained from standard relaxation methods such as Gauss–Seidel, and then construct
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interpolation operators accordingly to eliminate such errors. In the following sections, we describe
a de�nition of algebraic smooth errors and discuss how they motivate the construction of an inter-
polation operator.

2.4.1. Algebraic smoothness and strong connection
Let Gh be the iteration matrix of the relaxation smoother. In AMG, an error eh is algebraically

smooth if it is slow to converge with respect to Gh, i.e.,

‖Gheh‖A ≈ ‖eh‖A:
For common relaxation smoothers, it can be argued [79] that an algebraically smooth error eh is
characterized by a small residual

rh =Aheh ≈ 0;
in the sense that the residual norm is small compared to the error. Thus, we obtain a good approx-
imation for ehi as a function of its neighboring values e

h
j by making r

h
i = 0:

rhi =Ah
iie
h
i +

∑
j∈Ni

Ah
ije
h
j = 0; (24)

where Ni = {j 6= i: Ah
ij 6= 0}, the set of neighboring nodes of i. For symmetric M -matrices, the

smooth error eh often satis�es

‖eh‖A�‖eh‖D;
where ‖eh‖2D = (eh;Dheh), and Dh is the diagonal of Ah. Note that ‖eh‖A essentially measures the
norm of the residual. We have the following inequality:

1
2

∑
i; j

−Ah
ij(e

h
i − ehj )2 +

∑
i

(∑
j

Ah
ij

)
(ehi )

2�
∑
i

Ah
ii(e

h
i )
2: (25)

If
∑

j 6=i |Ah
ij| ≈ Ah

ii, for instance, A
h = Laplacian, then (25) can be written as

∑
j 6=i

Ah
ij

Ah
ii

(ehi − ehj )2
(ehi )2

�1; (26)

on the average for each i. Thus, if |Ah
ij=A

h
ii| is relatively large, then ehi and ehj must be close,

and hence ehj is not negligible compared to e
h
i . The nodes i and j are called strongly connected if

|Ah
ij=A

h
ii| is relatively large. This will be made more precise in (31). The strongly connectedness

forms the basic notion for algebraic smoothing and interpolation.

2.4.2. Algebraic interpolation
Suppose Ah is a symmetric, weakly diagonally M -matrix. The derivation of the algebraic inter-

polation of Ruge and St�uben [79], again, stems from the idea of the one-dimensional interpolation,
and has a strong connection with the stencil approach for Cartesian grids (Section 2.2.1). We start
with the residual equation (24) corresponding to algebraic smooth errors where i is an index corre-
sponding to a noncoarse grid point. Let C be the set of coarse grid points, and Ci⊆Ni ∩ C the set
of coarse grid points in a neighborhood of i. Given the coarse grid values ehk ; k ∈ Ci, we want to
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Fig. 5. A portion of a �ne grid with coarse grid points denoted by circles, and noncoarse grid points by crosses. The
coarse and noncoarse grid point connections with respect to ehi are denoted by the superscripts.

de�ne a value ehi such that r
h
i is as small as possible. If C is selected such that Ci = Ni, then the

choice of ehi

ehi =
∑
k∈Ci

whike
h
k ; whik =−Ah

ik

Aii
(27)

leads to an ideal interpolation since rhi = 0. This is indeed equivalent to solving a local PDE with
the ith node as interior noncoarse grid point and its neighbors as coarse grid points. However,
such selection of C yields a dense coarse grid operator. Hence, in general, one has Ci⊂Ni and
Di ≡ Ni \Ci 6= ∅. For example, on a Cartesian grid with standard full coarsening (Fig. 5), the two
set of variables in Ci and Di are indicated by their superscripts.
Consider (24) again where rhi is to be made 0:

Ah
iie
h
i +

∑
k∈Ci

Ah
ike

h
k +

∑
j∈Di

Ah
ije
h
j = 0: (28)

The value ehi to be interpolated can be obtained by (28) provided e
h
k’s and e

h
j ’s are known. Given

only the coarse grid values ehk , the idea is to �rst interpolate the noncoarse grid values e
h
j , j ∈ Di,

by the ehk’s k ∈ Ci. For j ∈ Di; ehj is approximated by a weighted average:

ehj ≈
(∑
k∈Ci

Ah
jke

h
k

)/(∑
k∈Ci

Ah
jk

)
: (29)

This local interpolation formula (29) is nothing but the one-dimensional local solve technique. Con-
sidering eDj1 in Fig. 5, by formula (29), we have

eDj1 ≈
Ah

j1 ; k1e
C
k1 +Ah

j1 ; k2e
C
k2

Ah
j1 ; k1 +Ah

j1 ; k2

: (30)

Comparing (30) with (21), and using the stencil terminology, we note that the one-dimensional
interpolation (29) used by AMG is obtained by the second row of the stencil at the node eDj1
whereas the one used by the black box multigrid in Section 2.2.1 is obtained by the average of
the three rows of the stencil. Once ehj ’s are known, the interpolated value e

h
i is then given by (28),

which is the same as the local PDE solve formula (22) used by Dendy’s black box multigrid.
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In general, the computation of (29) may still be too large. We want to interpolate ehi by only
those ehj ’s which are signi�cant. In view of the discussion after formula (26), the complexity can be
reduced by the notion of strong connectedness. A point i is strongly connected to j if

−Ah
ij¿� maxl6=i

{−Ah
il} (31)

with 0¡�61 as an input parameter. One only considers strong connections in the construction.
Speci�cally, denote by Si the set of all strong connections of point i. De�ne Ci = C ∩ Si, and let
DSi = Di ∩ Si and DWi = Di \ Si. For the weak connections (j ∈ DWi ); ehj is simply replaced by ehi ;
i.e., lumping the weak entries to the diagonal. For the strong connections (j ∈ DSi ); ehj is de�ned as
in (29).
Other variants of the algebraic interpolation are discussed in [79]. See also the recent survey by

St�uben [84].

2.5. Energy minimization approaches

The AMG approach is purely algebraic and potentially applies to more general problems than the
other methods, but the underlying PDE and geometry information, if exist, may not be fully utilized.
In this section, we discuss another approach based on energy minimization which bridges the gap
between the two extremes: geometry dependent and purely algebraic. It exploits the properties of
the underlying PDEs using primarily the algebraic information, thus allowing general computational
domains. The essential idea is motivated by the classical multigrid convergence theory, in particular,
the stability and approximation inequalities (13) and (14) described in Section 1.3. The key is to
construct coarse grid basis which has minimal energy while preserving the zero energy modes. Van�ek
et al. [88] identi�ed altogether seven objectives the coarse grid basis should satisfy:

1. Compact support.
2. Coarse supports should follow strong couplings.
3. Reasonable geometry of supports.
4. Bounded intersections among the coarse supports.
5. Polynomial (null space) preserving property.
6. Small energy of coarse basis functions.
7. Uniform l2 equivalence with L2.

Based on these objectives, we try to construct coarse grid basis to achieve them, in particular, small
energy, and null space preserving. For our model equation (1), the null space consists of constant
functions.

2.5.1. Smoothed aggregation
In the smoothed aggregation method described in Section 2.3.3, one begins with the piecewise

constant basis, which has high energy, and then smooths (or reduce the energy of) the basis by
applying a relaxation method such as damped Jacobi to the interpolation operator. Thus, the energy
of the basis is minimized locally. Moreover, it can be shown that the resulting basis preserves
constants.
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Fig. 6. Basis de�ned on macroelements. (Left) H 1=2 minimization on edges and harmonic extension inside. (Center) Graph
distance weightings on edges and harmonic extension inside. (Right) Graph distance weightings on edges and inside.

We remark that the energy norm of the smoothed basis may not necessarily be minimal. One
may further reduce the energy by applying more damped Jacobi steps which, however, increases
the supports of the basis functions. Consequently, the coarse grid operator becomes denser for more
smoothed interpolation operator.

2.5.2. Harmonic extension
A graph and agglomeration-based technique was proposed by Chan et al. [28,33]. The supports of

the basis functions compose of macroelements formed by agglomeration. The basis functions on the
edges are �rst constructed, and then they are extended by harmonic extension to the interiors. This
procedure can be viewed as a local energy minimization. Moreover, if the basis preserves constant
on the edges, it will also preserve constants in the interiors. There are several strategies to de�ne
the basis functions on the edges as well as in the interior with small energy. They are made more
precise in the following.
H 1=2 norm minimization+harmonic extension: One de�nes the coarse grid basis functions on the

edges as linear functions which are minimized in the H 1=2 norm-the interface analogue of the energy
norm. More precisely, consider the coarse grid basis �Hi on a macroelement with coarse grid points
denoted by the black dots; see Fig. 6. Suppose �Hi = �0, a linear function, on the edge formed by
x0; x1; x2 and x3, i.e.,

�0 = bx + c:

With two boundary conditions: �0(x0)=1, �0(x3)=0, and hence one degree of freedom, one requires
that �0 minimizes the functional (discrete H 1=2 norm):

F(�0) =
3∑
i=1

3∑
j=i+1

hihj
h2ij

(�0(xi)− �0(xj))2;

where hi is the length of the edge (xi; xi+1) and hij = |xi − xj|. After incorporating the two boundary
conditions, the one-dimensional minimization of F(�0) can be solved analytically. The same proce-
dure is applied to the other edges, and the values at the interior points are obtained by harmonic
extension.
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Graph distance+harmonic extension: The H 1=2 norm minimization combined with the harmonic
extension approach is robust but the entire procedure may be too complex. A simpli�ed variant is
to use a simpler boundary interpolation based on graph distance. Note that x1 is distance 1 from
x0; x2 distance 2 from x0, etc. De�ne

�Hi (xj) =
3− j
3

on the edge formed by x0; x1; x2 and x3, and piecewise linear on the edges. As in the previous
approach, the values in the interior are given by the solution of a local PDE.
Pure graph distance: One may simplify the construction further by substituting the local PDE

solve by a technique similar to graph distance. Suppose the macroelement has m number of coarse
grid points on the boundary. Then the value of coarse grid basis function at each of the interior point
is 1=m. Thus, in our example, �Hi (x) = 1=3, x = interior points. Note that constants are preserved.

2.5.3. Energy-minimizing interpolation
The previous approaches construct basis which �rst satis�es the approximation property, followed

by minimizing the energy locally. Another approach proposed by Wan et al. [92] is to prescribe
the energy minimization and constant preserving explicitly into the formulation of the interpolation
operator while �xing the size of the supports. As opposed to all the previous approaches, we deter-
mine the interpolation values on the edges and in the interior at the same time by a minimization
formulation, and hence we do not actually identify edges nor interiors. Meanwhile, the constant
preserving property is enforced by a constraint setup which globally couples all the individual basis
functions.
The idea is based on another interpretation of the one-dimensional interpolation now described.

Consider the two-point boundary value problem (15) again. The equivalent variational formulation
is given by

min ‖�Hi ‖A (xh2i ; x
h
2i+2)

s:t: �Hi (x
h
2i) = 1; �Hi (x

H
2i+2) = 0:

(32)

Thus, the local PDE formulation in one dimension is precisely minimizing the energy of the coarse
grid basis functions. Moreover, if constant functions are in the kernel of the di�erential operator, the
minimal energy basis will automatically preserve constants [91].
The extension to higher dimensions, however, is not obvious. First, the basis {�Hi }, each of which

has minimum energy, does not preserve constant functions. Second, the boundary of the support of
each �Hi , in general, consists of both coarse and noncoarse grid points and hence the boundary
conditions of (15) need to be modi�ed. A clue is provided in the two-level setting. Let �h

H be the
usual nodal value interpolant. By the Cauchy–Schwarz and Poincar�e inequalities, we obtain a rough
estimate

‖�h
Hv

H‖A =
∥∥∥∥∥
∑
i

vH (xHi )�
H
i

∥∥∥∥∥
A

6
C
H

(∑
i

‖�Hi ‖2A
)1=2

‖vH‖A; (33)

where C is a constant independent of h. Comparing (33) with the stability inequality (13), we
see that the constant C0 in (13) depends on the total energy of {�Hi }. Thus, the formulation is to
minimize the sum of energies of {�Hi } so that the constant C0 and hence the multigrid convergence
will be improved.
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Write the coarse grid basis function �Hi as in (23). We determine the coe�cients w
h
ij by solving

a constrained minimization problem:

min
1
2

m∑
i=1

‖�Hi ‖2A s:t:
m∑
i=1

�Hi (x) = 1 in �
: (34)

Lemma 2.2. An equivalent formulation of (15) and (32) is the global minimization

min
1
2

m∑
i=1

‖�Hi ‖2A s:t:
m∑
i=1

�Hi (x) = 1 on [0; 1]:

Proof. See [92].

Thus, we see a way to naturally generalize the approach for generating a robust interpolation from
one dimension to multiple dimensions.

Remark. (1) The values of the basis functions are de�ned implicitly by the solution of (34) and
are not known explicitly in general. However, for the Laplacian, we recover exactly the bilinear
interpolation on Cartesian grids [91], which is known to lead to optimal multigrid convergence for
Poisson equation. (2) Like algebraic multigrid, the construction is purely algebraic. In other words,
geometry and in particular the grid information are not needed. However, if the additional knowledge
of the geometry is useful, for instance, semi-coarsening on Cartesian grids for anisotropic problems,
we can still apply the same formulation. In fact, the coarse grid points can be provided geometrically
by semi-coarsening or interface preserving techniques (cf. Section 4.3), or algebraically by AMG
coarsening. Moreover, the formulation of the interpolation remains valid even if the coarse grid
points do not form an independent set. (3) Mandel et al. [67] generalized this approach to solve
systems of elliptic PDEs arising from linear elasticity problems.

Solution of the minimization problem: A detailed solution procedure is described in [92], and
we only discuss the main steps here. It can be shown that the minimization problem (34) can be
written as a constrained quadratic minimization. Thus, Newton’s method only takes one iteration to
convergence, which, however, need to invert the Jacobian matrix. Since the solution of the mini-
mization problem is used as an interpolation operator for multigrid only, we do not need an exact
solution. An e�cient approximation can be obtained by a preconditioned conjugate gradient method.
Empirical evidence shows that in most cases, only a few iterations su�ce, except for oscillatory
PDE coe�cients. In [67], Mandel et al. showed that the interpolation obtained from the �rst step of
the steepest descent procedure in solving (34) yields the same result as the smoothed aggregation
with a single smoothing step.

2.5.4. AMGe
The use of energy minimization in the formulation of the interpolation operator has shown to

be powerful in the energy-minimizing interpolation approach. AMGe, algebraic multigrid based on
element sti�ness matrices, proposed by Brezina et al. [26], uses the local measures of algebraic
smoothness derived from multigrid theory to construct the interpolation operator. The key observation
is that the interpolation must be able to approximate an eigenvector with an error bound proportional
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to the size of the associated eigenvalue. More precisely, the interpolation must be de�ned such that
either of the following measures are bounded by a constant independent of h:

M1(Q; eh) =
((I − Q)eh; (I − Q)eh)

(Aeh; eh)
;

M2(Q; eh) =
(A(I − Q)eh; (I − Q)eh)

(Aeh; Aeh)
;

where Q is a projection onto the range of the interpolation matrix Ih
H . Note that Q is related to Ih

H

by

Q = [0 Ih
H ];

if the unknowns corresponding to the noncoarse grid points are ordered before the coarse grid points.
The boundedness of M1 or M2 requires Q to accurately interpolate the eigenvectors corresponding
to small eigenvalues, but not necessarily as accurate as for the eigenvectors corresponding to large
eigenvalues. In addition, the quantities M1 or M2, as opposed to the matrix entries used in standard
AMG, give a potentially better measure of strong connectedness, especially for non-M -matrices.
In the previous approaches, the interpolation matrix is constructed by de�ning the coarse grid

basis whose coe�cients wij (cf. (23)) are the entries of the jth column of Ih
H . Hence, the matrix

Ih
H is constructed column by column whereas in AMGe, I

h
H is constructed row by row. Let qi be

the ith row of Q. Then, qi is de�ned as the solution of the following min–max problem:

min
qi

max
eh 6∈Null(Ah

i )
Mi;p(qi; eh) (35)

for p= 1 or 2. Here, Mi;p(qi; eh) is a local measure derived from the corresponding global measure
Mp(Q; eh) which is practically inaccessible, and Ah

i is the sum of local element sti�ness matrices
connected with i. It can be shown [26] that the solution of (35) is to �t the eigenvectors of Ah

i

subject to the constraint that constants are preserved. Hence, it can be considered as another local
energy minimization strategy.
Finally, we note that AMGe requires the knowledge of the element sti�ness matrices which

sometimes may not be conveniently available. Thus, this approach is less algebraic than the other
energy-minimizing approaches.

3. Smoothing

Interpolation alone is not enough for fast convergence as the success of multigrid requires di�erent
components complement each other. The interpolation is e�ective only when the smoothers produce
smooth errors either in the geometric sense, or in the algebraic sense (cf. Section 2.4). A classi-
cal example in the literature where smoothing plays an important role in improving the multigrid
convergence is when solving PDEs with anisotropic coe�cients, for instance,

−�uxx − uyy = f in 
;
u= 0 on @
: (36)

Assuming standard coarsening, it can be shown by Fourier analysis [19,94] that point relaxation meth-
ods as smoothers are not e�ective for small � since the errors are only smoothed in the y-direction,
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and the errors in the x-direction can be highly oscillatory, leading to slow convergence of multigrid.
In the next sections, we discuss the use of block\line relaxation methods, incomplete LU (ILU)
factorization preconditioners, and sparse approximate inverses as smoothers for anisotropic as well
as other types of elliptic PDE problems.

3.1. Block\line relaxation

A well-suited smoother can be derived from considering the limiting case when � → 0. The
resulting PDE is a decoupled system of elliptic equations along the vertical lines, suggesting the use
of block Gauss–Seidel as smoother where the blocks are associated with the lines in the y-direction,
or equivalently, the direction of the anisotropy. It can be proved [19,55] that the two-grid method
with this smoother converges independently of �. In the case of variable coe�cients where the
anisotropy direction may change from y to x at di�erent locations, one may alternate the direction
of the line relaxation. Another option is to use the alternating direction implicit method [68].
The disadvantage of this approach is that the smoothing is most e�ective when the anisotropy is

either in the x- or y-direction. Another problem is that it is essentially a Cartesian grid technique.
Although similar idea can be adapted in unstructured grid computations [72], the determination of
the lines or planes of anisotropy in three dimensions is complicated. Besides, inverting a line or a
plane requires more work than point relaxations.

3.2. ILU

One needs a direction free and robust iterative method as smoother for solving anisotropic prob-
lems, and we shall discuss two possibilities in this and the next section. An incomplete LU fac-
torization based on the stencil pattern was studied by Wesseling [94] and Wittum [95]. Given a
�ve-point stencil matrix, for instance, one may use the stencil pattern for the incomplete L, U
factors. Speci�cally, an incomplete LU factorization can be written as

Ah =LhUh + Eh;

where the incomplete lower triangular factor Lh has a three-point stencil structure corresponding to
the lower triangular part of a �ve-point stencil matrix, and similarly for the upper triangular factor
Uh. Similar ideas can be applied to other stencil patterns. The resulting ILU smoother is e�ective for
a wide range of directions of anisotropy. More precisely, suppose the model equation (36) is rotated
by an angle �. Hemker [58] showed that ILU is an e�ective smoother for �=46�6�. However, it
may lead to divergence for 0¡�¡ �=4. In the latter, the line relaxation smoother is still e�ective
since the angle is small. One may combine both ideas and derive an incomplete line LU (ILLU)
smoother [82] which uses block triangular factors for Lh and Uh.

3.3. Sparse approximate inverse

The drawback of ILU smoothers is the lack of parallelism, since the (incomplete) LU factorization
process is sequential in nature. Another class of direction free smoothers, which are inherently
parallel, are sparse approximate inverses (SAI).
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Most sparse approximate inverse (SAI) approaches seek a sparse matrix Mh so that the error of
the residual is minimized in some measure. One of the earliest approaches was the Frobenius norm
approach proposed by Benson [10] and Benson and Frederickson [13]:

min
Mh

‖AhMh − I‖2F ;

subject to some constraints on the number and position of the nonzero entries of Mh. The mini-
mization problem is equivalent to n independent least-squares problems:

min
mj

‖Ahmj − ej‖2; j = 1; : : : ; n; (37)

where mj and ej are the jth column of Mh and I , respectively, and they can be solved in parallel.
For e�cient construction, the sparsity pattern may be selected as banded diagonal [63], for example,
or determined adaptively by heuristic searching algorithms [35,51] which, however, may decrease
parallelism.
Several SAI smoothers have been studied. Benson [11], and Benson and Banerjee [12] used a

sparsity pattern based on graph neighbors. Recently, Huckle and Grote independently experimented
a sparse approximate smoother based on SPAI [51] which adaptively search the nonzero pattern.
In the following, we describe the approach proposed by Tang and Wan [86]. Since the major

cost of multigrid algorithms is smoothing, it is important to derive simple and yet e�ective sparsity
patterns. In addition, the least-squares problems (37) must be solved e�ciently. It turns out that
a pre-de�ned pattern based on neighbors of the matrix graph is su�cient for e�ective smoothing
[86]. Given a node j, de�ne Lk(j) as its k-level neighbor set in graph distance. For instance, L0(j)
contains simply the set of stencil points in case of PDE problems. Furthermore, one modify the
Frobenius norm approach (37) and introduce the (k; l)-level least-squares approximation:

min
mj

‖Ak; lmj − ej‖2;

where Ak; l ≡ Ah(Lk(j); Ll(j)) is the (k; l)-level local submatrix of Ah. The sparsity pattern is
determined by the l-level neighbors, and the size of the least squares matrix is controlled by the
selections of k and l. Hence, the two main issues of SAI smoothers are handled. Moreover, it can
be proved that high frequency errors will be damped away e�ciently for k = 1 and l= 0 [86].
More importantly, SAI smoothers have the 
exibility of using larger values of k and l to improve

the smoothing quality for di�cult PDE problems. The potential higher computational cost can be
reduced by dropping strategies. For anisotropic coe�cient PDEs, the matrix Ah and its inverse
typically have many small entries. Thus, one may drop the neighbors with weak connections in Ak; l

before computing the approximate inverse. This is essentially the same idea as line relaxation which
only applies to structured grids. One may further reduce the cost by discarding small entries in Mh.
It has been shown empirically [86] that the resulting complexity is only twice as expensive as point
Gauss–Seidel for the anisotropic problem (36). In addition, since the determination of the lines or
planes of anisotropy is done algebraically and automatically, SAI smoothing is applicable to both
structured and unstructured grid computations in higher dimensions.
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4. Coarsening

The design of interpolation and smoothing operators has been the main focus in improving multi-
grid performance. Coarsening, the selection of coarse grid points, can be as important as interpolation
and smoothing, for instance, AMG coarsening [79] and semi-coarsening [40,41,81] are both criti-
cal components in their respective algorithms. The former selects coarse grid points algebraically
according to strong connections and is robust for discontinuous and anisotropic coe�cient PDEs.
The latter selects coarse grid points geometrically according to the direction of strong coupling for
anisotropic coe�cient PDEs. Another approach, interface preserving coarsening [91], selects coarse
grid points geometrically according to the shape of interfaces.

4.1. Semi-coarsening

For anisotropic coe�cient problems, special smoothing techniques are discussed in Section 3 to
improve multigrid e�ciency. Coarsening has also shown to be another approach to recover fast
multigrid convergence. The failure of standard multigrid is that the errors in the direction of weak
anisotropy are not smoothed. Thus, they cannot be solved on the coarse grid. In the case of structured
grids, one can apply standard coarsening to the direction of strong coupling only, i.e., the y-direction
for the model problem (36), and select all the grid points as coarse grid points in the other directions,
resulting in alternating y = constant lines of coarse grid points. The drawback, however, is that the
overall cost of multigrid will increase.
A related coarsening technique is the use of multiple semi-coarsened grids proposed by Mulder

[73]. For nonlinear PDE problems where the direction of anisotropy changes from time to time,
Mulder performed the coarse grid correction on two semi-coarsened grids in both x- and y-direction
on each level of grid. The complexity of the resulting algorithm turns out still to be proportional
to the number of unknowns. Frequency decomposition multigrid, proposed by Hackbusch [56], is
another method using several grid corrections. Three additional fully coarsened grids are formed by
shifting the standard coarse grid by one grid point in the x- and=or y-direction. Moreover, special
prolongation and restriction operators are used to include also the high frequencies on the additional
coarse grids so that the union of the ranges of the prolongation operators is the same as the �ne
grid function space. The �ltering decomposition by Wittum [96,97] is another coarse grid correction
method. Instead of including all the high frequencies, the coarse grid operator is required to have the
same e�ect as the �ne grid operator on a selected set of vectors, for instance, discrete sine functions
with di�erent frequencies. This principle is similar to the probing method proposed by Chan and
Mathew [31] in domain decomposition.

4.2. AMG coarsening

In algebraic multigrid [79], the selection of coarse grid points ties strongly with the algebraic
multigrid interpolation. Divide the �ne grid points into the set of coarse (C) and noncoarse (F)
grid points. In the ideal case where C is chosen such that for each noncoarse grid point i ∈ F , its
neighbors are all coarse gird points, i.e., Ni = Ci (Section 2.4), the algebraic interpolation de�ned
in (27) is exact; it is just Gaussian elimination as described in one dimension. Otherwise, the
interpolation needs to approximate the values at the noncoarse grid point connections as given in
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(29). On the other hand, the notion of strong connectedness is introduced to maintain sparsity by
ignoring weak connections. Moreover, the approximation in (29) is more accurate if many strong
noncoarse grid connection neighbors of j are actually in Ci. Summing up, there are two criteria for
algebraic coarsening:

1. For each noncoarse grid point i, each strong connection j ∈ Si should either be a coarse grid
point (j ∈ Ci), or should be strongly connected to at least one point in Ci.

2. The set of coarse grid point should form a maximal independent set with respect to strong
connections.

The two criteria, in general, are con
icting with each other. Usually, the second criterion is used
to select a potential small set of coarse grid points. Then noncoarse grid points may be added to
satisfy the �rst criterion.

4.3. Other approach

Algebraic coarsening selects coarse grid points based on matrix entries. A recent approach, the
interface preserving coarsening, can be considered as its geometric counterpart which is speci�cally
designed for discontinuous coe�cient PDEs. For this class of problems, multigrid is typically im-
proved by a sophisticated interpolation such as those described in Section 2 which captures the
discontinuous behavior of the derivatives of the solution along the interfaces. This is particularly
important since the interface may not necessarily align with the coarse grids as usually demanded
by theory [18,45,98]. However, linear interpolation can be just �ne if the interface aligns with all
coarse grids. The main idea of interface preserving coarsening [91] is thus to select coarse grid
points which resolve the shape of the interface on all coarse grids.

5. Conclusion

Signi�cant advances have been made in robust multigrid methods for elliptic linear systems in
recent years. The variety of techniques developed have been steadily maturing, but will still have
not quite reached the holy grail for multigrid methods that is algebraic and easily parallelizable,
with complexity proportional to the number of unknowns, and with rate of convergence independent
of the mesh size, the nature of the PDE coe�cients, and the computational grids. The gray box
philosophy may ultimately lead to a more 
exible approach to developing multigrid algorithms
which can make optimal use of any available information. Our discussion has been con�ned to
the algorithmic developments. Parallelization and theoretical issues are nonetheless essential for the
practical and intelligent use of multigrid in large scale numerical simulations.
There is still plenty of room for improvements in every aspects of robust multigrid to come in

the years ahead. For instance, it is likely that the energy minimization principle will continue to
be useful in constructing robust interpolation operators as new techniques are developed. On the
other hand, the interplay between coarse grid basis and interpolation provides another perspective
for constructing robust interpolation, for instance, through the use of special �nite element basis
recently developed for discontinuous and oscillatory coe�cient PDEs.
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