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Abstract.

We show how to use wavelet compression ideas to improve the performance of ap-
proximate inverse preconditioners. Our main idea is to first transform the inverse of
the coefficient matrix into a wavelet basis, before applying standard approximate in-
verse techniques. In this process, smoothness in the entries of A™! are converted into
small wavelet coefficients, thus allowing a more efficient approximate inverse approx-
imation. We shall justify theoretically and numerically that our approach is effective
for matrices with smooth inverses.
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1 Introduction.

Consider solving the linear systems:
(1.1) Ax = b,

where A is large and sparse. There is an increasing interest in using sparse
approximate inverse preconditioners for Krylov subspace iterative methods to
solve (1.1). On one hand, it possesses a conceptually straightforward parallel
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implementation. Also, the application of the preconditioner is simply matrix-
vector multiply instead of forward and backward solve and it can be done easily
in parallel. On the other hand, similar to the incomplete LU factorization (ILU)
preconditioners, it is applicable to both general and PDE problems due to its
purely algebraic nature. For example, the studies of Grote and Huckle [20] and
Chow and Saad [10] show that it is robust for a wide range of matrices in the
Harwell-Boeing collection.

An approach of computing sparse approximate inverse is described by Benson
[2] and Benson and Frederickson [3]. Consider the right preconditioned linear
system:

(1.2) AMy=0b, =My,

where M is a right preconditioner. A sparse approximate inverse preconditioner
M is defined as a solution to the following minimization problem:

. ; 72
(1.3) min | AM — I|[3,

subject to some constraint on the number and position of the nonzero entries
of M. The Frobenius norm is particularly useful for parallel implementation.
Notice that

[AM =TI = || Am; — 5113,
ji=1
where m; and e; are the jth column of M and I respectively. Thus solving (1.3)
leads to solving n independent least squares problems,

(1.4) %in||Amj — €52, j=1,...,n,

which can be done in parallel.

Another possibility is to use a weighted Frobenius norm which had been inves-
tigated intensively by Kolotilina, Yeremin and others [23], [24], [25]. A complete
survey can be found in [1]. In our present paper, however, we shall focus primar-
ily on the Frobenius norm approach. Other constructions of approximate inverse
are discussed in [4], [5], [8], [10], [9], [18], [28]. A comparison of approximate
inverse preconditioners and TLU(0) on Harwell-Boeing matrices can be found in
[19].

In practice, it is desirable to look for sparse solutions of (1.4). However, this
poses two difficulties: how to determine the sparsity pattern of M and how to
solve (1.4) efficiently. Recently, two main approaches have been suggested. One
is discussed by Cosgrove et al [11] and Grote and Huckle [20] and the other is
by Chow and Saad [10]. For the former approach, the least squares problems
(1.4) are solved by the QR factorization, which may seem costly. But since m;
is sparse, the cost of the QRF can be greatly reduced. Moreover, algorithms can
be derived to determine the positions of the nonzero entries adaptively. Similar
methods can be found in [21], [22], [23], [24], [25] where the sparsity pattern of
M is typically fixed as banded or that of the nonzeros of A.
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For Chow and Saad’s approach, standard iterative methods (e.g. GMRES)
are used to find an approximate solution to Am; = ¢;, and a dropping strategy
is applied to m; to control the amount of fill-in. The idea is to let the Krylov
subspace build up the sparsity pattern gradually and then the nonzeros entries
are selected automatically by size.

The idea of sparse approximate inverse is based on the assumption that A~!
can be approximated by a sparse matrix M. Thus sparse approximate inverses
are particularly useful for matrices whose inverse contains only a small num-
ber of relatively large entries. For example, if the matrix is banded or diagonal
dominant, the inverse entries decay away from the diagonal [14], [7], [15], [16].
However, as mentioned in [11], [10], if we require [|[AM —I||; < 1, we can always
find a sparse matrix A for which the corresponding M has to be structurally
dense. Another source of difficulty comes from matrices arising from elliptic
PDEs with smooth coefficients, whose inverse may not necessary have enough
number of small entries so that sparse approximate inverses are effective. For ex-
ample, consider the following near tridiagonal symmetric positive definite matrix
of size 40 x 40, derived from an artificial periodic boundary like elliptic problem:

2.01 -1 -1
-1 201 -1
-1 201 -1
(1.5) A= ,
-1 201 -1
-1 -1 2.01

As we can see from Figure 1.1, the inverse entries are all greater than one and
hence have no small quantities nor decay. For this kind of matrices, sparse
approximate inverses may fail to give any effective sparse approximation.
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Figure 1.1: Mesh plot of A",

Our main idea in this paper is to transform A to a new basis in which A~ has
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a sparse approximation. For example, the inverse of a discrete elliptic operators
(corresponding to the discrete Green’s function [26]) typically possesses some
smoothness which can be converted into small wavelet coefficients. Specifically,
we apply a wavelet transform to compress the piecewise smooth entries of A1
and then apply the standard techniques (e.g. Grote and Huckle’s implementa-
tion) to construct a sparse approximate inverse. The use of wavelets to solve
integral and differential equations can also be found in [6], [8], [17], [18].

We should also mention that factorized approximate inverse technique is an-
other approach to deal with the case where the inverse contains only a few
number of small entries. See [4], [5], [23], [24], [25] for details.

We also remark that even if A=! has decay away from the diagonal (e.g. if A is
the Laplace operator), the rate of decay may not be enough for the approximate
inverse to have optimal convergence, in the sense that the number of iteration for
convergence is independent of the mesh size. This is verified numerically in Table
1.1, where SPAI is the sparse approximate inverse given by Grote and Huckle’s
implementation [20]. The number in the bracket is the maximum allowable size of
the residual norm of each column. In general, the smaller the number, the better
(but also the denser) the approximate inverse is. We shall show numerically in
section 6 that our approach provides a means to improve the optimality of sparse
approximate inverse preconditioners for solving elliptic PDEs. In fact, we shall
show in section 4 that our wavelet approximate inverse preconditioner is closely
related to the well-known hierarchical basis preconditioner.

Table 1.1: Convergence of GMRES(20) where A=2D Laplacian.

h no. of GMRES(20) iter no. of nonzeros in precond.
SPAI(0.4) | SPAI(0.2) | ILU(0) || SPAI(0.4) | SPAI(0.2) | ILU(0)
1/8 16 10 9 208 696 288
1/16 29 17 14 1040 3640 1216
1/32 67 37 25 4624 16440 4992
1/64 160 63 57 19472 69688 20224

The outline of the paper is as follows. In section 2, we show how to adopt
the wavelet transform in the least squares approach to solve (1.4). In section 3,
we justify theoretically that a smooth inverse has better decay in the wavelet
basis. We also make an interesting connection between our wavelet based pre-
conditioner and the classical hierarchical basis preconditioner. In section 5, we
estimate the extra cost for the wavelet transform and discuss the implementa-
tion issues of how to simplify the algorithm. In section 6, we present several
numerical examples to compare the various methods. Finally, we make some
conclusions in section 7.

We would like to remark that the purpose of this paper is not to present an
ultimate algorithm for solving linear systems. Rather, we address a limitation
of the standard approximate inverse technique and propose a way to extend its
applicability. The main emphasis is on how to model the approximate inverse
appropriately in order to solve a certain class of problems, e.g. matrices with
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piecewise smooth inverse. Many algorithmic variants are in fact possible but
have not yet been fully explored. It is hoped that this paper will lead to further
development and improvement of algorithms.

2 Fast Wavelet Based Approximate Inverse.

Since we are only interested in the application of wavelets to construct an
approximate inverse, we only mention a few features of wavelets. See e.g. [13]
for more detail description of wavelets.

Given an orthogonal wavelet function in the continuous space, there corre-
sponds an orthogonal matrix W that transforms vectors from the standard basis
to the wavelet basis. Furthermore, if v is a vector of smoothly varying numbers
(with possibly local singularities), its wavelet representation & = Ww, will have
mostly small entries. We can also represent two dimension transforms by W.
Let A be a matrix in the standard basis. Then A = WAWT is the representa-
tion of A in the wavelet basis. This wavelet representation A is also called the
standard form of A [6].

Assuming A~! is piecewise smooth, our idea is to apply a wavelet transform
to compress A~! and then use it as a preconditioner. At first glance, this seems
impossible since we do not even have A~'. Our trick is the observation that

A= = WATWT = (WAWT)"! = A7

where W is an orthogonal wavelet transform matrix. Therefore we can first
transform A to its wavelet basis representation A and then apply, for example,
Grote and Huckle’s method to find an approximate inverse for A, which is the
preconditioner that we want to compute. In other words, we do not need to
form A~! but are still able to compute its transform.

We shall next show how we adopt the wavelet transform in the least squares
approach. Consider equation (1.3) again. Let W be an orthogonal wavelet
transform matrix, i.e. Z = Wz is the vector z in the wavelet basis. (Note that
W can be 1-level or full log, n-level wavelet transform matrix.) Then

(2.1) min||AM —I||lp = n}‘}nHWAWTWMWT —1I||r
= min|[AM —I||F,
M
where A = WAWT and M = WMW?7 are the representations of A and M in
the wavelet basis respectively. Thus, our n least squares problems become
(2.2) min || Ari; — €]z, j=1,2,...,n.
Note that A is sparse (but probably denser than A) since A is. Because of

the wavelet basis representation, if M is piecewise smooth, we would expect
M, neglecting small entries, to be sparse too. Therefore, the sparse solution
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of (2.2) would hopefully give rise to a more effective approximate inverse than
the original approach without the wavelet transform. We shall justify our claim
numerically in section 6.

We summarize our algorithm as follows:

Wavelet Based Approx Inverse Algorithm

(a) Wavelet transform A to get A = WAWT. ~

pply standard approximate inverse algorithm (e.g. to A to obtain
b) Appl dard i i lgorith SPAI A btai
M.
(¢) Use M as preconditioner to solve: A# = b, where b = Wb.
(d) Apply backward wavelet transform to # to obtain z = W7z.

It should be noted that if we know the sparsity pattern of the large entries of
M a priort, then it is more efficient and also much simpler to use that pattern
to solve the least squares problems (2.2) instead of using Grote and Huckle’s
adaptive approach.

3 Theoretical Aspects.

Our wavelet based approximate inverse relies on the ability of wavelets to
change (local) smoothness to small wavelet coefficients. In this section, we shall
combine the classical result of Beylkin et al [6] and our construction to derive a
residual estimate for our preconditioner.

In the discussion below, we shall follow the notation in [6]. We list some useful
definitions which will be used later. Define the set of dyadic intervals on [0,1]
by:

T={277k,279(k+1)]:0<k <2 —1,0<j<log,n}.

Let I;y, = [277k,279(k+1)] € Z. Then |I;;|=length of I;; is defined as: 279 (k+
1)—27k =277,

In order to bound the size of the elements of A~! in the wavelet basis, a suffi-
cient condition is the following smoothness assumptions on the Green’s function

G(z,y):

1
3.1 Gz, y)| < ——.
(3.1) Gl <
(3.2) 07 Gy + O Ga,y)| < —om
- F ’y y Jy |x_y|m+1’

for some m > 1 and C,,, > 0.
The following is a classical result of Beylkin et al [6] on the estimate of integral
operator.

THEOREM 3.1. Suppose the Green’s function G(z,y) satlisfies the smoothness
assumptions (5.1) and (3.2). Let A=' be the discrete operator of G(z,y) in the
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wavelet basis. Then the (k,[)th eniry of A~ is bounded by:

. LIN: (L] O\
A1, < O ('_) ( ,
A7k < |1 d(Ix, Ir)

where Iy, I € I, |I| < |I| and d(Iy, I;) =distance between Iy, and ;.

From the above bound, we can see that the length and position of I} and
I; determine the size of (A‘l)kyl. By the definition of dyadic intervals and as
mentioned in [6], d(Ij, ;) is equal or close to 0 at O(nlog, n) locations only. In
other words, effectively A=! has only O(nlog, n) number of elements for large
enough n.

With this result, we are able to estimate the quality of our approximate inverse.

Let € > 0 be given. Define a sparsity pattern S to be:
S={(k,): (A s> ¢}

Due to Theorem 3.1, the number of elements in § = O(nlog, n). We have the
following estimate.

THEOREM 3.2. If we choose S as our sparsity pattern, then

(3.9) IAM — I||F < n||Al|pe.

ProoF. We first define an intermediate matrix N which is essentially the
truncation of A~1 by:

(M) —{ (A (,§) €S,

210 otherwise,

and denote the jth column of N by fj. The inequality (3.3) is a direct conse-
quence of (2.1), (2.2), the definition of least squares solution and the definition
of N and is derived as follows:

[AM — 1|7 = [[AM — I||%

n o~
= > |lAm; —¢l3
j=1

< > NAn; — €13
j=1
VAN - 113
— AW - A
< lANRIN = A7
< n?l|AlRe
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REMARK 3.1. Similar bound can also be found in [20]. Our result is different
in the sense that we have an O(nlogy n) estimate for the number of nonzeros of
the computational approzimate inverse M while that [20] does not have such a
bound.

The result of Theorem 3.2 is primarily of theoretical interest only. First of all,
the sparsity pattern S is not known in general. Besides, O(nlog, n) elements
for M may be still too dense for practical purposes. Furthermore, because of
the special finger-like distribution of the nonzero elements of M given by S,
the amount of computation for solving the least squares problems may differ
substantially from column to column. Thus in our implementation, we only
choose a subset of § which corresponds to those entries near the main diagonal.
We find that the preconditioning quality is still promising, as will be shown in
section 6. The implementation details will be discussed in section 5.

4 Connection to hierarchical basis preconditioner.

Because of the hierarchical structure of wavelets, there 1s a natural connection
between our wavelet approximate inverse and the hierarchical basis precondi-
tioner [31] [27]. Our wavelet approximate inverse, denoted by MWA! can be
considered as an approximation to the transformed A~'. That is,

MYAT = wT W,

approz(fi_l),

(4.1) M

where approz(fi_l) is an approximation of A=1. In our case, it is given by the
solution of the least squares problems (2.2). We can also express the approximate
inverse, M7 B corresponding to the hierarchical basis preconditioner in a similar
form [27]:

MHEB STMS,
(4.2) M = (appmr(fi))_l,

where ST is the non-orthogonal transformation matrix from the hierarchical
basis to the standard basis, A = SAST | and appmz(fl) is another approximation
of A, e.g. a coarse grid approximation of A.

These two approximate inverses are similar in that both possess a hierarchical
structure. In fact, the hierarchical basis can also be considered as a special
kind of wavelet since it consists of a hierarchy of piecewise linear functions and
they are precisely the ”hat” functions in the wavelet terminology. Our wavelet
approximate inverse is more general in the sense that one is allowed to use other
kind of wavelets, in particular, the orthogonal wavelets with compact support
by Daubechies [12]. On the other hand, one could apply the hierarchical basis
transform in a more general domain.

The main difference between the two approximate inverses is the way they
approximate the original matrix A. For the approximate inverse given by the
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hierarchical basis in (4.2), we first approximate A, e.g. by a block diagonal
matrix, and then compute its exact inverse. For our wavelet approximate inverse,
we compute A exactly and then approximate its inverse by solving the least
squares problems as discussed in section 2. Typically, the approximate inverse
given by the hierarchical basis is block diagonal with zero bandwidth except for
the coarsest block while the one by wavelets can have nonzeros anywhere. If we
choose the same block diagonal for the nonzeros of M, it will reduce to the same
form (but probably with different values on the entries) of M.
Connections of wavelets and hierarchical basis are also made in [29], [30].

5 Complexity and Implementation of Algorithm.

The naive algorithm in section 2 needs quite an amount of overhead for doing
the wavelet transformation. In this section, we will analyze each step of the
algorithm and discuss some implementation issues of how to simplify and speed
up the procedures. Meanwhile, we also analyze the sequential complexity of each
step. We shall show that it is essentially O(n), except step(a) which requires
O(kn) operations, where £ is the number of levels of the wavelet transform.

In the following discussion, we assume that the wavelet used is orthogonal
and of compact support, [12], [13]. Orthogonal wavelets are used so that the
formulation developed in section 2 makes sense. However, one could also use
non-orthogonal wavelets anyway. Compact support, on the other hand, is in-
dispensable so that the wavelet transform is only O(n) and A does not become
dense.

Step (a). In general, to compute the wavelet transform of a vector requires
O(n) operations. Computing A = WAWT is equivalent to transforming the
columns and then the rows of A (or vice versa). Thus it will cost O(n?) opera-
tions. However, since A is sparse, if we assume that there are only O(1) nonzeros
in each column and each row, the cost will be reduced to O(kn). In fact, in the
parallel implementation, we do not need to form A explicitly in each processor.
Notice that solving each least squares problem only need a few columns of A.
We just form those columns and the cost will be reduced to O(n).

Step (b). In each level of the transform, we will introduce a fixed amount
of nonzero entries. Even though there are only O(1) nonzeros in each column
and row of A, there will be O(k) nonzeros in each column and row of A. We
could choose k so small that the number of nonzero introduced is acceptable.
We may also reduce the cost significantly by taking advantage of the fact that
for smooth coefficient problems, the Green’s function typically has singularity
only at a point. In other words, A~! only has an essential singularity along the
diagonal, together with a few number of additional artificial singularities due to
the wrapping of the 2D discrete Green’s function to an one dimensional array
in each row. Hence it is reasonable to fix the sparsity pattern of M to be block
diagonal. In fact, our current implementation already assumes block diagonal
structure for M. This assumption saves an enormous amount of time used for
searching for the next nonzero entries adaptively. By the way, adaptive searching
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procedure is usually less amenable to parallel implementation. We may further
reduce the cost to O(n) by adopting the concept of local inverse in [28].

Step (¢). When we solve Az = by some iterative method, we need to perform
A times a vector. If we do it directly, the cost will be O(kn) as A has O(kn)
nonzeros in each row. Note that

Av = W(AWTv)).

If we first backward transform v, apply A and then transform it back, the overall
process will only be O(n).

6 Numerical Results.

In this section, we compare our preconditioner with SPAI (by Grote and
Huckle) and ILU(0). We choose several matrices that come from different el-
liptic PDEs. The inverses of all these matrices are piecewise smooth and the
singularities are clustered around the diagonal. For efficiency, instead of apply-
ing SPAT to solve for M adaptively in step (a) of our algorithm, we specify a
block diagonal structure a prior: for M and then solve (2.2) by the QRF as
discussed in section 5. In all the tests, we use the compact support wavelet Dy
by I. Daubechies [12], [13]. We apply 6 levels of wavelet transform to matrices
of order 1024 and 8 levels of transform to matrices of order 4096. Note that
the number of levels is arbitrary. One could use different number in different
situations.

We apply these preconditioners to GMRES(20). The initial guess was zq =
0,70 = b and the stopping criterion was ||r,||/||r0|| < 107%. All the experiments
were done in MATLAB in double precision.

We remark that GMRES was used because the matrices we are interested in
are, in general, nonsymmetric and hence we do not adapt to using the conjugate
gradient method even if A happens to be symmetric positive definite (Example 1
and 2). Nevertheless, it is true that our algorithm does not, in general, preserve
symmetry. However, the conjugate gradient method can still be used if we
replace M by (M + MT)/2 in the case M is known to be positive definite. We
also remark that another approach is to use factorized approximate inverses as
described in [4], [23], [24], [25] for symmetric problems.

ExXAMPLE 6.1. We use two simple 1D matrices to show the benefit from using
wavelet transforms. The first one is a slightly modified artificial matriz in (1.5)
where the diagonal entries are changed from 2.01 to 2.00001 and the size 1s
1024x1024. The second matriz is the 1D Laplacian operator derived from the
following:

u’(z) = f(z), in (0,1),
w(0) = 0, w/(1) = 0.

Neumann boundary condition at x = 1 is used so that there is no decay in the
Green’s function near the boundary.
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The bandwidth is 0,0,5,5,5,5 for the Ist to 6th level of the block diagonal struc-
ture of M respectively.

EXAMPLE 6.2. In this ezample, A is the 2D Laplacian operator with_size
1024x 1024 and 4096x4096. For n=1024, we choose the bandwidth of M as
before. For n=4096, we choose the bandwidth = 0,0,0,0,5,5,5,5 for the 1st to 8th

level of the block diagonals respectively.

ExXAMPLE 6.3. We try to solve something more complicated than the Laplace
equation but still having a piecewise smooth inverse. Consider the following PDE
with variable coefficients,

((1+ ;132)111;)1; + uyy + (tan y)2uy = —100z2.

We solve the 32x 32 and 64x 64 grid cases. The bandwidth of the block diagonal

of M is the same as before.

EXAMPLE 6.4. In this case, A comes from a PDE of helical spring:
3

where G and A are some constants. Same setting as before.

EXAMPLE 6.5. Finally, we show an example where our wavelet preconditioner
does not work. The matriz A comes from a discontinuous coefficients PDE:

(e, Yo + (42, Wity )y + e + g = sin(may),
where the coefficients a(x,y) and b(z,y) are defined as:

1073 (z,y) €10,0.5] x [0.5,1]
a(z,y) = b(z,y) =< 10> (z,y) €[0.5,1] x [0,0.5]

1 otherwise.

The bandwidth is chosen to be 5,5,10,10,15,15 to make the number of nonzeros
comparable to that of SPAI(0.2). Such modification is made so that sparsity is
not a factor for the failure.

The convergence of GMRES(20) with different preconditioners in each exam-
ple is shown in Figures 6.1-6.4 and is summarized in Table 6.1. In Example 6.1,
we can see that SPAT(0.4) and SPAT(0.2) converge very slowly in this somewhat
artificial but illustrating case. On the other hand, the wavelet based precondi-
tioner converges much faster. This shows the advantage of wavelet transform in
the case where A1 is smooth with singularity only along the diagonal. We do
not show the convergence of ILU(0) since it only takes 3 iterations to converge.
This is exceptional because of the special near tridiagonal structure of A. Table
6.2 shows the number of nonzeros for each preconditioner. The wavelet based
preconditioner requires much less amount of memory than SPAT does.

In Examples 6.2-6.4, the wavelet based preconditioner is most efficient in terms
of convergence and storage. Although the convergence of the wavelet based
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preconditioner still depends on the mesh size (Figure 6.5), the dependence is
less than that of ILU(0) and much less than that of SPAI. However, we would
like to point out that this comparison i1s very rough since the preconditioners
SPAT and TLU(0) take up many more nonzeros.

Besides rapid convergence, we can also see a tremendous gain in storage for
the wavelet based preconditioner as n increases. This gain essentially comes
from the wavelet compression. The larger n is, the more compression we can
get. It is because the effect of singularity becomes less and less prominent as the
singularity is only located along the diagonal.

Table 6.3 gives a comparison of the total operation counts for each method.
The count estimate consists of the number of GMRES(20) iteration, the cost
of matrix-vector multiply, application of the preconditioner and the number
of inner products/saxpy operations. Since the number of inner products/saxpy
operations depends on the iteration number, on the average, our operation counts
estimate for one GMRES(20) iteration is:

count = nnz(A) + nnz(M) + 21n,

where nnz(A) and nnz(M) are the number of nonzeros of the matrix A and
the preconditioner M respectively and n is the size of the matrix. The count
for ILU(0) is normalized to one. The wavelet preconditioner shows a superior
operation counts over all the other methods in Examples 6.2-6.4. In fact, the
results are even better when n is larger. ILU(0) is exceptional good for the
1d problems in Example 6.1 as explained before. Despite that, the wavelet
preconditioner still takes much smaller counts than the other two approximate
inverses.

Finally, Figure 6.6(a) shows that the wavelet based preconditioner does not al-
ways work. As mentioned before, we assume that the singularity of the Green’s
function is only at a point so that the wavelet transformed inverse has large
entries near the main diagonal and our implementation can capture those suc-
cessfully as shown in previous examples. However, for discontinuous coefficient
problems, the Green’s function has addition singularity along the discontinuities
of the coefficients as shown in Figure 6.6(b). Hence the inverse is not as smooth
as before. Thus our block diagonal structure may not completely capture the
significant elements of the exact inverse. We should remark that the failure is
mainly due to our current implementation. In principle, if we can locate the
significant elements by some adaptive procedure (e.g. the one given in [20] and
[10]), we should be able to obtain an effective approximate inverse precondi-
tioner. However, such sophisticated adaptive searching technique is not fully
developed yet for this class of problems and further investigation is needed.

7 Conclusion.

We have extended the potential applicability of approximate inverse to a larger
class of problems, namely, matrices with piecewise smooth inverses. There are
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Figure 6.1: Convergence behavior of GMRES(20) where (a) A=artificial matrix (b)
A=1D Laplacian with Dirichlet and Neumann boundary conditions.
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Figure 6.2: Convergence behavior of GMRES(20) where A=2D Laplacian with size (a)

n=1024 (b) n=4096.
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Table 6.1: Number of GMRES(20) iterations

Example n Wavelet SPAT | SPAI(0.4) | SPAI(0.2) | ILU(0) | No precond.
la 1024 32 >200 >200 3 >200
1b 1024 71 >200 >200 1 >200
2 1024 26 62 34 28 116

4096 47 160 63 57 >200
3 1024 26 100 40 34 >200
4096 66 >200 129 93 >200
4 1024 26 84 36 31 183
4096 68 >200 126 89 >200
) 1024 >200 64 34 21 >200
Table 6.2: Number of nonzero in approximate inverse
Example n Wavelet SPAT | SPAI(0.4) | SPAI(0.2) | ILU(0)
la 1024 3544 5120 21504 3072
1b 1024 3544 5121 25425 3072
2 1024 3544 4624 16440 4992
4096 6616 19472 69688 20224
3 1024 3544 4514 17260 4992
4096 6616 18618 73936 20224
4 1024 3544 4624 16387 4992
4096 6616 19472 69628 20224
) 1024 13464 5677 18952 4992

Table 6.3: Operation count estimate. The count for ILU(0) is normalized to 1.

Example n Wavelet SPAT | SPAT(0.4) | SPAT(0.2) | TLU(0)

la 1024 10 >72 >111 1
1b 1024 72 >215 >362 1
2 1024 0.95 2.65 2.02 1

4096 0.78 2.79 1.54 1
3 1024 0.73 2.90 1.63 1

4096 0.63 >2.12 1.98 1
4 1024 0.80 2.68 1.58 1

4096 0.68 2.23 1.97 1
5 1024 >12 3.11 2.33 1
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two main factors concerning our preconditioner: choice of basis and sparsity pat-
tern. We have shown that for our block diagonal implementation, the wavelet ba-
sis is suitable for matrices with piecewise smooth inverse and singularity mainly
along the diagonal. Moreover, significant amount of storage can be saved. We
should remark that other choices of basis are also feasible to solve specific prob-
lems, e.g. higher order wavelets, basis derived from multiresolution methods.

If the essential singularity of A~! is along the diagonal, we have shown that
block diagonal structure is sufficient. However, for more general situations, e.g.
discontinuous coefficients, where the singularity is not necessarily near the di-
agonal, more sophisticated adaptive searching procedure is needed to locate the
sparsity pattern correctly.
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