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Abstract. In this paper, we present total variation diminishing (TVD) multigrid methods
for computing the steady state solutions for systems of hyperbolic conservation laws. An efficient
multigrid method should avoid spurious numerical oscillations. This can be achieved by designing
methods which preserve monotonicity and TVD properties through the use of upwind interpolation
and restriction techniques. Such multigrid methods have been developed for scalar conservation
laws in the literature. However, for hyperbolic systems, the upwinding directions are not apparent.
We generalize the upwind techniques to systems by formulating the interpolation as solving a local
Riemann problem. Upwind biased restriction is performed on the positive and negative components of
the residual. This idea stems from the fact that the flux vector can be split into positive and negative
components. For two-dimensional systems, we introduce a novel coarsening technique and extend
the upwind interpolation and restriction techniques, which together capture the characteristics of the
underlying system of hyperbolic equations. We provide a theoretical analysis to show that our two
level method is TVD for one-dimensional linear systems. We also prove that both the additive and
multiplicative multigrid schemes are consistent and convergent for one-dimensional linear systems.
We demonstrate the effectiveness of our method by numerical examples including Euler equations.
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1. Introduction. Multigrid methods have been used as efficient solvers for a
wide variety of problems [34, 1, 6]. The rate of convergence is often independent of
the grid size. For elliptic partial differential equations (PDEs), the basic idea of multi-
grid is that high frequency errors are damped by the smoothers and low frequency
errors are corrected by solving the problem on a coarse grid. While the standard
theorems in the theory of multigrid methods generally assume ellipticity, it was first
proposed by [27, 11] that it is possible to apply multigrid techniques to hyperbolic
systems as well. The idea of this approach is to accelerate the wave propagation
on multiple grids by using larger time steps on coarse grids without violating the
Courant—Friedrichs-Lewy (CFL) condition. Thus the low frequency disturbances are
rapidly expelled through the outer boundary while the high frequency modes are
locally damped by the smoother. The smoother must be sufficiently dissipative to
reduce the high frequency disturbances present in the initial approximation or intro-
duced by the interpolation operator. Ni [27] performs smoothing by means of a control
volume centered integration method with fluxes interpolated from corner values. In
[16, 17, 2], Chima and Johnson apply the popular MacCormack scheme. Spekreijse
[29] proposed a multigrid method for a second order accurate monotone upwind dis-
cretization of hyperbolic conservation laws. Dick [3] developed a multigrid method
using flux difference splitting for discretization of the Euler equations.
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The time step of an explicit scheme is limited by the CFL condition. If one is
interested only in the steady state solution of the problem, multigrid methods using
fully implicit schemes are unconditionally stable, and they have been used with success
for the Euler equations [9, 8, 13, 25, 30]. In [12], Jameson has shown that implicit
schemes based on approximate factorization can be used with multigrid techniques
to achieve rapidly convergent algorithms for computing the steady state solution of
Euler equations. However, the implicit methods require the solution of the system
at each time step. In [14], Jespersen gives an extensive review of the advantages and
disadvantages of multigrid methods using implicit schemes.

The coarse grid corrections for multigrid methods using explicit time stepping
schemes have an accelerating effect since they move the disturbances of the steady
state over the distance of many mesh cells in one time step. Jespersen mathematically
supported this argument by showing that, under certain assumptions, such multigrid
time stepping schemes on an M-grid are consistent and first order accurate, with
effective time step, At = Z/JY Aty, where Aty is the time step taken on grid k [15].
Further, the optimal speed of wave propagation is theoretically estimated to be 2M —1
by [5, 24] using Fourier analysis.

Numerical oscillations can substantially delay the propagation of the wave [33].
Thus, it is desirable to design nonoscillatory multigrid schemes. Two multigrid time
stepping schemes were proposed by Jameson [10] for computing the steady state
solution of the one-dimensional linear wave equation. The idea is to capture the
characteristics of the underlying PDE using upwind biased interpolation and residual
restriction operators. The coarse grid update formula is modified to provide smooth
results for the hyperbolic equations. Jameson proved that for two levels, these schemes
preserve monotonicity. Wan and Jameson [33] extended the analysis to multilevel
and proved that the multigrid methods satisfy the total variation diminishing (TVD)
property as well. They also extended these schemes to nonlinear scalar conservation
laws, which are able to capture discontinuities arising from shocks and rarefactions
without violating the entropy conditions.

A number of variants of the characteristic multigrid method have been developed.
Koren and Hemker [19] used an upwind prolongation operator and restriction oper-
ator as an approximate adjoint of the upwind prolongation operator. The numerical
results show that the improved multigrid method performs significantly better than a
standard nonlinear multigrid method. Leclercq and Stoufflet [21] emphasized that the
use of characteristic transfer operators allows for efficient resolution of shocks. This is
not possible with the classical multigrid approach. Grasso and Marini [4] proposed a
multigrid technique based on directional grid transfer operators for hypersonic viscous
flows.

In this paper, we propose to extend the multigrid schemes based on the charac-
teristics approach [33] to systems of nonlinear hyperbolic conservation laws. However,
a main challenge is that the system of equations is composed of a mixture of char-
acteristics. In addition, the characteristic directions change from grid point to grid
point. As a result, the upwind biased restriction and interpolation operators defined
for scalar conservation laws cannot be directly extended to hyperbolic systems. We
address these issues and develop novel upwind biased interpolation and restriction
techniques for systems of equations which result in efficient multigrid methods. We
extend these upwind biased techniques to two-dimensional systems and introduce a
novel coarsening technique. We also provide an analysis of the two level time step-
ping scheme for one-dimensional linear systems and prove that it satisfies the TVD
property. This is a desirable property for designing nonoscillatory multigrid schemes.
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Consistency and convergence proofs for multilevel schemes are also provided.

In section 2, we present the flux vector splitting (FVS) scheme, a finite difference
scheme used for the discretization of systems of hyperbolic conservation laws. In sec-
tion 3, we describe the details of our multigrid method for one-dimensional hyperbolic
conservation laws, and in section 4, we present an analysis for the TVD, consistency,
and convergence properties of the proposed multigrid scheme. In section 5, we extend
the multigrid scheme to two-dimensional hyperbolic systems. Finally, in section 6, we
demonstrate the effectiveness of our multigrid scheme by testing it on a number of
hyperbolic systems including Euler equations.

2. Systems of conservation laws. Consider a multidimensional hyperbolic
system of conservative laws,

d
(2.1) Ui+ > F(U)s, =0, 0<z,<1, t>0,
s=1
where U = (uy,...,un)T € R™, d is the number of dimensions, z = (z1,...,24) €

R? Fy(U) is an m-dimensional vector of flux function, and ¢ denotes time. We are
interested in finding the steady state solution of the system of equations given the
initial condition

U(x,0) = Up(x).

The boundary conditions are of either the Dirichlet or the Neumann type, which will
be made more precise in the theoretical analysis in section 4 and in the numerical
results in section 6.

There are various finite difference methods [28, 31, 7, 20, 23, 32] for discretizing
(2.1). We will use the FVS scheme to discretize the system of conservation laws. In
section 3, we will also use it as a smoother for the multigrid method. FVS [32] is
a scheme in which the discretization of the equations is performed according to the
upwind direction, given by

d
(22) Uf]ZJrl :U?_ZAS(FJ+%63 _FJf%es)v

s=1

where Ay = At/Axg is the CFL number, J is the index of the grid point, At is the
time step, Az is the spatial step in the x,; direction, and ey is the unit vector in the
x¢ direction. The flux differences are computed by the following approximation:

Fyise, = FF(UD) + Fryo (Ufye):
The positive and negative fluxes are given by
Fy (U}) = A*U7,

where AT and A~ are the positive and negative components of the Jacobian matrix
A= g—g. Let K be the matrix of right eigenvectors of A. Then,

AT = KATK,

where AT and A~ are the diagonal matrices whose entries are the positive and the
negative eigenvalues of A, respectively.
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For constant coefficient systems, the FVS scheme (2.2) can be rewritten as

d
(2.3) Ut = U7 =Y (NATUF = Uy ) = MA™ (UG, — UR)).

s=1

Note that we use the first order FVS scheme for illustration purposes only; other
high resolution schemes, such as the positive schemes [23, 20], can also be used.

3. One-dimensional hyperbolic conservation laws. We design multigrid
methods for hyperbolic systems based on the multigrid approach for the scalar con-
servation laws [33]. This multigrid method preserves monotonicity and is TVD for
scalar conservation laws, which are two key properties in obtaining efficient multigrid
methods. We first briefly review the multigrid approach for scalar conservation laws
and then extend the idea for systems of conservation laws.

Consider a scalar conservation law,

(3.1) ur + f(u)y =0, z € (0,1), t >0,

with appropriate boundary and initial conditions. The interval [0,1] is discretized
uniformly by taking the N points, x? =jxh, j=0,1,...,N—1, where h=1/(N—-1)
denotes the fine grid. Let u/ be the approximation of the exact solution w(xz}).
The boundary values u} and u% _, are of either the Dirichlet or the Neumann type.
Let b} be the fine grid right-hand side (RHS) function which is initially zero. In
general, the RHS function is nonzero for coarse grids. Given {x?}, j=0,1,...,N—1,
the grid points with even indices are selected as coarse grid points; i.e., {xfl}, ] =
0,2,...,N — 1, where H denotes the coarse grid. In a two grid method, the fine
grid solution is evolved by one time step using the FVS scheme (2.2), denoted by
@? The solution @? and the residual 77;7 are restricted to the coarse grid Q7 using
the restriction operators R, and R,, respectively. R, is an injection operator. R,
is an upwind restriction operator, the details of which are given in section 3.2. The
coarse grid RHS function is denoted by bf . The solution on the coarse grid is evolved

by one time step, where At = 2A¢", to obtain @'. The updated solution u}”l is

h
J
error P(QH — Ryu™);, where P is the interpolation operator. To summarize, given
the solution u” on the fine grid, the two level algorithm for computing u” ! is given

J J
below.

computed by correcting the fine grid solution u? with the interpolated coarse grid

Fine grid smoothing: ﬂ? = uj — A ;:_% — ff_%) + Athb?,
j=1,2,...,N—2.
1 - _
Fine grid residual: f;-l = m( ]}z_% - f;l_%) - b7,
j=1,2,...,N—2
(3.2) Restriction of solution: uf = Ruﬂ?,
j=24,...,N—3
. 1 _
(3.3) Coarse grid RHS: bf = Aa:H( ﬁr% - ff%) - Rrr;?,
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(3.4) Coarse grid evolution: ﬂf = uf — X j}i% - fﬁ%) + AtHbf,
j=24,...,N—3.
uﬂJrl = ﬂH7
(3.5) Fine grid update: ! ! ~
U?jl]- = ﬂ?‘fl + P(UH - Ruun)j—lv

j=24,...,N—1.

A multigrid algorithm is obtained by recursively applying the two level algorithm
on the coarser grids. Since, on each coarse grid, we use the updated solution, @”, from
the finer grid, we call this method the multiplicative scheme. Another approach is to
restrict and propagate u™ on all coarse grids; i.e., (3.2) is replaced by

ull =u?, j=24,...,N-3.
The resulting algorithm is called the additive scheme. For the additive scheme, bf can
be computed in two ways. We can either use (3.3) or set it to zero. Both approaches
have similar convergence rates. Setting bf = 0 enables parallel computation of the
algorithm.

We will extend the above multigrid methods to systems of hyperbolic conservation
laws in one dimension,

(3.6) U+ F({U), =0, 0<z<l,t>0,

where U is an m-dimensional vector. Given the appropriate initial and boundary
conditions, we are interested in computing the steady state solution of the system
(3.6). The basic principle of the multiplicative and additive multigrid methods is
essentially the same as those for scalar conservation laws. We perform smoothing on
the fine grid, restrict the solution to the coarser grids, and accelerate the propagation
on the coarser grids. However, the restriction and interpolation operators need to be
redefined, as there is a mixture of characteristics in a system.

3.1. Interpolation. The idea of upwind biased interpolation is to interpolate
values based on the direction of propagation of information. Consider the linear wave
equation us + u, = 0. In a two level method, given the coarse grid values ﬂﬁ 5 and
ﬁf, 7 =2,4,...,N — 1, we want to interpolate the solution at x?q' Since the wave
is propagating from left to right, the interpolated value is given by &?71 = ﬁﬁ 5. For
scalar hyperbolic conservation laws, the direction of propagation of information can
be determined using the sign of the characteristic speeds. If the sign is positive on
both coarse grid points, the information is propagating from left to right and the fine
grid solution is interpolated from the left. Conversely, if the sign is negative, the
interpolated value is from the right. For mixed signs (e.g., shocks and rarefactions),
upwind interpolation can also be defined [33].

Schemes for applying upwind biased interpolation to systems of hyperbolic equa-
tions, however, are not apparent since the characteristics for some characteristic vari-
ables can be to the right while others can be to the left. This is equivalent to the fact
that some eigenvalues of the Jacobian of F' can be positive and some can be negative.
One possible solution is to apply upwind interpolation to each characteristic variable
explicitly. This method works well when the right eigenvectors (i.e., K) are constant;
e.g., F(U) = AU where A is a constant matrix. In this case, let W = K~'U. Then
(3.6) becomes a decoupled system in the new characteristic variables W. One can
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easily apply the upwind interpolation to this system. In general, however, the right
eigenvectors are not constant. Then it would not be a good idea to apply upwind
interpolation to the characteristic variables (W; = K i 1Uj) from one grid point to

interpolate the values of the characteristic variables (W;_; = K ;_11 Uj—1) at another
grid point when K; and K;_; are different.

There is another more subtle issue of using characteristics explicitly for defining
upwind interpolation. Recall that the coarse grid correction step updates the fine grid
solution by interpolating the error from the coarse grid as given by (3.5). When (3.5)
is directly applied to systems, we have the fine grid update, [7]’11, as

Or =T, + PO =R U0, j=2,4,...,N—1.

For nonlinear equations, upwind interpolation based on characteristics will depend
on the solution being interpolated. Thus, if one tries to interpolate the coarse grid
error to the fine grid, the characteristics of the error will be used to define the upwind
direction, which may not necessarily capture the behavior of the solution. One may
interpolate UH by P; based on the characteristics of U and separately interpolate
R,U" by P, based on the characteristics of R,U". In general P; and P, are not the
same, and hence a different interpolation will be performed at the same grid point
for UH and R,U". In our experience, this inconsistency leads to slow convergence in
general. One may pick one of the two interpolation operators. In [33], the authors
apply P; to interpolate R,U". However, in general, it is not clear whether one should
choose Py or Po, and whether the upwind interpolation based on one solution would
be good for the other.

To address this issue, we note that upwind interpolation can be formulated as
solving a local Riemann problem [33]. Consider the linear wave equation and the
following local boundary value problem:

(3.7) er+e; =0, ./,C;?‘72 <z < x?,
| e, ah o, <x<azh ),

e(z,0) = H b b

e, ri_ <<z,

where 7 is an artificial time, and eﬁ 5 and ef are two given constant values as shown
in Figure 1. The steady state solution of (3.7) at x?_l gives the interpolated value.

In this case, the value is efl

i—2, which is the same as the value given by the upwind
biased interpolation.

A ;
e
|
|
: "
| ej
|
L g e
h n n i even
X, X5 X (7 )

Fic. 1. The initial data for a Riemann problem for defining an upwind interpolation. The data
consist of two constant states separated by a discontinuity at 50?71-
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We extend the local Riemann formulation for upwind interpolation to systems of
hyperbolic equations. In this case, we do not interpolate the coarse grid error onto
the fine grid and then update the fine grid solution. Instead, we update the fine grid
solution at the coarse grid points using the coarse grid solution. At the noncoarse
grid points, we determine the values by upwind interpolation. More precisely, for

j=2,4,...,N — 1, we solve the following local Riemann problem:
(3.8) U, +FU), =0, alt y <x<al,
T o
Ui, rj_ g < <aj,
where U h, and U I are the fine grid values of U at 2/, and 2}, respectively, after

coarse grid correction. We compute the steady state solution by using the FVS scheme
(2.2) for each noncoarse grid point. The upwind interpolation is essentially carried out
by the upwind discretization of the FVS scheme. Since the local Riemann problem
involves only one grid point, the computation is very efficient.

We note that the interpolation can be performed by computing the exact solution
to the local Riemann problem. For the linear wave equation example, the exact
solution at a:?,l is @}’ 5, which is the same as (3.9). In general, however, not all
the hyperbolic equations have analytical solutions. In order for the method to be
applicable to general hyperbolic systems, we describe the interpolation procedure as
solving a local Riemann problem numerically to steady state.

The proposed interpolation approach resolves the two issues addressed above.
The FVS scheme captures the different characteristics through the two flux functions.
Thus, we do not need to determine the characteristic direction for each characteris-
tic variable in order to apply the upwind interpolation. Second, the local Riemann
problem is based on the fine grid values of U, and hence we avoid the inconsistency
inherent in choosing whether to apply the upwind interpolation to U or R,U".

We remark that this interpolation approach results in a different coarse grid cor-
rection. Consider the one-dimensional linear wave equation u; + u, = 0. In [33], the
coarse grid update at a noncoarse grid point is

a?—lza?—l"‘(ﬂf—z_“?—z)a j=24,...,N—-1

The new approach performs upwind interpolation directly on @ from coarse grid
points to noncoarse grid points. Thus,

(3.9) iy =aity, j=2,4,...,N—1.

We will show in section 4 that the new interpolation approach will still result in a
multigrid scheme which is TVD.

3.2. Residual restriction. For scalar hyperbolic equations, an upwind biased
residual restriction can be defined based on the characteristic direction [33]. Consider
the scalar conservation law (3.1) again. The characteristic direction can be determined
by the sign of the derivative of the flux, f'(u). Given the fine grid residual, r;?, we
want to compute the residual on the coarse grid, rf . Suppose fi(uj-1), fj(u;), and
fj(uj11) are all positive; then the information is propagating from left to right, and
hence averaging for the residual is performed from the grid point towards its left as
given by

(3.10) rff =050+ ], j=24,...,N—1,
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and rdf = 0. Similarly, when the wave is locally propagating to the left, averaging for
residual is performed from the right. For details on special situations such as shocks
and rarefactions, we refer the reader to [33].

The upwind residual restriction technique described above works well since the
scalar unknown is either moving forward or backward at each grid point. However,
a system of hyperbolic conservation laws is composed of a mixture of characteristics;
i.e., it contains both forward and backward moving components. Thus, this approach
cannot be directly extended to the system case. The main issue is that it is not
apparent what the upwind side is at each grid point for systems, and hence averaging
for the residual based on the upwind direction becomes infeasible.

Nevertheless, the concept of propagation direction of information can still be
exploited for systems of equations. The FVS intercell numerical flux is composed of
two contributions,

(3.11) Fir=FHUN+ F(UYy),  G=1,2,...,N =2,

where one comes from the forward component of the flux, F j+, and the other comes
from the backward component of the flux, F},, as shown in Figure 2. Using the idea
of the FVS numerical flux splitting (3.11), we will split the fine grid residual, R;-l, j=
1,2,..., N — 2, similarly into two parts, based on the forward and backward flux
components. More precisely, let (R;?)Jr be the residual from the forward component
of fluxes, and let (R;-L)’ be the residual from the backward component of fluxes. Then
Rl = (R")] + (R");, where

(R = o[ (UF) — B (U] — (BM)]

. 1 _ _ .
(Rh)] = m[FjJrl(Uthrl) - F] (Ujh)] - (Bh)] )
j=1,2,...,N—2.

We note that R} = RR,_, = 0. (Bh);r and (Bh); are the positive and negative RHS
functions which will be made more precise later in this section.

In order to define the upwind restriction for the residual, we note that the Jacobian
matrix, AT = %, is positive semidefinite and A~ = %F—U_ is negative semidefinite.
The eigenvalues determine the characteristic direction of the system. AT has positive

or zero eigenvalues, and the information is propagating from left to right. Similarly,

Fj—l!?. Fj+1.’2
F.,  F,|F Fi|F,, — F,
X
Jj=1 J J+l
F1c. 2. The forward and backward fluxz components of the intercell flux functions F]._l and Fj_‘_L-
2 2
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A~ has negative or zero eigenvalues, and the information is propagating from right to
left. We exploit these directionality properties of the FVS scheme to perform upwind
biased residual restriction. For the positive component of the residual, averaging is
performed from the grid point towards its left as given by

(R™M)] =0.5[(RM)T +(RM) ], j=24,...,N-3.

For the negative component of the residual, averaging is performed from the grid
point towards its right,

(R™); =05[(R"); +(RM; 4], §=24,...,N=3

The coarse grid residual, Rf , is then given by the sum of the positive and negative
coarse grid residuals,

(3.12) R = (R")T +(R™);,  j=24,...,N-3,
RI' =0, j=0,N-1

Following a similar idea, the coarse grid RHS, Bf , is then defined by

H _ Hy+ H\— P —
Bi' =0, J=0,N-1,

where
L
Az
_ R _ _ _
(BH)j = A_x[Fj-;-z(Uﬁ-z) - Fj (U]H)] - 0'5[(Rh)j + (Rh)j+1]7
j=2,4,...,N—3.

(BM)} = = (US) — FEy (U )] = 0.5[(RM)] + (RM) 4],

This residual restriction approach extends the previous approach for scalar con-
servation laws. Consider the scalar equation (3.1) again. Suppose the wave is locally
propagating to the right. Then the residual restriction based on characteristics is
given by (3.10). In our new approach, rf = (7"H);r + (TH);, j=24,...,N—1.
However, since the sign of the characteristic speed is positive, the backward moving

component of the flux is zero; i.e., (rf)~ = (r")~ = 0. As a result, rf = (rH);-|r =
0.5[(7”1)3|r + (rh);ll] = 0.5[(r"); + (7"),;_1], which is the same as (3.10). By a similar

calculation, for other characteristic directions, including cases of shocks and rarefac-
tions, it can be shown that the new approach recovers the same formulas as given by
the upwind restriction technique defined for the scalar case. This generalization has
the advantage that it does not require explicit knowledge of the characteristics as in
[33], and hence can be easily applied to the system case.

3.3. Algorithm. The multiplicative multigrid time stepping scheme for one-
dimensional systems of hyperbolic conservation laws is given in Algorithm 1. We
denote the functions on the finest grid by (1), the second grid by (2), and so on. We
denote the functions on the coarsest grid by (L). FVS scheme (2.2) is used as the
smoother. The interpolation operator P solves a local Riemann problem to the steady
state; see (3.8).
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ALGORITHM 1. Multiplicative multigrid scheme for one-dimensional systems of hy-
perbolic conservation laws.

v =y, BM =0

Define U®) = MG(U®, B®)):

if k=L then

09 = U = AEL, — FP) + A0BF (=2t 0k )
else

T =U® - aF®, — FO) 4 a0B® (j=2k1200801 )

2

(k) _ )’ K o _

R} = m<FHz—F >—B§-’ (j=2t"12-201 )

U}’““’—R (o (j=2k2.2% )

—(k .

B = A (Y - FMY) R B (=2t202h )

ﬁ(k+1) MG( U (k+1) B(k+1))

U}’“’ _ U}’““) (j=2F2-2% )

~ k ~ .

00, = PO*E T T (j=2k,2. 2k )
end if

Untt = MGU®, BM)

On each coarse grid k, we restrict and propagate the most recently updated

solution U(k_l) from the finer grid in the multiplicative scheme as given in Algorithm
1. If we restrict and propagate U*) on all the coarse grids as

(k+1) _ 77(k) - ok k

then we obtain the additive multigrid time stepping scheme.

In the next section, we prove that both the two level multiplicative and addi-
tive time stepping schemes satisfy the TVD, consistency, and convergence properties
for constant coefficient linear systems of hyperbolic conservation laws. In Appendix
A.1, we prove that the two level schemes for the linear wave equation preserve mono-
tonicity. These properties are important in ensuring that the multigrid methods are
nonoscillatory and in turn result in smooth and fast convergence of the multigrid
solution.

4. Linear analysis. In this section, we analyze the TVD, consistency, and con-
vergence properties of multigrid time stepping schemes for solving an m xm hyperbolic
system of linear conservation laws given by

(4.1) U+ AU, =0, O<zx<1,t>0,

where A is an m X m constant matrix. Without loss of generality, we assume a zero
boundary condition and a zero RHS. We use the FVS scheme (2.2) as the smoother
for the multigrid algorithm. We first define the TVD and consistency preserving
properties.

DEFINITION 4.1. Given any set of data U™, let U1 be computed by one multigrid
cycle. Then the multigrid method is called TVD [22] if

V(U™ <TV(U™),
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where the total variation of a function U is defined in terms of its vector norm as

(4.2) TV({U) = Z 1Uj = Uj1]-

DEFINITION 4.2. Let ¢ be any numerical scheme for solving a PDE. U™t =
d(U™) is a consistent scheme if U* = ¢(U*), where U* is the exact solution.

Before we present the analysis, we make a useful observation about the coarse
grid RHS BJH .

LEMMA 4.3. The coarse grid RHS function is zero for constant coefficient linear

systems.

Proof. For the two level multiplicative scheme given by Algorithm 1, we rewrite

H with j = 2,4,..., N — 3 for constant coefficient linear systems as
1 _
Bl = MH (AU = UML) + A7 (U = U) = SR + (RI_)*)
~ SR + (R
1
= oA (AT = Ujlo) + AU}y = T}')) = 2Axh (4707 ~Uj)
1
+ATO = ULg) = 53 (A7 (O = UP) + A (T = Tl)
=0. O

For constant coefficient linear systems, it is possible to prove stability by measur-
ing the total variation in terms of wave strengths instead of using the standard vector
norms [22]. Let K be the matrix of right eigenvectors of A and define W = K~1U.
The total variation for constant coefficient linear systems can then be computed in
terms of its characteristic variables.

LEMMA 4.4 (see [22]). The total variation of an m-dimensional vector U can be
computed in terms of W as

U) = i TV (W;
=1

where TV (W;) is the total variation of the ith characteristic component.

We assume that A has my positive eigenvalues and mo negative eigenvalues, where
my1 + mgo = m. Without loss of generality, we assume that the vector of positive
eigenvalues, a™, of A is ordered before the vector of negative eigenvalues, a~. Thus
we write W as

(4.3) W= [p }
q

where p = [p1,p2,...,Pm,]) I8 an mi-dimensional vector with positive sign for the
characteristic speeds and ¢ = [qm,+1, @m;+2; - - - » @m] 18 an mo-dimensional vector with
negative sign for the characteristic speeds.

In the following theorem, we analyze the TVD properties of the multigrid method
for the system of equations (4.1).

THEOREM 4.5. Let U™ be the solution at time step n; then,

TV(U™™) <TV(U™)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/19/14 to 129.97.140.11. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

MULTIGRID METHODS FOR HYPERBOLIC SYSTEMS 597

for both the two level multiplicative and additive multigrid time stepping schemes.
Proof. From Lemma 4.4 and (4.3), we have

m

(4.4) VUt = ZTV Y Y v,

i=mi1+1

We now compute TV (pi't1), i = 1,2,...,my, using Lemma A.4. Let J = {2,4,
N —1}. We assume zero boundary conditions and (p;)7 = 0, j < 0. From the CFL
condition, we have 0 < |)\a;r| <1, and

P =D 1) = )+ ) — ()]
jeTJ

< (1= 2a)?[((00)} — (p)7-0)l + (1 = A ((p)f -1 — (p2)] o))
+ A (L= 2a)|((pa)]-1 = (0i)j—2) |+ Aag" (1 = Xa)[((pi) o — (i)} 5]

+ Aa (1= 2 [((pi)7—2— (pi)j—3) [+ A" (1 = X )[((p) -5 — (Pi) 7))
+ (A )2 [((Pi)—5 — 0)F-0)| + A2 (Pi)]—s — (pi)]5)]
< (1= Aa)? +2x0 (1= Aay) + (A )?)TV (p]')
(4.5) =TV (p").
Similarly TV (¢ "H) where i = mj1 +1,m1 +2,...,m is computed using Lemma A.4.

We note that with zero boundary conditions, ( ) =0,7>N-1

gt =D @) = (@) + @) — (@)

JjET
= Z | )‘O‘ QZ g+3 (Qi)?Jrz) + (Aa;)z((Qi)?+2 - (Qi)?Jrl)
JjET
= Aoy (1+ Ay )((60) 742 — (@0)741) — Aoy (1 + Aoy )((¢6) 741 — (@0)])
— Aoy (1+ A )((¢0) 11 — (@0)]) — Aoy (L4 Aoy ) (@) — (@a)j-1)
(4.6) + (1 2% ((@)] = (g0)7-1) + (1 + A )*((0:)f—1 — (@)]-2)I-

We have the CFL condition as 0 < |Aa; | < 1. Since o; < 0, (4.6) can be rewritten
as

TV (™) < Y00y P 1((@)fes — (@)f2)l + Ay )?1((@)f 2 = (@)f4)]

JjeET

= Aoy (1 + Aoy )[((g0) 2 — (@) 1)] = Aa (1 + Aoy )I((0) 1 — (@:)F)]
= Ao (1 + Aoy )[((g0) 1 = (@)7)] = Aoy (1 + Aoy )[((g)F — (43)5-1)]
+ (12 )?|((@)] — (@)7-0) + 1+ 2a7)?((90)7-1 — (a:)]-2)]

< (A ) —2xa; (14 Aay )+ (1 + Aay ) YTV (q)
7 =TV(g)

Hence by (4.4), (4.5), and (4.7), the multiplicative multigrid time stepping scheme is
TVD for systems of constant coefficient linear hyperbolic conservation laws.
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Similarly for a two level additive scheme, TV (p+!)

computed using Lemma A.5,

TV(pi ) < 3= M) ((@)f — 0)f-)l + @ =)l (@)1 — (i) -2)]
iedJ
+ A ()]s = (Pa)—s)] + Aagf [((P)—s — (Pi)}—0))
< (1=Aa} + 2TV (})
(4.8) =TV({p?).

, where ¢ = 1,2,...,my is

TV(q?H), i=my1+1,m; +2,...,m, is obtained from Lemma A.5 as

TV (g™ <> =Xy [((@)]4a — (@) 70| = Aoy (@)1 — (@0)7)]
jeTg
+ (L4 A )[((@)] — (@)7—0) + (1 + Ao )[((¢:)7-1 — (¢:)7-2)]
< (=X +1+ X )TV (q})
(49) — V(D).

Thus, by (4.4), (4.8), and (4.9) the additive scheme for constant coefficient linear
systems also satisfies the TVD property. O

The analysis for consistency and convergence properties is presented in the fol-
lowing theorems.

THEOREM 4.6. Both the multiplicative and additive time stepping schemes for
constant coefficient linear systems are consistent.

Proof. The characteristic form of the linear system (4.1) is given by

(4.10) W, + AW, =0, O<z<l1, t>0.

We rewrite (4.10) as two separate equations: one for vector p associated with positive
eigenvalues o™, and the other for vector ¢ associated with negative eigenvalues o~
using (4.3):

(4.11) pi+ap, =0,
(4.12) g +a gy =0.

Suppose p™ = p* is the exact steady state solution of (4.11), which is given by p; =
ps, 7 =0,1,...,N — 1. We then compute p?“, j=1,2,...,N — 1, using a k-level
additive scheme. By Lemma A.5,

p}”l = (1- o™ + Xa™)p§ = pg-

Similarly, if ¢"™ = ¢* is the exact steady state solution of (4.12), which is given by
G =4qn-1, 3 =0,1,...,N — 1, then q;”rl, 7 =0,1,..., N — 2, is computed using
Lemma A.5,

G =(1+Xa” =X )gy_y = a1
By Definition 4.2, the k-level additive scheme is consistent for each scalar conservation
law in the W-space, and hence in the U-space as well. The consistency of the multilevel
multiplicative scheme can be proved using similar reasoning; we omit the details. a
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THEOREM 4.7. Both the additive and multiplicative time stepping schemes for
constant coefficient linear systems are convergent.

Proof. Consider the linear system (4.1). Without loss of generality, we assume
that the RHS and boundary conditions are zero. For the two level multiplicative

scheme, (pi)?"’l, j=2,3,...,N —1,is given by Lemma A.4. In matrix notation, we

have pi™! = Mj, . pF, where M, is an (N — 2) x (N — 2) iteration matrix. For
notational convenience, we define ¢ = /\a;r. The iteration matrix is then given by
Mli/lult =
[(1—c)? 1
(1-¢)? 0
c(l—c) e(l—c¢) (1—c¢)?
c1—c¢) c(l—¢) (1—e¢)? 0
0 2 c(1—¢) c¢(1—c) (1—c¢)?
c? c(1—¢) c(1—c) (1—c)? 0
c? c(l1—¢) c¢(1—c) (1—c¢)? 0
L 0 c? c(1—¢) c¢(1—¢) (1—¢)2]

Note that My, is a lower triangular matrix, and hence its eigenvalues (u4;,.);5
j=1,2,...,N — 2, are given by the entries on the diagonal; i.e., they are equal
to either 0 or (1 — Aa;)2. With 0 < |A\aj| < 1, the eigenvalues of Mj, . satisfy
|(uisue);] < 1. Similar results are obtained for the scalar equations with negative
characteristic speeds using Lemma A.4. Hence, the two level multiplicative scheme
is convergent. We note that convergence can also be proved for the multilevel case,
whose details are omitted due to space limitations.

For a k-level additive scheme, we have pI'™' = M3 p, where M} 4 is an (N —
2F=1) x (N — 2*71) iteration matrix constructed from Lemma A.5. M}, is a lower
triangular matrix with eigenvalues, (1% 4q4);, 5 = 1,2,..., N — 2871 equal to either
0 or (1 — Aa;f). The CFL condition 0 < |[Aaj| < 1 implies that |(ul,4);] < 1.
Therefore, the multilevel additive scheme is convergent for all the scalar characteristic
equations with positive characteristic speeds. It can be proved in a similar way that
the scheme is convergent for the scalar equations with negative characteristic speeds
using Lemma A.5. The multilevel additive scheme is convergent in the W-space, and
hence convergent in the U-space. a

5. Two-dimensional systems of hyperbolic conservation laws. A two-
dimensional system of hyperbolic conservation laws can be written as

(5.1) U +FU),+GU), =0, O<z, y<l,t>0,

where F(U) and G(U) are m-dimensional flux vectors in the x and y dimensions,
respectively, and U is an m-dimensional vector of conserved quantities. We will apply
the idea of the one-dimensional multigrid time stepping scheme to two dimensions.
In particular, we will describe the details of the construction of the coarse grids, the
interpolation, and the restriction operators.

Standard multigrid methods for two-dimensional problems use either the typical
fully coarsened grid or a semicoarsened grid. There are a few inherent issues with these
types of coarse grids for hyperbolic problems which may results in slow convergence
of the multigrid method. Suppose we are solving the scalar wave equation u; +u, = 0
in two dimensions with initial conditions, as given in Figure 3(a), using a standard
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o[ o[ o o o[ o[ o o
1[ o[ o o 1IN
% 0 0 0 o % o0 o0 o0 o

(a) (b)

F1G. 3. Demonstration of the scenario in which the multigrid method using a standard fully
coarsened grid would fail. (a) The initial and boundary conditions for us +uz = 0. (b) Steady state
solution is nonzero only along a noncoarse grid line.

(a) (b) (c)

F1G. 4. The coarse grids used in the two-dimensional multigrid time stepping scheme. (a) The
dots represent the coarse grid points on QLH . (b) The triangles represent the coarse grid points on
O2H  (c) Q| the grid obtained when the two coarse grids QVH and Q%H are put together.

fully coarsened grid. Note that the steady state solution, shown in Figure 3(b), is
nonzero only along a noncoarse grid line and is zero elsewhere. If injection is used
for restriction of the solution, then this information on the noncoarse grid line will go
completely unseen on the coarse grid. Hence, the coarse grid evolution of the solution
would not help in accelerating the wave propagation. Full weighting restriction would
spread out the solution so that the solution on the coarse grid is not zero, but it would
still not resolve the fundamental issue.

One possible way to avoid the problem of missing information is to use a semi-
coarsened grid [33, 26]. However, with the use of explicit time marching schemes for
hyperbolic equations, it is necessary to satisfy the CFL condition, which limits the
size of the time step by the minimum of the spatial grid size. In semicoarsening, the
spatial grid size increases by a factor of two along one dimension, while the spatial grid
size in the other dimension remains unchanged from that of the fine grid. Hence, the
time step size on the coarse grid cannot be larger than the time step size on the fine
grid. As a result, using a semicoarsened grid would not accelerate wave propagation,
as there is no increase in the size of the time step on the coarse grid.

To address this issue, we propose using two fully coarsened grids, as shown in
Figures 4(a) and 4(b). Given a fine grid (x?, yM), 3,0 =0,1,..., N —1, the coarse grid
shown in Figure 4(a) is defined such that the grid points with even indices for j and [
are selected as coarse grid points: (x}’H, yll’H), 7,0=0,2,..., N—1. The other coarse
grid, as shown in Figure 4(b), is defined such that the grid points with odd indices
for j and [ are selected as coarse grid points: (x?H,ylZ’H), 7,0=1,3,...,N —2. The
superscripts h, {1, H}, and {2, H} represent functions on the fine grid and the two
coarse grids, respectively.
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The grid size for the coarse grids QY and Q% increases by a factor of two
from that of the fine grid in both dimensions, as shown in Figures 4(a) and 4(b).
This means that a time step of size 2At" can be used for both of these coarse grids
without violating the CFL condition, in contrast with the semicoarsening approach.
Furthermore, from the combined coarse grid, Q¥ , shown in Figure 4(c), we can see
that coarse grid points are selected in such a way that coarse grid points exist on
every grid line in both the x and y directions. This ensures that there is no loss of
information due to disturbances along the noncoarse grid lines, as in the case of full
coarsening.

Further coarse grids are obtained by recursively applying the coarsening technique
described above to each of the grids QY and Q% . Figure 5 shows the coarsening
of the grid QY. The computational complexity of our approach is the same as that
of a multigrid method using a semicoarsened grid.

(a) (b)

F1G. 5. The grids obtained from coarsening the grid QUH .

5.1. Interpolation. In this section, we describe how a coarse grid solution is
interpolated to the fine grid. At the coarse grid points, we just copy the values to the
fine grid, as shown in Figure 4(c). For interpolation of the solution at the noncoarse
grid points, (x?, ylh)7 we will apply the same idea as in one dimension. More precisely,

we solve a local boundary value problem at (x?, ylh), see Figure 6. Notice that all the
neighboring grid points of (2, y[) are coarse grid points whose values are known from
the coarse grid solution. The interpolated value of U ;fl is then given by the steady
state solution of (5.1).

H
U}'JIL

B
Uy U;.=?

=Ll

H
UJI[,A’

H
U;,.’ 1

Fic. 6. Construction of a local bOUTLda7y value p oblem Jor inte7p0lati0n of the solution at
(ZE i yh)
JrIl

5.2. Residual restriction. The idea for residual restriction in two dimensions
is the same as that described for one-dimensional systems in section 3.2. We will
split the residual into forward and backward components and then perform upwind
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restriction on the corresponding components accordingly. On the fine grid, for j,1 =
1,2,..., N — 2, the forward and backward components of the residual are defined as

(RM)*, = -

1
3l T Agh Ay h[
1

(Rh)j I A{Eh [ j+1, l(U]Jrl l) FJTl(UJ}?l)] + A—yh[FjTlJrl (Uj}flJrl) - FJ l(U l)] (Bh)J Al

[EHUN) = F (U )] + LU = B Ut )= (BM],

where B" is the RHS on the fine grid, F+ and F~ are the forward and backward
flux components, and Az" and Ay" are the fine grid sizes in the 2 and y dimensions,
respectively. We note that (Rh)zl = (Rh);l =0,5l=0N-1

We first consider the restriction of the residual on the coarse grid, QY. For the
forward component of the residual, the information is propagating in the positive z
and y dimensions. We compute the residual on the coarse grid by averaging along the
upwind directions:

(RM)F = 0.25[(R") ], + (R") T, ]+ 0.25[(RM ] + (R")F, 1), 4,1 =2,4,...,N =3,

Similarly, we compute the backward component of the residual on the coarse grid by
averaging along the right and top sides:

(RM)5, = 0.25[(RM);, + (R") 7, ] + 0.25[(R");, + (R");,

il =24, N -3

J+1,
Combining the two components gives the coarse grid residual on Q¥ :

Ryt = RV F + (RV) jl=2,4,...,N—3.

Jl 3,0

For the other coarse grid, Q% the restriction of the residual is computed similarly
as

RZH (R2H) (R2H)

il 5,0=13,...,N =2,

3,0

where

(RQ’H);F,I = 0'25[(Rh);r,z + (Rh)g 1, l] +0.25[(R" ) + (R )gz s
(R*M)7, = 0.25[(R")7, + (R")j,y )] + 0.25[(R" ) ( )J z+1]

~
OJ

6. Numerical results. In this section, we demonstrate the effectiveness of our
multigrid time stepping scheme numerically by several examples. The stopping criteria
is that the residual norm is smaller than 10~%. First we provide the results for a simple
linear system and then for other nonlinear systems, including the Euler equations.

Ezxample 6.1. We numerically verify that the multigrid time stepping schemes
are nonoscillatory and have optimal speed of propagation in reaching the steady state
solution. The linear system of hyperbolic conservation laws is given by

(“) +(“) -0, O<xz<1, t>0.
v t ur

The boundary condition is chosen as 0, and the initial condition is a square wave for
both u and v. The steady state solution for this system is (u,v) = 0, as given in
Figure 7(d). We apply the three level multiplicative multigrid scheme to solve the
system with a CFL number of 1. The plots for u at different multigrid steps are

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/19/14 to 129.97.140.11. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

MULTIGRID METHODS FOR HYPERBOLIC SYSTEMS 603

1 1 1 1
0.8 H 0.8 H 0.8 H 0.8
0.6 0.6 0.6 0.6
0.4] 0.4] 0.4] 0.4]
O.ZJ ‘ 0.2 ‘ ‘ 0.2 ‘ L 0.2

0| 0|

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
N N N N

(a) (b) () (@)

Fic. 7.  The numerical solution given by the three-level multiplicative scheme for one-
dimensional linear system, % = 1. (a) Multigrid step = 0, (b) multigrid step = 10, (c) multigrid
step = 20, (d) multigrid step = 29.

shown in Figure 7 for the multiplicative scheme. It can be seen that the square wave
remains a square wave as it propagates. We omit the results for v, as they are similar
to the solution u. While it takes 236 iterations to propagate to the steady state on
a fine grid with a grid size of Az = 1/256, the three level algorithm converges in
29 iterations. Thus, the speed up of the three level method is 8.14. Our multigrid
method achieves a speed up close to 2%, where L is the number of multigrid levels,
while the theoretical optimal speed up of a standard multigrid method was predicted
to be 2L — 1 by [14, 5].

Example 6.2. We consider a system of nonlinear hyperbolic conservation laws

described by
1,2 4 1,2
SU° + FU
(ﬂ +(2,72 ) =0, o0<az<l,t>0,
v/, 5V° + suv N

with the Neumann boundary condition and the initial condition

1 ifx =0,
u(z,0) =v(x,0) =4 —1 ifx=1,
0 otherwise.

The steady state solution is obtained as

1 ifz<3,
u=v= . 1
-1 ifx > 3.

Figure 8 shows the plots for u at different multigrid steps for a three level mul-
tiplicative scheme with a fine grid size of Az" = 1/256 and a CFL number of 0.1.
The steady state solution is given by Figure 8(d). The solution v shows similar re-
sults which are not presented here. It is observed from Figure 8 that there are no
oscillations in the solution, and the shock is resolved as a sharp discontinuity without
any wiggles. This ensures an optimal speed of propagation of the wave, resulting in
convergence in a small number of multigrid cycles.

The speed ups for different multigrid levels and different grid sizes for the multi-
plicative scheme are given in Table 1. The speed up consistently increases with the
increase in the number of coarse grids used.

Ezxample 6.3. The one-dimensional Euler equations of gas dynamics constitute a
hyperbolic system of conservation laws given by

p pu
(6.1) pul| + | pu®>+ P =0,
E u(E+ P)

t

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/19/14 to 129.97.140.11. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

604 SWATHI AMARALA AND JUSTIN W. L. WAN

1 ﬁy 1 —H 1 *H 1 *‘

-0.5] -0.5] H -0.5] -0.5]
| L LL
-1 — -1 — -1 -1

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
N N N N

(a) (b) (c) (d)

Fic. 8. The numerical solution given by the four level multiplicative scheme, % = 0.1.
(a) Multigrid step = 20, (b) multigrid step = 40, (c) multigrid step = 80, (d) multigrid step = 120.

TABLE 1
Speed up for different multigrid levels and different grid spacings for a one-dimensional non-
linear hyperbolic system.

1/256 | 1/512 | 1/1024 | 1/2048 | 1/4096
L=2] 391 | 3.96 3.08 3.99 3.99

L= 1098 | 11.25 | 11.44 | 11.51 | 11.56
L=4 ] 2614 | 27.82 | 28.75 | 20.17 | 29.46
L =5 5683 | 63.10 | 66.84 | 68.91 | 69.99

where p, pu, and E are conserved quantities of density, momentum, and energy. u is
the velocity and P is the pressure. The equation of state is given by

(6.2) P=(y—1)(E—-0.5pu?), ~=14.

We compute the steady state solution for (6.1) using two types of initial value
problems (Sod tube and Lax tube) and the Neumann boundary condition. The initial
data for the Sod tube problem is given by

(1,0,2.5) ifr <1,
(p, pu. B)(z,0) = { (0.125,0,0.25)  ifz > 1.

Figures 9, 10, and 11 show the density, velocity, and pressure plots, respectively, at
different intermediate multigrid steps computed by a four level multiplicative scheme
with a CFL number of 0.1 for a grid size of 1/1024. Note that the multiplicative
scheme introduces minor oscillations. This behavior is expected, as the multiplicative
scheme in general does not preserve monotonicity and is not TVD when the number
of grids is greater than two [33]. However, these oscillations are very small and do
not affect the speed of convergence of the multigrid algorithm, as shown in Table 2.

Ezample 6.4. We apply the multigrid schemes to (6.1) for the Lax tube problem,
in which the initial conditions are given by

(0.445,0.311,8.928)  ifx < 1,

b 7E 70 - .
(p: pu, E)(z,0) {(0.5,0,1.4275) ifo> 1,

The convergence results for the Lax tube problem for different levels of the multi-
grid method are given in Table 3. The speed up results again show that taking larger
time steps on coarser grids results in faster multigrid convergence.
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Fic. 9. Density plots for the Sod tube problem given by the four level multiplicative scheme,
% = 0.1.0 (a) Multigrid step = 0, (b) multigrid step = 60, (c) multigrid step = 100, (d) multigrid
step = 150.
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Fia. 10. Velocity plots for the Sod tube problem given by the four level multiplicative scheme,
% = 0.1.0 (a) Multigrid step = 0, (b) multigrid step = 60, (c) multigrid step = 100, (d) multigrid
step = 150.
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Fic. 11. Pressure plots for the Sod tube problem given by the four level multiplicative scheme,
% = 0.1. (a) Multigrid step = 0, (b) multigrid step = 60, (c) multigrid step = 100, (d) multigrid
step = 150.

TABLE 2
Speed up for the Sod tube problem.

1/64 | 1/128 | 1/256 | 1/512 | 1/1024
L=2 3.26 3.35 3.41 3.44 3.49
L= 8.39 8.17 8.63 8.80 8.98
L= 19.40 | 18.00 18.83 19.82 20.33
L=5| 4273 | 37.24 38.11 40.83 42.87

TABLE 3
Speed up table for the Lazx tube problem.

1/64 | 1/128 | 1/256 | 1/512 | 1/1024
L=2] 386 | 389 | 389 | 301 3.95

L= 977 | 9.99 | 10.00 | 9.93 | 10.23
L =4 | 21.34 | 22.23 | 2257 | 22.31 | 22.37
L =05 | 41.59 | 4575 | 47.79 | 47.57 | 47.37
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Ezxample 6.5. The two-dimensional Euler equations constitute a system of hy-
perbolic conservation laws described by

P pu pv
pu pu?+ P puv
+ 2 = 07
pU puv pv° + P
E), u(E+ P) v(E + P)
z y

and the two-dimensional equation of state is given by
P =(y—1)(E - 0.5p(u* +v?)), v =14.

We conduct our experiments on Riemann problems for two-dimensional gas dy-
namics in which the initial data are constant in each quadrant [23]. The initial
data are restricted so that the only types of behavior allowed at interfaces are a one-
dimensional elementary wave, a one-dimensional shock, a one-dimensional rarefaction,
and a contact discontinuity. There are a total of 19 genuinely different configurations
for a polytropic gas [23]. We test our algorithm on six different initial configurations.

The rectangular domain for the computations is {(z,y)|0 < z,y < 1}. The
initial conditions are listed as (P;, p;, us,v;), where @ refers to the quadrant number.
The initial data for the six configurations are given in Table 4. Here C' denotes
configuration, and the numbers listed for each configuration refer to those used in [23].

TABLE 4
Initial data for the six configurations for two-dimensional Euler equations.

Quadrant 2: (Pa, p2,u2,v2) Quadrant 1: (P1, p1,u1,v1)

C1: (0.4,0.5197, —0.7259, 0) C1: (1,1,0,0)

€2: (0.4,0.5197, —0.7259,0) c2: (1,1,0,0)

C4: (0.35,0.5065, 0.8939, 0) C4: (1.1,1.1,0,0)

C5: (1,2, -0.75,0.5) C5: (1,1, -0.75,—0.5)

C9: (1,2,0,-0.3) C9: (1,1,0,0.3)

C11: (0.4,0.5313, 0.8276,0) C11: (1,1,0.1,0)

Quadrant 3: (Ps, p3, u3, v3) Quadrant 4: (Pa, p4,u4,va)
C1: (0.0439,0.1072, —0.7259, —1.4045) C1: (0.15,0.2579, 0, —1.4045)
C2: (1,1,-0.7259, —0.7259) C2: (0.4,0.5197,0, —0.7259)
C4: (1.1,1.1,0.8939, 0.8939) C4: (0.35,0.5065, 0,0.8939)
C5: (1,1,0.75,0.5) C5: (1,3,0.75,—0.5)
C9: (0.4,1.039,0, —0.8133) C9: (0.4,0.5197, 0, —0.4259)
C11: (0.4,0.8,0.1,0) C11: (0.4,0.5313,0.1,0.7276)

We apply the multiplicative multigrid scheme to compute the steady state solu-
tion of the Euler equations. Figures 12 and 13 demonstrate the propagation of the
density and velocity, respectively, using a three level multiplicative scheme on a fine
grid size of 65 x 65 for the initial configuration 4. It can be seen that the solution
converges smoothly to the steady state without any major oscillations. The steady
state solutions for density and velocity are shown in Figures 12(d) and 13(d), respec-
tively. On a single grid, the FVS scheme (2.2) takes 4340 iterations to converge to
the steady state. The three level multiplicative scheme takes 510 multigrid cycles
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Density
Density

Density
Density

(c) (d)

F1c. 12. Density plots for two-dimensional Euler equations (configuration 4) given by the three
level multiplicative scheme, A = 0.1. (a) Multigrid step = 0, (b) multigrid step = 50, (c) multigrid
step = 100, (d) multigrid step = 510.

giving a speed up of 8.51. In Table 5, we present the speed up for different levels
of the multiplicative method for the six initial configurations for a fine grid size of
65 x 65. While the theoretical optimal speed up of an L grid method was computed
asymptotically as 2% — 1 [14, 5], in practice our multigrid scheme achieves speed up
much higher than the theoretical optimal for certain initial configurations, as shown
in Table 5.

As a comparison, Kanarachos and Vournas [18] developed a multigrid method for
the Euler equations using full weighting and bilinear interpolation techniques. With
three grid levels, they obtained a reduction in the number of work units by a factor
of 5-9 (compared to a single grid), while our upwind biased multigrid technique gives
a factor of 4-13 for the different initial configurations.

7. Conclusion. As with the scalar conservation laws, we have shown that the
upwind biased restriction and interpolation techniques result in efficient multigrid
methods for systems of hyperbolic conservation laws as well. Although the systems
are a mixture of characteristics, we can still exploit the direction of propagation of
information for the restriction and interpolation operations. The interpolation is for-
mulated as solving a local Riemann problem to steady state, and we perform upwind
restriction by splitting the residual into positive and negative components based on
the idea of flux vector splitting. We theoretically proved that both the additive and
multiplicative multigrid schemes satisfy the TVD property for one-dimensional linear
systems. We also proved that these schemes are consistent and convergent for one-
dimensional linear systems. We showed that the upwind techniques can be extended
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Velocity

Velocity

(c) (d)

Fi1c. 13. Velocity plots for two-dimensional Euler equations (configuration 4) given by the three
level multiplicative scheme, A = 0.1. (a) Multigrid step = 0, (b) multigrid step = 50, (c) multigrid
step = 100, (d) multigrid step = 510.

TABLE 5
Speed ups of multiplicative scheme for the six initial configurations for two-dimensional Euler
equations for a fine grid size of 65 X 65.

C1 C2 C4 C5 C9 C11
L=2 3.22 4.19 3.71 4.35 4.76 3.87
L=3 9.11 12.04 8.51 6.13 22.43 7.83
L=4 18.69 25.78 12.88 22.44 40.37 25.58

to higher dimensional systems and also introduced a novel coarsening technique. The
numerical experiments for both one- and two-dimensional hyperbolic systems have
consistently shown that our multigrid methods result in smooth and fast convergence
to the steady state solution. The upwind multigrid methods reduce the number of
work units by a factor of 4-13 (compared to the single grid), while factors of 3-9 are
reported in the literature.

Appendix A. Linear analysis.
A.1. Monotonicity analysis for the linear wave equation. We present the

monotonicity preserving properties of the multigrid time stepping schemes for solving
the linear wave equation

ug + ug = 0, 0<x<1,
(A1) u(0,t) =0, u(z,0) = uo(x).
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DEFINITION A.l. Suppose u™ is a nonincreasing (nondecreasing) function. Let
u™t! be computed by one multigrid cycle. Then the multigrid method is said to pre-
serve monotonicity if ™! is also nonincreasing (nondecreasing).

THEOREM A.2. Both the two level multiplicative and additive multigrid time
stepping schemes preserve monotonicity for the linear wave equation.

Proof. Given u", let u™*! be the solution after one iteration of the two level
multiplicative scheme. We assume a Dirichlet boundary condition as given in (A.1).
For j =2,4,...,N — 1, v and v} are computed using (3.5) and (3.9),

J Jj—1
(A.2) Wt =al =al - Mal —a)y),
~ _h —h —h
(A.3) u7j11 = Uf—z =ty o — AMuj_o — uj—4)a

where @? is the solution after fine grid upwind smoothing:
(A4) ﬁ? =uf — Muj —uj_y).
Subtracting (A.3) from (A.2),

n+

1 1_ —h ~h _ ~h T T
?+ — u]_l = uj — A(’U’j - 'U/j,2) - uj—2 + )\(uj*2 - uj74)7

(A.5) = (1 -Na) + @x—Dal_, -z,

u

After substituting (A.4) into (A.5) and simplifying, we have

uf T T = (1= ) (] — )+ (L= A (g —uf)
+ 201 = M) (uf_g —uf_g) + AMuj_g —uj_y)
(A.6) + N (ufy —ul ).

Similarly for j — 1 being odd, we have
(A7) u?fll — u?f% = ﬂf_g — ﬁf_g =0.

Thus, given that 0 < A < 1 (CFL condition), ! is nonincreasing (nondecreasing)
if u™ is nonincreasing (nondecreasing).

Following similar calculations for the additive scheme, the solution when j =
2,4,...,N — 1 is given by

(A.8) u}“‘l = ﬂjH =uj — Muj —uj_y),
(A9) Uﬁ”ll = ﬂf—z =uj g — AMuf_ g —uf 4)

After simplification,

J Jj— J j—1
(A.10) + Auj_g —ul_3) + AMuj_g —uj_y),
(A.11) uit =ity =0
Thus, the additive scheme also preserves monotonicity for 0 < A < 1. a
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A.2. Linear systems. We derive expressions required for the analysis of the
TVD, consistency, and convergence properties in section 4.

Let K3 be an m X m1 block matrix containing the eigenvectors corresponding to
o, and let K5 be an m X my block matrix containing the eigenvectors corresponding
to a”. Then we write K as

(A.12) K=K K.

Similarly, we write the matrix K ! in terms of another set of block matrices as

K
Al K'= |2t
o Al

where IAQ is an my X m block matrix and IA(Q is an mo X m block matrix.
LEMMA A.3. For any m x m invertible matriz K, the following identities hold:

KK, KiKy| [I 0
KK, K.K,| |0 I|’

LEMMA A.4. Given U}' and a zero boundary condition, the analytical expressions
for p" T and g™t given by the two level multiplicative scheme are

Pl = (1= 2a)2pl + Aat (1 — da )iy + Aat (1 - Aat)pl,

(A.14) + (Aa®)?pl_s, j=24,...,N -3,
p;‘irll =(1- /\04+)2p?72 +Aat(1 - /\04+)p?73 + Aot (1 - )\oz+)p;-i4
(A.15) + (M)l s, j=2,4,...,N —1,
q}-“'l =(1+ /\of)2q;-I = (L+Aa7)gj — Aa™ (L+Aa7)qf s
(A.16) + (A7 )¢} s, j=2,4,...,N—3,
q?fll =(1+ /\cf)?(];-I —Aa” (1+Aa7)gj —Aa™ (L+ Aa7)qf s
(A.17) + (A7 )?q}ys, j=2,4,...,N —1.

Proof. Given U}' and a zero boundary condition, we note that U}* = 0 for any
j<0and j > N —1. Let U;ZH, j=1,2,...,N — 2, be the solution obtained after
one iteration of a two level multiplicative scheme. For the grid points which coincide
with the coarse grid points, i.e., j = 2,4,...,N —3, U;‘H is obtained from Algorithm
1 as

n+l _ 77H
(A.18) U = OH,

where ﬁJH is the solution after coarse grid evolution. For a*}, j =2,4,...,N —1,
the interpolated solution is the steady state solution of the local Riemann problem
using UJH 5 and UJH as the boundary values, as described in section 3. Analytically,
the steady state solution is not apparent from the U-space, as the system consists of a
mixture of characteristics. However, for constant coefficient systems, the steady state
solution in the U-space is equivalent to the steady state solution in the W-space. For
the characteristic equations associated with p, the sign of the characteristic speed is

positive; i.e., the wave is moving to the right, and hence the interpolated value at
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x;”ll is p] 5. In contrast, the sign of the characteristic speed for equations associated

with ¢ is negative, and hence q;“rll = qJ Using the relations W = K ~1U and (A.13),
we have

n K U
Wj_+11 {pj 2} == H
q] KQU
Ut is then computed as KW',
- -1 |KUH
U(lJrl _ |: :| *1Vi-2
j—1 Kl K2 KQUJH
(A.19) Zklklﬁfigﬁ-kgkgﬁf{.

For the multiplicative scheme, (A.18) is rewritten using (2.3) as

UMt = (I = XAY + MAT) U + AT (T = MATU | + AT (T = AAT U
+ (MU 3 = AAT(I+ AU — AMAT (I + AAT)UT,
(A.20) + (AAT)UT .

Multiplying both sides of (A.20) by K ~!A, we obtain a decoupled equation in char-
acteristic variables,

AW = (A 2A(AT)? +>\2(A+)3+2/\(A*)2+>\2( W
AMAFPI = M)Wy = NAT)P I+ X)Wy
+A(A+) (I = AHW, 2+>\2(A+) W s — AA7)? (I + AW,
(A.21) + XA W,

We rewrite (A.21) as two separate equations, one for the vector p = [p1,p2, ..., Pm,] as-
sociated with positive eigenvalues and the other for vector ¢ = [¢my+1, Gmy+25 - - - » m)
associated with negative eigenvalues, as given in (A.14) and (A.16), respectively.

Similarly, for the odd grid points, we multiply both sides of (A.19) by KA and
simplify using Lemma A.3 and (2.3) as

AWIHL = AT (I = AT PPWE + MAT) (T = M)W 5 + MAT)* (I = MD)W,
+ XMW+ AT (L + AT)PW = MAT)? (I + M)W
(A.22) — AATP T+ M)Wy + XN (AT)PW ).

Rewriting the decoupled set of m scalar equations (A.22) as two separate equations,
we have (A.15) and (A.17), respectively. O

LEMMA A.5. Given U} and a zero boundary condition, the analytical expressions
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n+1

for p" 1 and q given by a k-level additive scheme are

(A.23) p;‘“ (1—=Xa*)pf + xa* P _gr-1,
n+1

p

p%+;1
(A24) 'J = (1 — /\Oé+)p?,2kf1 + /\Oz+p?72,2k71,

Pj—2k71+1

(I;Hll

q’”gl
(A.26) 7 =14+ Xa7)q} — A" g} g 901,

qj—2k-141

j=2kl g.0k1
Proof. For a k-level additive scheme and j = 2¥~1,2.2k=1  the solution after

the coarse grid evolution is
UM = (I = MA" + XAT)UP + ANATUT oy — ANATUT s
The interpolated solution on level (k — 1) is given by

Gk — g0,
U;Z,}Zz = KIKIU;E)Qk—l + I?gf?gﬁ;k).
Similarly, for level (k — 2), we have
ﬁ(k72) _ [7;1@71) _ ﬁj{k)’

U2 = i K US, + K KUY = Ky kO, + Ko o0

ﬁj(ﬁ;?L = ﬁj(kggL = I} IA{lU(k)Qk 1+ f?zf?zﬁ;k)a
TE2 = R TSY, + Rl ®,0, = B RTY, , + RaRal0®,

(A.27) Ut =M,

g

U — — e~
(A.28) i = K1 K\ U®,,, + K K>U,

Uj72k}71+1

Multiplying both sides of (A.27) and (A.28) by KA and simplifying reduces the
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system to a set of m-decoupled equations,

AW = (T = AT M)W+ MW s = AW g,

n+1
AW

AW

= A+(I — A+)W;Z_2k71 + )\(A+)2Wjﬂ_2,2k—1 + A” (I + /\Af)WJTL

AWj_Qk—1+1

= MATP W] g peen

We rewrite these decoupled equations as two separate sets of equations: one for all

the

characteristic equations with positive sign for the characteristic speeds ((A.23)

and (A.24)), and the other for the characteristic equations with negative sign for the
characteristic speeds ((A.25) and (A.26)). O
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[14]
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