KERNEL PRESERVING MULTIGRID METHODS FOR
CONVECTION-DIFFUSION EQUATIONS
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Abstract. We propose a kernel preserving multigrid approach for solving convection-diffusion
equations. The multigrid methods use Petrov-Galerkin coarse grid correction and linear interpolation.
The restriction operator is constructed by preserving the kernel of the convection-diffusion operator.
The construction considers constant and variable coefficient problems as well as cases where the
convection term is not known explicitly. For constant convection-diffusion problems, we prove that
the resulting Petrov-Galerkin coarse grid correction has small phase errors and the coarse grid matrix
is almost an M-matrix. We demonstrate numerically the effectiveness of the multigrid methods by
solving a constant convection problem, a recirculating flow problem and a real application problem
for pricing Asian options.
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1. Introduction. We consider multigrid methods to solve convection diffusion
equations of the form

=V (Vu+ g(z)u) = f, x € Q,

where B(z) > 1. The equation can be discretized by upwinding finite difference
methods [19], finite element methods [20] and finite volume methods [1]. Tn any case,
the result is a linear system of the form

Alul = fh. (1.1)

When g(z) = 0, the linear system can be solved efficiently using, for instance, fast
Fourier transform, preconditioned conjugate gradient, multigrid and domain decom-
position methods. For large 3(z), however, A" is a highly nonsymmetric matrix, and
most of these solvers become less efficient.

Multigrid methods are widely used for solving elliptic partial differential equa-
tions (PDEs) because the convergence rates typically are independent of mesh size.
For nonelliptic PDEs, in particular convection diffusion equations, multigrid conver-
gence often deteriorates with increasing convection. One reason is that simple elliptic
multigrid approaches do not take into account the hyperbolic nature of the convection
diffusion operator. Thus modifications must be made in the smoother and coarse grid
correction processes to improve convergence. Several smoothing techniques have been
proposed to improve multigrid convergence. One approach is to apply Gauss-Seidel
with the so-called downwind ordering [4, 7, 13, 18, 27]. Another approach is to use
time-stepping schemes as smoothers for pure hyperbolic problems [15, 16, 17, 21].
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Here the smoothers do not just reduce the high frequency errors, but also propagate
the errors along the flow directions. The solution on the coarsest grid is typically done
by a few smoothing steps. In this case, the multigrid process can be interpreted as
speeding up the wave propagation by taking larger time step sizes on the coarse grids.
As a result, errors can be removed rapidly by propagating them out of the boundary.
Other possibilities include the use of line smoothers [22] or ILU smoothers [28, 29].
Although often effective, all these smoothers are relatively expensive to compute and
apply, especially in three dimensions. Thus, in this paper, we primarily consider re-
laxation smoothers, and focus on the choice and construction of the interpolation and
restriction operators.

Coarse grid correction leads to more subtle issues. Applying a first differential
approximation (FDA) analysis and local mode analysis, one can show that for a model
convection diffusion with constant coefficients, if the convection is not aligned with
the grid and direct discretization is used to form the coarse grid matrix, the resulting
two-level convergence factor is at best 0.5 [8]. The recent phase error analysis [25]
leads to the same conclusion. These negative results pose the fundamental challenge
of multigrid for solving convection diffusion equations.

One remedy is to apply artificial viscosity on the coarse grid matrices if the amount
of viscosity can be determined a priori [33]. Another approach is to use Galerkin
coarsening [32]. However, the Galerkin coarse grid matrices tend to central difference
operators, leading to stability problems on coarse grids [12, 33]. In a recent analysis
[30], it is shown that more accurate discrete coarse grid operators should be used for
the direct discretization approach, and more accurate prolongation and restriction
operators for the Galerkin approach. In another analysis [23], it is proved for a
model problem that a Galerkin coarse grid matrix is an M-matrix for certain matrix-
dependent interpolation. The Petrov-Galerkin approach has also been considered
where the restriction and interpolation operators are allowed to be different. In [6, 31],
different combinations of restriction (downstream residual transfer, full weighting) and
interpolation (bilinear interpolation, upstream interpolation) operators are tested. In
[10], the restriction and interpolation operators are constructed by applying the black
box interpolation idea [9] to (4")T and the symmetric part of A", respectively. In
[30], bilinear interpolation is also considered, but different restrictions are used for
forming the coarse grid operator and performing the intergrid transfer.

In this paper, we consider the Petrov-Galerkin coarsening approach. We employ
linear interpolation unless otherwise stated. The goal is to design a good restriction
operator that exploits the hyperbolic nature of the PDEs, and is flexible enough to
be applied on regular Cartesian grids as well as general unstructured grids. The
latter is not addressed much in the approaches mentioned above. We also note that
the construction of the interpolation and restriction operators in this paper is very
related to the construction of approriate test and trial spaces in the hierarchical basis
multigrid method [2, 3].

In Section 2, we describe the construction of our kernel preserving restriction op-
erator. We first assume the convection 3(z) is known explicitly and then we generalize
the kernel preserving restriction operator to the case when 3(z) is not given explicitly.
In Section 3, we justify theoretically the importance of preserving the kernel in the
construction of the restriction operator for the two-grid case. In particular, we prove
that the coarse grid matrix is near an M-matrix and the phase error of the coarse
grid correction process is negligibly small. In Section 4, we demonstrate the effective-
ness of our multigrid methods by solving model problems as well as a real application
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problem: Asian option pricing. We make some concluding remarks in Section 5.

2. Kernel preserving multigrid. For simplicity, we assume © = (0,1) x (0, 1)
and the fine grid Q" is a regular triangular mesh with mesh size h = 1/N and the
grid point are given by

Discrete functions v" = (vﬁj) are grid functions defined on Q". The discrete problem

(1.1) is solved using K grids, {Q'}<5!, where the finest grid is QX~1, and Q'~1 is
obtained from Q! by standard full coarsening [24]. Denote by P' the interpolation (or
prolongation) operator from Q'~! to Q!, and by R! the restriction operator from Q' to
Q-1.1=1,2,..., K—1. Also, denote the smoothing operator on Q! by &'. A standard
multigrid V(q1,g2)-cycle algorithm [5, 12] consists of ¢ steps of pre-smoothing, ¢ steps
of post-smoothing, and coarse grid corrections performed recursively on each coarse
grid. On the coarsest grid, the discrete problem is solved exactly.

In this paper, we consider simple relaxation smoothers, e.g. damped Jacobi and
Gauss-Seidel with natural ordering. We do not employ any special ordering in the
smoothing, which can be quite complicated in general, especially in high dimensions.
For coarse grid correction, we consider the Petrov-Galerkin approach, i.e. in the
two-grid setting, the coarse grid operator is obtained from:

A" = RA"P,

where P and R are the interpolation and restriction operators, respectively, with
R # PT in general. The focus of the paper is to construct P and R such that A7
is an accurate, and more importantly stable, approximation to A”. Accuracy and
stability issues will be made more precise in Section 3.

Our key idea for constructing P and R is to preserve the kernel of appropriate
PDE operators. Specifically, we require the interpolation operator to preserve exactly
certain kernel functions of the Laplace operator V - V, namely constant and linear
functions. A natural choice is linear interpolation and its construction is standard.
For the restriction operator, we require it to preserve certain kernel functions of the
convection-diffusion operator

V- (Vu + pu).

The details require further explanation. In the following, we discuss the construction
of R, starting with simple cases, followed by more general situations.

2.1. Convection is known. When f§(z) is given analytically, conditions re-
quired to preserve the kernel functions are sufficient to determine the restriction op-
erator when the fine mesh is obtained from regular refinement of a coarse triangular
mesh. Here each noncoarse grid point is connected to precisely two coarse grid points.

2.1.1. Constant 3. When (z) is constant, the kernel of the PDE operator
V- (Vu+ pu)
consists of constant and exponential functions of the form
u(z) = constant and u(z) = e 7.

For simplicity, we describe the construction first in 1D.
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Fi1Gg. 2.1. 1D basts

Consider the basis functions ¢/, quH as shown in Figure 2.1. Let p = qﬁfl(rng)
and v = QSE}_I(:E];Z_}_I) Thus, the stencil of the restriction operator is given by [v 1 p].
To determine p and v, we require ¢7 and (Z)ﬁ_l locally preserve the kernel exactly at
Cbgi+1. Specifically, for constant kernel functions, we require

ptv=1. (2.1)
For the exponential kernel functions, we require
P4 e Phy =1, (2.2)
where h is the fine mesh size. Equations (2.1)-(2.2) can be easily solved as:

1 1

P=1xe VT 1xepn

(2.3)
These are the restriction weights for the multigrid algorithm. It is easy to construct
once f3 is known. Note that when 8 = 0, i.e. pure diffusion, we recover full-weighting
restriction (i.e. transpose of the linear interpolation). When 3 is large, however, it
becomes an upwind biased piecewise constant restriction. One may view this as a
generalization of the full-weighting restriction to convection-diffusion equations. We
remark that the interpolation weights given in (2.3) have also been considered in [3]
for constant coefficient PDEs. In this paper, we explore this idea further for the case
where the PDE coefficients are not constants or even unspecified (and hence the kernel
functions are not known), and the case where some of the noncoarse grid points are
connected to more than 2 coarse grid points.

Fi1G. 2.2. The support of a 2D coarse bastis on a triangular grid. The circles denote the coarse
grid connections and the crosses the noncoarse grid connections.

In two dimensions (and similarly in higher dimensions), consider a generic coarse
grid basis function ¢! defined on a standard uniform triangulation of a square domain
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as shown in Figure 2.2. Circles indicate coarse grid points and crosses fine grid points.
We compute the restriction weights at the noncoarse grid points in the same manner
as in the one dimensional case and hence the derivation is omitted here. The resulting
7-point stencil of the restriction operator is then given by

0 1 1

1 1+e—A(0,h) 1+e—»i'(h)h)

1 Tre=re | - (2.4)
0

1+e-B (=h,0)
+e1

14e—B-(=h,=h) 14+e—B-(0,—h)

As in the one-dimensional case, when 8 = 0, (2.4) reduces to linear restriction on
triangular grids, as desired. When fJ is large, it becomes upwind biased piecewise
constant restriction.

Remark: If the Cartesian grid is used instead, together with standard coarsening,
then some of the noncoarse grid points will be connected to four coarse grid points.
Thus, the above construction will fail. See Section 2.2 for the general case.

2.1.2. Variable 3. The analytic form of the kernel of the convection term with
variable coefficients is unknown in general. However, since restriction is a local pro-
cess, we approximate the convection coefficient 3(z) locally by a constant. One ap-
proach is to pick the value of g(z) at the noncoarse grid point and then apply the
previous restriction. Specifically, consider Figure 2.3(a) which shows two generic
coarse grid points in two dimensions. Let 8 be the value of the convection at z2;41,25,

ie.
B = B(x241,25) (2.5)
Then, the restriction weights are given by the formula in (2.4).
By B,
h h h
X2 Koi+12) Xzis2.9
Bs By

@ (b)

F1G. 2.3. (a) Coarse connection of a noncoarse grid point at x2;41 25. (b) Values of B(x) near
a noncoarse grid point.

One may consider averaging the nearby values of 3(z). Consider Figure 2.3(b).

We can define 3 as

:/31-1-%32—%,33-1-[34'

d 4

(2.6)

The numerical results in Section 4 show that these two approaches lead to essentially
the same multigrid convergence.

Another approach is to preserve the exponential kernel function e=#'* for non-
constant f locally. Although it is no longer in the kernel of the variable coefficient
PDE it remains a good local approximation. Let p and v be the restriction weights
from the left and right coarse grid points, respectively, and let 8w, Bg and Bar be
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the corresponding values of (z) at the two coarse grid points (zw, zg) and at the
noncoarse grid point (za7) in between. As in the one dimensional case, we impose
two constraints as follows:

p+v=1

e—ﬁW'fW'u + e PETE, — c—PMTM

After some simple calculations, we obtain the restriction weights

e Pmem _ o—PrTr e~ Pwew _ o—BumTm

= , v= . (2.7)

e—PwTw _ ¢—BETE e—PwTw _ ¢—BETE

The coordinates of the grid points are also used in this case. It is noted that the
weights in (2.7) equal those in (2.4) in the case of Sy = fw = BE.

2.2. Convection not known. In the previous section, the construction of the
restriction operators made use of the explicit knowledge of 8(z); more precisely, the
values of 8 at the grid points. While many applications provide such information,
there are also situations where this information is not easily available. Furthermore,
all these constructions assume the noncoarse grid points are connected to precisely
two coarse grid points, which is hardly the case for unstructured grids, for example. In
this section, we describe an algebraic approach that requires only the discretization
matrix, and exploits the elliptic and hyperbolic aspects of the PDE via an energy
minimization formulation.

2.2.1. Constant 3. For the moment, assume the convection is constant and
known, so the kernel of the convection operator is also known. Eventually 3 is not
needed, but here we treat it as known to explain how a constrained minimization is
formulated as described below. Now, however, we allow noncoarse grid points to have
more than two coarse connections. As a result, there may be more degrees of freedom
than constraints preserving the kernel functions. We formulate a minimization prob-
lem to select the ”optimal” choice of restriction weights. The formulation is motivated
by the elliptic PDE case. For elliptic PDEs, the energy minimization approach [26]
defines an interpolation by utilizing coarse grid basis functions which satisfy

M
min > [[¢f]%
i=1

¢HevH
M
subject to Zqﬁfl(x?):l j=1,...,N,
i=1
where || - ||4 is the energy norm associated with the matrix A, and V¥ consists of

piecewise linear functions v (z) such that v (z;) = 1 and v (z;) = 0 if z; is not
a neighboring node of z;. The idea of the energy minimization approach is based
on the classical convergence theory of multigrid, which requires the interpolation to
have stability and approximation properties. The minimal energy norm of the coarse
grid basis is used to satisfy the stability property whereas the constant preserving
constraint is used for the approximation property. Then an interpolation operator
can be constructed from {¢7}. The resulting multigrid method has been shown to
be robust and efficient, and its convergence is independent of the grid size h and the
size of jumps in the PDE coefficients for a wide variety of elliptic problems [26].
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Unfortunately, the convergence theory of multigrid for convection diffusion equa-
tions is not as well established. Nevertheless, we generalize the energy minimization
formulation to convection dominated problems by a joint minimization formulation.
Let {¢T} and {¢)/'} be the coarse grid basis functions corresponding to interpolation
and restriction, respectively. Our approach is to compute {¢7} and {7} at the
same time using the minimization problem

M
min Y (¥, 6 )a (2.8)
i=1

M
Y1 ¢ (27) =1
subject to j=1,...,N.
H h
Sl e Pl (@) = e

The operator (-, -) 4 is defined as follows. Let the vector representation of 1/ and ¢
be ¢! = (¢%,...,¢l%) and ¥ = (¢i,..., %), respectively. Then

(¥ 6/ )a = (¥))T A"

Remarks:

1. When 8 = 0, A” becomes the standard Laplace operator and is symmetric
positive definite. Then {} = {1} and (¥, )4 = ||¢F |4, and hence
reduces to the elliptic formulation. Thus, the new formulation (2.8) general-
izes the energy minimization approach to the convection diffusion case.

2. The formulation has no assumptions on the geometry or dimension. So, it
can be directly applied to problems defined on unstructured grids in any
dimension.

3. In one dimension, the restriction operator constructed from {1/} is identical
to the formula given in (2.3). However, the interpolation operator constructed
from {¢F} is not linear interpolation; in fact, it coincides with the restric-
tion operator. As shown in Section 4, although the multigrid convergence is
somewhat slower than that for linear interpolation, it does show mesh and
convection independent convergence. We note, however, that one may simply
use linear interpolation and disregard the one constructed from {¢#}.

4. In two dimensions, even the restriction is different from the formula given
in (2.4) where only the kernel preserving is used. The interpolation is dif-
ferent from the restriction and it resembles a downwind piecewise constant
interpolation for large f.

2.2.2. Nonconstant 3. For variable and unspecified 3, the kernel is not known
analytically. Moreover we cannot use local values of 3(z) to approximate the kernel
as B(x) is not known explicitly, either. Our approach is based on the observation
that the kernel of the PDE is related closely to the zero eigenvectors of the stiffness
matrix. (Note that we do not need the stiffness matrix in our algorithm.) More
precisely, the right zero eigenvector corresponds to the constant null space and the
left zero eigenvector corresponds to the exponential kernel functions. Thus, we want
the interpolation to preserve the right zero eigenvector and the restriction to preserve
the left zero eigenvector. For standard finite difference or finite element discretizations,
the right zero eigenvector of the discretization matrix is a vector of all 1’s. Thus, it
is consistent with the first constraint in our minimization formulation (2.8).
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6 7
3 4 5
1 2

Fi1G. 2.4. Extraction of a local matriz at the noncoarse grid point 4 for the computation of left
and right zero eigenvectors.

However, the left zero eigenvector is generally unknown, so we approximate it
locally. Consider Figure 2.4 and in particular, the noncoarse grid point 4. For a
7-point stencil matrix, we extract the local 7 x 7 submatrix corresponding to the
neighbors of point 4. (For a 9-point stencil matrix, the submatrix will be of size
9 x 9.) Replace the diagonal of the local matrix by the negative of the sum of the
off-diagonal entries. The resulting matrix then resembles an element stiffness matrix.

Now compute the left and right zero eigenvectors of the local submatrix. Let
vl = (vl ... vE) be the left zero eigenvector. To preserve this vector locally at grid
point 4, we impose the constraint

L L _ L
vzt U5V = vy,

on the restriction weights u, v. This will be a constraint for the restriction operator.
Similarly, the constraints for the interpolation operator can be set up using the right
zero eigenvector. We note, however, that the right zero eigenvector is a constant
vector and hence they need not be computed and the corresponding constraints are
simply set to preserve the constant 1.

We remark that for constant 3, the left zero eigenvector coincides with the discrete
exponential kernel function and hence the minimization problem reduces to (2.8).
However, the restriction is different from those given by (2.4) and (2.7), as mentioned
in Remark 4 in the previous section.

2.2.3. Solution to minimization problem. We assume §(z) is constant in
the following. The procedure can be easily modified to the general case. For each
coarse grid point i, write the coarse grid basis for interpolation as ¢f = 2?21 gong?
and let ¢ = (¢, ..., ¢5)T. Similarly, we write the coarse grid basis for restriction
as Y = 2?21 1/;;¢;L and ¢¢ = (¢, ..., ¢L)T. Because of compact support, they are
sparse vectors. Let ® = [pl; - -+ ;™] be an mn x 1 vector obtained by concatenating
all the ¢’s. Do the same for ¥. Then, (2.8) can be written as the following equivalent
discrete linear constrained minimization problem:

min T A"® (2.9)
. Blo =1
subject to { ngl _1

The symbol 1 denotes a vector of all 1’s. The mn x mn matrix A" is block diagonal
with each block equal to A which is defined as

(-A?)kl:{ AR, if b #£ 0 and ¢! #£ 0.

di; otherwise.
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The n X mn rectangular matrix Bg = [J1 - Jm] is defined as follows. J; is a matrix
corresponding to the injection operator that maps a vector v to v; such that (v;); =
(v)x on supp(¢F) and (v;)x = 0 otherwise. More precisely,

(Ji)kl:{ 1 ifk=1and ¢ #0

0 otherwise.

The n x mn rectangular matrix BL = [K; - -- K] is defined similarly, where

(R = { ¢ T = and v 20

0 otherwise.

Now, we solve the discrete linear constrained minimization problem (2.9) by the La-
grange multiplier formulation, which is equivalent to

AT 0 By 0 0 0

0 A 0 Bg|ll|®]| |0 .
BY 0 0o 0] |As| |1 (2.10)
0 BY 0 0] [Ag 1

where Ag and Ay are n x 1 vectors of the Lagrange multipliers. By eliminating &
and ¥ from (2.10), we obtain the equations for Ag and Ag:

(BYA=TBg)Ap = —
(B3 A™'Bg)Ag = —1

Note that Bg, By, and A~! are sparse matrices. We can solve the linear systems by
a Krylov subspace method, e.g. BiCGStab.
Once Ag, Ay are known, ® and ¥ can be computed by solving

A® = —BgAy
ATU = —BgAs.

Since A is block diagonal and inverting each block corresponds to solving a small
matrix (e.g. the matrix size is 7 x 7 for a 7-point stencil matrix), it is straightforward
to compute ® and V.

3. Theoretical justification. It is well known that if direct discretization is
used as the coarse grid operator, the convergence rate of multigrid can be very poor.
One reason is that the phase error can be relatively large. If the Galerkin coarse grid
operator is used instead, the phase error is significantly smaller. However, it is known
that Galerkin coarse grid operators can be unstable on coarse grids [12, 33]. In this
section, we prove that the Petrov-Galerkin coarse grid operator has small phase error
and is stable on the coarse grid.

In the following analysis, we assume the velocity §(z) is the constant vector (3, )
so that it is not aligned with the computational grid. Also, the convergence rate of
multigrid is usually poorest when the direction of the flow is at 45 degrees with the
x-axis. Periodic boundary conditions are used, and we only consider two-grid analysis
for the schemes described in Section 2.1. Although the algorithm is applicable to
matrices arising from different discretization methods, in the following analysis, we
consider primarily the Scharfetter-Gummel method [1]. We remark that unlike some
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other discretization methods such as Streamline-Upwinding Petrov-Galerkin [14], the
Scharfetter-Gummel discretization gives rise to an M-matrix if the triangulation is a
Delaunay triangulation. The M-matrix property is of particular interest since it will
guarantee nonoscillatory numerical solutions. Given that g(z) = (8, B), the 5-point
stencil of the Scharfetter-Gummel discretization matrix is given by:

—B(—ph)
—B(5h) d —B(=ph) |,
—B(ph)

where B(z) is the Bernoulli function, defined as B(z) = z/(e” — 1), and d = 2B(Sh) +
2B(—pBh).

3.1. Phase error analysis. In [25], it was shown that the phase error of the
coarse grid correction process is useful in determining the convergence rate of the
corresponding multigrid method. It was proved that coarse grid matrices obtained
from direct discretization lead to large phase errors whereas the Galerkin coarse grid
matrices lead to significantly smaller phase errors. In the following, we show that the
phase error of the Petrov-Galerkin coarse grid matrix is also small.

The phase error analysis is based on a Fourier analysis of a two-grid method. Let
the discrete Fourier function, 1/;2’1,, be written as

1 . ,
Zyl/(l‘;},k) — Eel,uﬂ'l‘?ell/ﬂ'yl)cl - N < pv< N —1.

Thus, 1/;271,, with |ul, |v| & 0, correspond to smooth or less oscillatory (low) modes
whereas 1/;271,, ||, [v] & N, correspond to the most oscillatory (high) modes. For
two-grid analysis, it is customary to pair up the low-low, high-low, low-high, and

high-high modes together and hence the Fourier transform matrix )y, is given by:
B h h h
Qh = [ W 1/)“,1/’ wow Yulw! "o ']7

where w =pu—N,v = v — N. Denote the Fourier transform of a matrix B by
B = Q;IBQ;L, with entries B, . In multigrid literature, B, , is often referred to the
Fourier symbol of B.

The iteration matrix of the V(q1,q2)-cycle can be written as:
M = 5%=C8%,

where (' and S are coarse grid correction matrix and the iteration matrix of the
smoother, respectively. Then M = S%(CS? is a block diagonal matrix with each
block a 4 x 4 matrix M, , where

My, =S2,C,,52, pv=-N/2,...,N/2—1.

Hence the convergence rate is determined by the spectral radii of Mu-,u which in turn
depend on

CH7V = I - P 7V(A£I,V)_1RN7VAIT

Hy V7

where P, R and AP are the prolongation, restriction and coarse grid operators, re-
spectively. In phase error analysis, one assumes the smoothers are effective reducing
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high frequency errors. Thus, S’W,(l, 1), the (1,1) entry of SW,, is dorminant and the
other entries are either zero or negligible. Consequenty, Mu,v is essentially determined
by CA'W,(I, 1), which represents the low frequency-low frequency interaction. In other
words, it represents how the smooth waves are changed by the coarse grid correction.
In theory, the ideal case is C'y,,(1,1) = 0. In general, €, ,(1,1) is a nonzero complex
number. The phase error analysis is to analyze how CA'W,(l, 1), in particular, the phase
angle of C), (1, 1), deviates from 0.

To analyze C’Ml,(l, 1), one first needs to compute the Fourier symbols AZ’W Aﬁ{u,

P, nu,and Ry ..
LEMMA 3.1. The symbols of A", A™, P, R are given by

2 (emrmhi g Phenmhi | emvmhi | (Phevthi 9 9efh)
Bh (e Hmhi 4 efhenmhi _ o—vmhi _ oBhevmhi _ 9 _ 9cPh)

L 1—eBh
=d ) , , .
1,y zag( e (_e—uﬂ'hz — ePhenmhi 4 e—vmhi 4 eBhevmhi _ 9 Qeﬁh)
l:igh (e—p,ﬂ'hi 4 eﬁheuﬂ'hi 4 e—l/ﬂ'hi 4 eﬁheuﬂ'hi —9_ 2eﬁh)
s 1 éw2+W+2_2Hﬂ—}”’ E2w2+w+1 2umhi
me =497 02 2 w4l
éw2+w+2 —2vmhi 92(.02—‘(-(.0—‘(- 1621/7rhi
2 w241 2 w241
b(1 —w) ¢ 2umhi g—2vmhi | W2(W — l)a 2umhi 2vmhi
@@ +1) @t D@ +1)
bw2—|—w—|—2 2?4+ w+1 1—w ww—1)
_ —a — —a
w241 w?2+1 (w4 1(w241) (w+ (w241
ciel
- —s2c
Puw = —cgsg
s%s?

1+iﬁh (e‘ﬁ“”” + eBhenmhi 4 g—vmhi | eﬁhemhz’) + W—Qm(e—(u-}-u)ﬂ'hi + eﬁhe(u+u)7rhi) +1
i 1 1+iﬁh (e—;mm’ ._1_ ePhnmhi - e—vThi - eﬂheuwhi) + 1+elwh (6—(H+V)7rhi '_1_ eﬁhe(u+u)rhi) +1
v 4 ﬁ(_e—pwltm _ eﬁhe,uﬂ'i'n 4 6—1/7rlth —|—6ﬁhey7rlt”) 4 1+el2,‘3h (e—(p+u)7rltbz +eﬂhe(u+u)ﬂéz) +1
ﬁ(e‘“”’” _|_eﬁheu7rhz _|_e—u7rhz _|_eﬁheu7rhz) + 1_l_e;wh(6—(H+l/)7rhz +eﬁhe(u+u)7rhz) +1

where ¢, = cos(urh/2), s, = sin(umh/2), w = ", and diag(d) denotes a diagonal
matriz whose diagonal is d.

Proof. The symbols are obtained by direct computation; the details are omitted.
O

From Lemma 3.1, it is clear that

CH,V(L 1) -1 Cicg e 5 (e—uﬂ'hi + eﬁheuﬂ'hi + e—uﬂ'hi + 6ﬁheu7rhi)
€
1 : : A (1,1)
— = (e~ (pHr)mhi Bh _(u+v)mhi LA
+1+625h(6 +ele )+ 1 o

(14
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To gain more insight into the formula of C'W,(l, 1), we consider two special and yet
important cases: the frequency components in the characteristic direction, i.e. (y,v)
such that

p—rv=0,
and the cross-characteristic direction! [6, 8, 30], i.e. (u,v) such that
u+v=0.
THEOREM 3.2. For the components in the characteristic direction,
Cun(1,1) =1 —ch + O(urh)®,
For the components in the cross-characteristic direction,

Chp(1,1)=1—ct

e

Proof. We first consider the frequency components in the characteristic direction,

i.e. v=p. Let a = —B(—ph) and b = —B(Bh). By Lemma 3.1, we have

AL (1,1) = 2be™ ™M 4 2wbe ™ — 25 — 2wb

2 2
= 2b(—pmhi — @) + 2wb(pumhi — @) + O(umh)>.

Similarly, AﬁI can be written as

1M
- b . . X . . o l—w )
H _ 2 f; —2umhi o, .2 2umhi —4umhi
Auﬂu—m ((.d —}—w—}-Z)e H +(.d(2(.d +w+1)e H +1—{——(_ue H
w3 (w — 1)64””’” 3 W3+ 2w? +2w+3 B w(3(w? + 2w2 4+ 2w + 1)
w+1 w41 w1
b

= ST ) & D e 2)(~2pmhi = 2pmh)’)

tw(w + 1) (2w? + w + 1)(2umhi — 2(urh)?) + (1 — w)(—4pmhi — 8(umh)?)
+w?(w — 1)(4prhi — 8(umh)?)] + O(unh)?
_ —pmhb 3\, 3 2
=T iDetD [(w+ (1 —w?)i+ (w®+w? +w+1)(prh))
+(1 —w)((@® + )i+ 2(1 — w®)(urh)] + O(urh)?
—pumhb

= m [2(1 — w*)i 4+ (3w* + 2w® + 3)(umh)] + O(umh)®.

Combining these two formulae, we have

lq#ug)_2@+4xw%+nu+%¥)+zqw+1mﬂ+4x_r+%¥)+O(TMZ
A 2(1 — wh)i + (3w? + 2w? + 3)(urh) p
wd—1 . 9

I These components are also called characteristic components in the literature.
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We then make a Taylor expansion of Ru,u(lv 1) and obtain

- w3 —1

Ruu(1,1) =1+ muwhi—}—O(/ﬂh)Z. (3.1)

Finally,

w3 —1 w3 —1

Cuu(l,1)=1-c} (1 + mmhi) <1 T e @i D)
=1 cz + O(/urh)z.

/urhz'> + O(umh)?

In the cross-characteristic direction where v = —pu,

AZ,—N(I’ 1) = —b(2 _e—hmhi _ je—pmhi _ opmhi o pmhi n 2@)
—2b(w + 1)(1 — cos(umh))
= —4b(w + l)si.

Similarly,

- b . . . ) . .
H _ 2 ¢ 9, .3 2 —2umhi 2umhi ¢
A”’_“_78(w2—|—1)(w Fw+24 2w +w® +w)(eT T 4 2T )

bWt Wit w 1) sin®(umh)

w241

For the restriction operator, we have

- 1 1 w . . .
R, _. == —umhi umhi 92) = 2 .
Hy— 1 4 (OJ T 1 + W+ 1) (6 +e + ) CH

Combining all the formulae, we obtain

R —4b(w + 1)s2
_ 6 [l
CH7_“(1’ 1) =1- CH —b(w?+tw?+w+1)sin?(umh)
w?+1

4w+ 1) (w? + 1)5‘/2J

=1-—¢%
”(w3—|—w2—|—w—|—1)4s/30z
:l—cz.

O
It is interesting to note that the phase error in the characteristic direction of
the coarse grid matrix relative to the fine grid matrix can be quite significant. More

precisely, for w = oo (i.e. 8 — o0),
AR (1,1 . : .

% ~ 1 — prhi+ O(pmh)? = e #™ L O(umh)?.

21

If one ignores the effect of prolongation and restriction, then the coarse grid correction
has the effect of shifting waves of any frequency by 1 grid point to the right. Forw — 0
(i.e. B — —00),

ih
Aj (1, 1)

= ~ "™ L O(urh)?.
Al



14 R.E. Bank, JJW.L. Wan, and Z. Qu

In this case, the convection has an opposite direction and the phase error has the effect
of shifting waves by 1 grid point to the left. As a result, the coarse grid error is off by
1 grid point compared to the fine grid error, leading to at most first order accurate
approximation. Fortunately, the restriction operator has the same but opposite effect,
as can be seen by its symbol where the sign is positive for the term pmhi; see (3.1).
It counteracts the shifting caused by the Petrov-Galerkin coarse grid matrix. As
a result, one can easily derive from CA'W,(I, 1) that the phase error of the Petrov-
Galerkin coarse grid correction is only O(umh)?. For comparison, the phase errors
of the direct discretization and Galerkin coarse grid correction approaches are 1/2
and O(uwh)3, respectively [25]. Although Petrov-Galerkin is not as accurate as the
Galerkin approach, it is certainly much better than direct discretization. Moreover, in
the cross-characteristic direction, C’ml,(l, 1) is close to zero, in contrast with the direct
discretization approach where CA'W,(l, 1) = 1/2 [8, 30] which leads to a convergence
rate of at most 0.5.

The phase error of Petrov-Galerkin coarse grid correction is not as small as that
of Galerkin coarse grid correction. However, Galerkin coarse grid operators are often
not stable. In the next section, we shall show the stability of Petrov-Galerkin coarse
grid operators.

3.2. M-matrix property. If the fine grid discretization matrix is an M-matrix,
there will be no spurious oscillation in the numerical solution. For stability, it is
desirable that the coarse grid matrix inherits the M-matrix property of the fine grid
matrix. If direct discretization is used to construct the coarse grid matrix, it would
clearly be an M-matrix, but then it leads to poor coarse grid correction and large
phase errors. On the other hand, if Galerkin coarse grid matrix is used, it may not
necessarily be an M-matrix.

Here, we prove that our Petrov-Galerkin coarse grid matrix with linear interpo-
lation and exponential fitting restriction is almost an M-matrix. More precisely, it
approaches to an M-matrix asymptotically as |3| approaches infinity. We first com-
pute the entries of the coarse grid matrix.

LEMMA 3.3. Denote the stencil of the course grid matriz AT by

y 4F 4
A}FV A%} Ag |,
Asw A

where A s obtained by linear interpolation and exponential fitting restriction (2.4).
Then

AT 24+ w+1 " ww—1)
= " a = ——— "~ _a
N7 oowr41) NE 7= (w4 1)(w2+1)
2 . 5 .2
+w+2 2w t+w+1
AH = wib AH - - - -
WE e 0 w21y
1—w w4t w+2
A’;IW: —) Ag = ———b,

(w+1)(w2+1)" 2w?2+1)
A = —(AF + AR p + A + A + AT, + AT,
where a, b, and w are defined as before.

Proof. The computation of all the entries of A¥ is similar so we only show the
formula for Af,. Tet I be the index of a coarse grid unknown and i be the index of the
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corresponding unknown on the fine grid. Then ¢ = 27, assuming standard coarsening.
Also, denote the number of fine grid points in the x-direction by nz. Let P and R be
the linear interpolation and exponential fitting restriction operators, respectively. By
the definition of the Petrov-Galerkin coarse grid matrix

A, = AII 1= (RAhP)LI—l

= ERUZAZJPJ I-1

—ZRH[. i,2-nz—3 T : A2I nz—2 1 : A2I s+ Alar_a+; Az21 1

A 1

+§Ai,21+nx—2 + EAZ2I+n:c—1
1 1 1
= w? + 1(5 3[—nx—1,21—nx—2+ EAgl—nx—l,ZI—l)
1 h L h L on
+w——|—1(A2I_1’21_2 + §A21—1,2I—1 + §A2I—1,21+nx—1)
1 w 1
+§AQLI,2I—1 + ?(EA‘IZII+nx,2I+nx—1)
1 1 1 1 1 1 1 w 1
= (b4 -a)+ ——(b % — 2b) + —a) + —b+ ——(=b
1ttt bt g(F2a =)+ ga)+ 5b4 o (5h)
w(l —w) 203 + w? 4+ 3w +2

e+ ) T A@F)e+ )

The result follows from the fact that a = Bhe? /(1 — ") = wb. O
THEOREM 3.4. The Petrov-Galerkin coarse grid matriz can be written as:

AT = A7 L pH

where AT is an M-matriz and ET = O(e=21") as |B| approaches infinity.
Proof. Note that @ < 0, b < 0, and w = ¢?? > 0. Thus, by Lemma 3.3, all of the
off-diagonal entries of A” are negative, except for AL, and AL;,. Consider

1—w
A —
SW (w+ (w241

If B <0, then w < 1 and so A w < 0. If 8> 0, however, then A gw > 0. Similarly,
for

w2(w -1
ANp = w+ D2+ )"

it is non-positive if 8 > 0 and positive if 8 < 0. Now, consider the case when g > 0.
Let A” have the same stencil as A? with A, replaced by 0. Also, the diagonal
entries of A¥ are defined as the negative sum of the off-diagonal entries. Then it
is clear that A is an M-matrix. For the other case when 8 < 0, we let A have
the same stencil as A7 with AﬁE replaced by 0. Then, again, A7 is an M-matrix.
Furthermore, when g — oo,

AL o — b = O(e™ ).
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When g — —oo0,
AR, = —w?a = 0(*h).

Thus E¥ = AT — AT = O(e=21F1"). O

We note that A7 is not an M-matrix in exact arithmetic; however, the error
term decays exponentially and becomes the order of roundoff error for sufficiently
large 8. So for convection dominated problems, we should expect numerically stable
Petrov-Galerkin coarse grid matrices.

4. Numerical results. In this section, we present results of numerical experi-
ments in two dimensions that demonstrate the effectiveness of the proposed multigrid
methods. In all the numerical examples, the computational domainis Q = [0, 1] x [0, 1]
with homogeneous Dirichlet boundary conditions. We discretize the PDE on a reg-
ular Cartesian mesh and finite difference (upwinding or otherwise stated) methods
are used. In the multigrid procedure, a V-cycle is used with two pre- and two
post-smoothings, unless stated otherwise. Damped Jacobi and Gauss-Seidel (GS)
smoothers are considered. The coarse grid operators are obtained from Petrov-
Galerkin coarsening with linear interpolation and restriction as specified in each ex-
ample. Since some of the numerical results are compared with those reported in other
papers, the stopping criterion varies. Typically, the iteration was terminated when
the relative residual l5-norm was less than 1076 or 10~8.

Example 1: In this example, we consider the following constant coefficient convection
diffusion equation [10, example 1]:

—0hAu~+ uz + uy = f.

In [10], the smoother used is Kaczmarz with one pre-smoothing and one post-smoothing.|]
Linear interpolation is used together with restriction obtained from applying the black
box interpolation [9] idea to AT. The coarse grid operator is formed by Petrov-
Galerkin. We used simple damped Jacobi as smoother. As the cost of one Kaczmarz
iteration is approximately equal to two Jacobi iterations, the number of pre- and
post-smoothings is two instead. We used linear interpolation, but exponential fitting
restriction as defined in Section 2.1 and 2.2. The stopping criterion is 1076.

In order to compare with the results given in [10], we select h = 1/32 and vary ¢.
The convergence results are shown in Table 4.1. BMG denotes the black box multigrid
and EMG denotes our multigrid method. The bracket specifies the smoother used. For
relatively large J, the two multigrid methods are comparable. However, as § becomes
smaller, the convergence of BMG deteriorates while EMG(Jac) remains efficient. In
fact, EMG(Jac) shows somewhat better convergence for small §. Hence, the kernel
preserving restriction results in convection independent multigrid convergence.

Table 4.1 also shows the multigrid convergence results for Gauss-Seidel smoothers
with different ordering. GS7 denotes the ordering first in the x-direction (left to right)
and then in the y-direction (bottom to top), which is just the natural ordering. G'S;
denotes the ordering first in the y-direction (top to bottom) and then x-direction (left
to right). GS3 denotes the ordering first in the x-direction (right to left) and then
y-direction (top to bottom). Finally, GS4 denotes the ordering first in the y-direction
(bottom to top) and then x-direction (right to left). The results are generally worse
than those for damped Jacobi smoothing, except for EMG(G.S1), where the ordering
is consistent with the flow direction. The worst results are given by EMG(G S3) whose
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§ [ BMG [ EMG(Jac) | EMG(GS,) | EMG(GS;) | EMG(GS3) | EMG(GSy)
1 11 11 6 6 8 6
/2| 13 10 5 7 9 7
1/4 20 10 4 6 11 6
1/8 | > 20 9 3 8 15 8
1/16 | > 20 9 3 10 18 10
TABLE 4.1

Number of multigrid V-cycles for a convection diffusion equation with convection term B(z) =
—[1,1] and varying diffusion coefficient, Sh.

ordering is opposite to the flow direction. Thus, in contrast with diffusion dominated
problems, Gauss-Seidel shows a poorer smoothing effect compared to damped Jacobi,
but can still be an effective smoother if the ordering happens to be consistent with
the flow direction.

We also tested our multigrid method by fixing the diffusion term, i.e. §h = 1073
and varying the mesh size. The results are shown in Table 4.2. EMG(Jac) and
EMG(GS1) perform the best and their convergence rates are independent of the mesh
size, h. The convergence rates of other EMG methods are much slower and are
generally dependent on the mesh size, similar to the results shown in Table 4.1. We
also note that their convergence behavior is somewhat irregular with respect to the
mesh size; they converge faster when h = 1/128 then when h = 1/64. It may be due
to the poor smoothing effect.

h | EMG(Jac) | EMG(GS;) | EMG(GS,) | EMG(GSs) | EMG(GSy)

1/16 9 2 6 11 6

1/32 9 2 10 18 10

1/64 9 3 15 28 15

1/128 9 3 12 14 12

TABLE 4.2
Number of multigrid V(2,2)-cycles for a convection diffusion equation with convection term
B(z) = —[1,1], diffusion coefficient §h = 1073, and varying mesh size h.

Example 2: We consider a variable coefficient problem, often known as the recircu-
lating flow problem:

eAu+ augy + buy = f,

where a = 4z(z — 1)(1 — 2y), b = —4y(y — 1)(1 — 2z). In this case, the kernel
of the PDE operator is unknown and so we use a locally defined value of B(z) to
construct the restriction, as described in Section 2.1.2. Denote the multigrid using
the midpoint value of 8(z), (2.5), by EMG(Bmidpt), the average of nearby values of
B(z), (2.6), by EMG(Baye), and multigrid with restriction locally preserving e %%,
(2.7), by EMG(Bweighted). In this example, we use GS with ordering depending on
the sign of a and b; see [30]. Basically, we sweep over the variables four times in the
appropriate order, and in each sweep relaxing roughly one quarter of the variables as
follows: in the first sweep only variables at locations where both a(z) and b(z) are
nonnegative are relaxed; in the second sweep only variables corresponding to locations
where a(z) is nonnegative and b(z) is nonpositive are relaxed; and similarly for the
third and fourth sweeps. ¢ is taken as 1073, The stopping criterion is 1075,
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h EMG(/Bmidpt) EMG(ﬂ(we) EMG(ﬂweighted)
1716 6 6 4
1/32 7 7 6
1764 10 10 8
1/128 12 12 10
TABLE 4.3

Number of multigrid V(2,1)-cycles for the recirculating flow problem. The multigrid methods
obtained from different choices of 3 are compared.

Table 4.3 shows the number of V-cycles of different multigrid methods. The
choices of using the local midpoint 3(z) and using the average of local values of
B(z) give rise to two multigrid methods with similar convergence. All these methods,
however, show a small logarithmic dependence on the mesh size.

We also compare our results with the those of Yavneh [30], who developed an effi-
cient multigrid method for solving the recirculating flow problems. He tested two types
of coarse grid correction, non-Galerkin and Petrov-Galerkin. For the non-Galerkin
approach, the coarse grid operator is obtained from two discretizations of different
accuracy. He used the same GS smoothing as ours, V(2,1)-cycle, bilinear interpola-
tion, and full-weighted restriction. For the Petrov-Galerkin approach, the coarse grid
operator is obtained from a linear interpolation and a restriction operator such that
the scheme remains “upstream on all grids”. (Note: these operators are different from
the intergrid transfer operators.) Artificial viscosity is also added to the coarse grid
operator. The stopping criterion is 1078,

h € EMG(Bweighted) | EMG(Bmidpt) | Non-Galerkin | Petrov-Galerkin
/64 | oo 9 6 N/A N/A
1/64 | 102 11 8 N/A N/A
1/64 [ 1073 8 10 N/A N/A
1/64 [ 1075 8 11 N/A N/A
/128 | oo 10 6 8 g
1/128 | 10" 10 6 8 8
1/128 10-3 10 12 27 10
1/128 10-° 10 12 19 13
1/128 10°7 9 12 17 14
1/128 [ 107 9 12 N/A N/A
1/256 | oo 9 7 N/A N/A
1/256 | 103 10 12 N/A N/A
1/256 | 10=° 10 13 N/A N/A
1/256 | 107 10 13 21 12
1/256 | 10~° 10 13 N/A N/A

TABLE 4.4

Number of multigrid V(2,1)-cycles for the recirculating flow problem The multigrid methods are
compared using different € and mesh size h. The Non-Galerkin and Petrov-Galerkin columns show
the multigrid results given in [30]. N/A denotes unavailable resulis.

The results are shown in Table 4.4 (N/A denotes results not available in [30]).
First, we see that the iteration numbers of EMG are insensitive to mesh size and
€. EMG(Buweighted) seems generally better than EMG(Bmidpe) but the difference is
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not very significant. The non-Galerkin approach discussed by Yavneh shows poorer
convergence and stronger dependence on h and e. The Galerkin approach discussed
by Yavneh shows similar convergence behavior. However, the coarse grid operator
is somewhat more complicated to construct and it is unclear how to construct the
linear and restriction operators in general. Also, artificial viscosity was needed but
it was not discussed how much one should add. For our multigrid approach, we use
the same interpolation and restriction operators for both intergrid transfer and the
construction of the coarse grid matrices. Also, we do not require artificial viscosity.

Example 3: We consider the same equation as in Example 1, but the multigrid
method uses the restriction and interpolation operators constructed by solving the
minimization problem described in Section 2.2.3. Both damped Jacobi and Gauss-
Seidel smoothings are tested. The results are shown in Table 4.5.

h | EMG(Jac) | EMG(GS;) | EMG(GSs) | EMG(GS;) | EMG(GSs)

1716 8 2 6 6

1/32 9 2 11 17 11

1/64 11 3 16 28 16

1/128 12 3 16 28 16

TABLE 4.5

Number of multigrid V(2,2)-cycles for a convection diffusion equation with convection term

B(x) = —[1,1], diffusion coefficient h = 1073, and varying mesh size h. The restriction and

interpolation operators are constructed from solving a minimization problem.

This multigrid method does not take advantage of the Cartesian geometry and
does not make explicit use of the knowledge of the convection term and hence it is
completely algebraic. Since it is more general, it is not expected to be as efficient
as the multigrid method considered in Example 1. The results shown in Table 4.5,
however, are comparable to those in Table 4.2. EMG(Jac) here is a bit slower than
in Example 1 and also shows a slight dependence on the mesh size. On the whole,
nonetheless, there is no significant difference between the results of the two EMG
approaches. It would be interesting to see the results of this general approach to
solving more general problems, e.g. unstructured grids. This will be considered in
the future research.

Example 4: We apply our EMG multigrid method to solve a real application prob-
lem: pricing Asian options. The price of an Asian option, V, can be found by solving
a PDE in two dimensions based on the Black-Scholes equations:

5
v _ .102528—‘./ + s + ;(S - A)B—V —
Jor 2 052 as T -—-r 0A

where S is the stock price, A is the arithmetic average of the stock price over some
time interval T, 7 is the time from the expiration date T, r and o are constants
representing the risk free interest rate and volatility. It is not within the scope of this
paper to derive this equation; we refer the interested readers to [11, 34]. For fixed

strike call options, the terminal boundary condition is:

V(S(T), A(T), T) = maz(A(T) — K, 0),

vV, (4.1)

where K is the strike price of an option. The boundary condition at S = 0 is:
v —A oV

o T—r94 "V
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For boundary condition at § — oo, we make the standard assumption that % — 0.
The equation is discretized using an implicit finite volume method.

In each time step, one needs to solve the implicit equation corresponding to
the convection diffusion equation (4.1). Tt is important to note that there is no
diffusion in the A direction, which is the source of many numerical difficulties. It is
a particularly interesting test case for multigrid since it is very convection dominated
(in fact, pure hyperbolic) in the A direction and the convection is not constant. We
apply our multigrid of Section 2.2.2 with point GS smoothing to solve the zero strike
call option (i.e. K = 0), a case where the analytic solution is known. We used the
same parameters as in [11] where r = 0.1 and the initial stock price is Sg = 100. The
mesh size h = 1/64 and the time step size A7 = 0.025. The stopping criterion is
10-8.

o T | Analytic | Numerical | EMG(GS)
0.1 | 0.25 | 98.763 98.7604 12
0.1 | 0.50 | 97.547 97.5411 9
0.1 | 1.00 | 95.175 95.1626 6
0.2 | 0.25 | 98.763 98.7574 12
0.2 | 0.50 | 97.547 97.5309 9
0.2 | 1.00 | 95.175 95.1785 6
0.4 | 0.25 | 98.763 98.7673 12
0.4 | 0.50 | 97.547 97.5447 9
0.4 | 1.00 | 95.175 95.1633 6
TABLE 4.6

Analytical and numerical solution for an Asian call option with zero strike and the average
number of multigrid V(2,2)-cycles over all time steps for solving the Asian option model equation.

Table 4.6 shows the numerical results with different practical values of o, leading
to different strength of diffusion. The numerical solutions are in good agreement with
the analytic solutions. Moreover, our EMG method converges in between 6 to 12
multigrid iterations on the average in each time step. More precisely, the method
consistently converges in about 3 iterations when 7 is small and in about 16 iterations
when 7 approaches the final time T (strong convection). Thus, the average iteration
numbers tend to be larger for T small and smaller for T large.

5. Conclusions. We have demonstrated that Petrov-Galerkin coarse grid cor-
rection together with linear interpolation and kernel preserving restriction will lead
to a fast convergent multigrid method for solving convection-diffusion equations. The
main reason is that the coarse grid correction process is accurate and stable. Although
the coarse grid matrix has a phase error of 1/2 which shifts waves of any frequency
by one grid point, the kernel preserving restriction has the same but opposite effect
that counteracts the shifting caused by the coarse grid matrix. As a result, the coarse
grid correction is accurate. Moreover, we have proved that the Petrov-Galerkin coarse
grid matrix is stable in the sense that it is asymptotically an M-matrix for large 3.

We have also considered the general case where 3(z) is not given explicitly and
proposed a joint minimization formulation to construct the restriction operator. The
convergence rate of the resulting multigrid method has been shown to be comparable
to that given by exponential fitting restriction. However, we note that one needs to
solve a minimization problem which may be costly. The algorithms are implemented
in MATLAB and so accurate timings for constructing the restriction operator are not
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available. However, we refer the interested reader to [26] for more discussions on the
cost of the minimization problem. This general approach is purely algebraic in nature
and so it is applicable to complicated geometries such as unstructured grids, but these
cases are not discussed in the present paper.

26]
(27]

(28]
(29]
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