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Hyperdimensional (HD) computing (also referred to as vector symbolic
architectures, VSAs) offers a method for encoding symbols into vectors,
allowing for those symbols to be combined in different ways to form
other vectors in the same vector space. The vectors and operators form a
compositional algebra, such that composite vectors can be decomposed
back to their constituent vectors. Many useful algorithms have imple-
mentations in HD computing, such as classification, spatial navigation,
language modeling, and logic. In this letter, we propose a spiking imple-
mentation of Fourier holographic reduced representation (FHRR), one of
the most versatile VSAs. The phase of each complex number of an FHRR
vector is encoded as a spike time within a cycle. Neuron models derived
from these spiking phasors can perform the requisite vector operations
to implement an FHRR. We demonstrate the power and versatility of our
spiking networks in a number of foundational problem domains, includ-
ing symbol binding and unbinding, spatial representation, function rep-
resentation, function integration, and memory (i.e., signal delay).

1 Introduction

Artificial neural networks, ubiquitous tools in modern computing, bring
with them substantial power demands. Spiking neural networks could have
a big impact on the future of computing since they can take full advan-
tage of the extreme parallelism and low power requirements of neuromor-
phic hardware. While it is possible to translate gradient-based learning to
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spiking neural systems, implementing backpropagation methods in neu-
romorphic hardware, as in the brain, brings with it the weight transport
problem, which imposes material costs in implementation. An alternative
means to implementing powerful algorithms in spiking neural networks
is to combine local learning rules in combination with symbolic structure
imposed on neural circuits.

Vector symbolic architectures (VSAs) are one way of imposing structure
on neural systems, but often the translation from their algebraic statements
to their implementation in populations of spiking neurons comes at a con-
siderable overhead of representing each dimension of a hyperdimensional
vector with multiple spiking neurons. While neuromorphic computers are
coming closer to commercial realization, the memory technologies used to
implement neuron dynamics and synaptic memories are still costly (Davies,
2021); hence, there is a clear need for neuron-efficient implementations of
VSAs.

In this letter, we demonstrate how a versatile and powerful neural
paradigm can be implemented using a relatively small number of spik-
ing neurons. We extend previous work (Renner, Supic, Danielescu, Indiveri,
Olshausen, et al., 2022; Bent et al., 2022; Orchard & Jarvis, 2023) that shows
how spike times within a cycle can be leveraged to represent hypervectors
in a VSA. We propose a specific neuron model, which we implement using
the Brian2 simulator, that enables the translation of the chosen VSA into
a population of neurons that need only one neuron per dimension of the
VSA’s hyperdimensional vectors. This particular VSA, the Fourier holo-
graphic reduced representation (FHRR; Plate, 2003), is capable of imple-
menting an impressive array of algorithms, and here we demonstrate some
of those on a substrate of spiking neurons.

We provide a brief review of VSAs, and in particular the FHRR VSA
(see section 1.1). Next, in section 2, we propose a specific neuron model
that translates three key operations (binding, unbinding, and cleanup mem-
ory) into efficient neural populations. Finally, we demonstrate in section 3
a number of applications of VSAs using our neuron model before dis-
cussing the implications of the proposed approach in section 4, and finally,
concluding.

1.1 Vector Symbolic Architectures. A VSA offers a way to represent
data using high-dimensional vectors (Gayler, 2003). Also called hyper-
dimensional (HD) computing, the “hypervectors” can be combined in
different ways to produce other (hyper)vectors in the same vector space.
Amazingly, those new vectors can still be decomposed into their constituent
vectors. Hence, a VSA forms a type of compositional language over a set of
symbols. The set of symbols in a VSA is called a vocabulary.

A VSA comprises a vector space paired with a small collection of opera-
tions: similarity ©, binding ®, unbinding @, bundling @, permutation p(-),
and cleanup.
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The similarity operation measures how “close” two vectors are. Impor-
tantly, pairs of randomly chosen, high-dimensional vectors of a VSA tend
to yield a similarity close to zero. For example, consider a vector space V
and two random vectors, u, v € V. We would expect that 1 © v =~ 0, while
vOv=uQu=1.

Binding combines two vectors to get another vector that is not similar to
either of the two. Thus,if w = u ® v, thenw © u ~ 0 and w © v = 0. Binding
can be used to represent the conjunction of elementary symbols of the vo-
cabulary. In some VSAs, binding can also be used as the basis for construct-
ing continuous representations, but this is contingent on the definition of
the binding operator. Unbinding does the opposite of binding to recover
the constituent elements of the conjunction, so that w @ u ~ v.

Bundling creates a vector that is still highly similar to the two constituent
vectors. If w = u @ v, then w © u > 0, though not necessarily equal to 1.
This corruption comes from the fact that some information is lost in the
bundling operation. How much is lost depends on the vector space, the
specific bundling operation, and how many vectors were bundled together.
Bundling can be used to construct vectors that represent sets of the con-
stituent vector-symbols.

Permutation shuffles a vector—in a reversible way—so that the resulting
vector is different from the original. Thus, if w = p(v), then w © v ~ 0, but
p~}(w) yields v back. Permutation is used to construct data structures that
are represented as vectors. Permutation induces structure by removing the
commutativity of operations like bundling and binding while preserving
similarity among vectors. For example, an ordered sequence can be con-
structed: v @ p(u) ® p(p(w)) & - - -. In this way, bundles can be constructed
to reflect structures, including sequences, trees, and graphs (Kanerva, 2009;
Plate, 2003).

Finally, cleanup takes a vector and restores it to the closest match in the
VSA'’s vocabulary. The cleanup is helpful because the operations of bind-
ing, bundling, and so on tend to corrupt the vectors, and noise can accumu-
late. Using the noisy vectors in further operations could start to affect their
proper function and produce unpredictable behaviors. The cleanup opera-
tion can undo that corruption, and the clean vector can be used with greater
confidence.

1.2 Fourier Holographic Reduced Representation. Fourier holo-
graphic reduced representation (FHRR) is a VSA that uses complex-valued
vectors to encode symbols (Plate, 1995). Let v € CN be a complex vector.
The vectors of an FHRR are simply the Fourier transform of holographic
reduced representation (HRR) vectors; many HRR VSA operations can be
done more efficiently using this Fourier representation (Plate, 1995). The
complex number vy can be written |v|e?, where |v| is the modulus and
¢i is its phase. If the vectors in the FHRR exhibit conjugate symmetry
(so that vy = vn_f for k=0,...,N — 1, where the bar notation indicates
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complex conjugation), then taking the inverse Fourier transform of v yields
a real-valued vector, o € RN.

A complex-valued vector v is said to be unitary if |vi| = 1 for each of its
elements (Plate, 1995). If all the vectors in an FHRR are unitary, we refer
to it as a normalized FHRR. The use of unitary vectors in an FHRR simpli-
fies binding and unbinding, since no arithmetic is required to compute the
modulus.

Binding: In a normalized FHRR, the binding operation is done us-
ing element-wise multiplication, the Hadamard product. The vectors of
a normalized FHRR are unitary, meaning that the vector elements are
unit-modulus complex numbers, so that multiplying them is equivalent
to adding their phases, e¥! ei2 = el®17%2)_ The inverse operation, unbind-
ing, is element-wise division (or multiplication by the conjugate), as in
el g—id2 — oil¢1—¢2)

Similarity: If u and v are vectors in an FHRR, then their similarity, u © v,
is computed using the complex inner product, u - v, where © is the complex
conjugate of v. For a normalized FHRR, this similarity is the same as cosine
similarity.

Bundling: In many VSAs, including the FHRR, the bundling opera-
tion is simply vector addition. Consider adding two unit-modulus complex
numbers, e + €. The resulting complex number will have a phase of
%(d’a + ¢p), but will probably not be unit-modulus. In a normalized FHRR,
the modulus is ignored, and only the phase is kept. Discarding the modulus
is a source of information loss and is one of the reasons that bundling has
limitations.

Permutation: Permutation is done by literally permuting the vector ele-
ments. If P is a permutation matrix, then p(v) = Pv, and p~! (1) = PTu.

Cleanup: In an HRR or FHRR, cleanup is often done either by a recur-
rent, Hopfield-like associative memory (in which the vocabulary vectors
are fixed points; Frady et al., 2018, 2022; Frady & Sommer, 2019), or by a
feedforward associative memory (Stewart et al., 2011).

Fractional binding: The FHRR has an additional operation that is not
present in all VSAs. Consider binding a vector v with itself, yielding v ®
v. In the FHRR, ® is the Hadamard product, so you can write that as v2,
where the exponent is applied to the vector elementwise. But now one can
contemplate using noninteger exponents, such as v or v%7 (Plate, 1995).
This is called fractional binding (Lu et al., 2019), or fractional power encoding
(FPE; Frady etal., 2018,2021, 2022). If one of the elements of a unitary vector
is e'?, with —7 < ¢ < 7, then raising that vector to the exponent « yields a
vector with the element e'*. In other words, the fractional power encoding
of « is the same as multiplying all the phases in the vector by «.

1.3 Spiking Phasors. In most neural network simulations, a neuron’s
activity is represented by a real number. However, there is utility in model-
ing a neuron’s activity state as a unit-modulus complex number, or phasor
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(Noest, 1988). This approach works well with the normalized FHRR, since
its vector components are unit-modulus complex numbers. Moreover, since
each complex number in a normalized FHRR vector really only encodes
phase, that complex number can also be represented by the timing of a
spike within a cycle—the spike’s phase. Thus, each complex number in a
normalized FHRR hypervector can be represented by a single neuron. All
the neurons spike at the same frequency, but they spike at different times
with respect to a global, baseline cycle. Each neuron’s spike time in that cy-
cle represents that neuron’s phase (Frady et al., 2018). These neurons are
called spiking phasors. An N-dimensional vector in a normalized FHRR can
be represented by the spikes of a population of N spiking phasors. Each
neuron emits one spike per cycle, so that the population as a whole renders
the FHRR vector each cycle as N spike trains coming from N neurons.

Binding (unbinding) amounts to phase summation (or phase subtrac-
tion) in a normalized FHRR. Put in terms of spiking phasors, binding (un-
binding) two incoming spike trains amounts to adding together (subtract-
ing) the incoming spike times and generating a spike at this new phase sum
(difference). A discretized version of such binding was demonstrated using
binary one-hot vectors, where the location of the 1 indicated the binned
spike time (Laiho et al., 2015). In that VSA, binding was done using circular
bit shifts. Rather than binning a spike time, one can use the spike time itself
to represent phase. Binding is done by adding these spike times (Renner,
Supic, Danielescu, Indiveri, Olshausen, et al., 2022; Bent et al., 2022). Sim-
ilarly, fractional binding can be implemented in a spiking-phasor neuron
model by multiplying its phase offset by the desired multiplier (). These
neuron models are described in more detail in the next section.

2 Methods

2.1 Binding (Phase Sum). In the normalized FHRR, binding is done by
the element-wise multiplication of unit-modulus complex numbers, which
is equivalent to adding their phases as discussed in section 1.2. We devel-
oped a spiking-phasor neuron model that receives spikes from two other
spiking phasors, and is able to add the phases of those incoming spikes and
generate its own spike at that phase sum.

The neuron model has two internal integrators. One is the cycle-tracking
variable, or clock. Suppose the neuron cycles at frequency A Hz. Then its
periodis L = % seconds. The variable ¢ starts at zero at the beginning of the
cycle and follows the differential equation ¢ = 1 until it reaches its threshold
value of L, indicating the end of the cycle, at which point c resets to zero and
the cycle repeats.

When the first spike arrives, a second integrator g is set equal to ¢, thus
recording the spike’s arrival time. The integrator g holds that value by fol-
lowing the differential equation § = 0 until another spike arrives. After the
second spike, g starts integrating down following § = —1 until it reaches its
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Figure 1: Phase sum neuron model. (A) The model for the case when the sum of
the incoming phases is less than one cycle. (B) How the method still works even
if their sum is longer than one cycle. Lines for c and g are shown only where they
are relevant.

threshold value of 0, at which point the neuron generates its own spike. This
process is illustrated in Figure 1A. Figure 1B shows that the neuron model
still works when the sum of the spike times is larger than the cycle period.

The spikes that arrive are not labeled “first” or “second.” Rather, the
neuron model performs the same internal operation as each spike arrives,
regardless of whether it’s the first or second spike. The differing effects
of the two spikes are implemented using a max and min function. Here
is how. We initialize § < 1 and decrement 4 <— § — 1 for each spike that
arrives. Also, when a spike arrives, we increment g < g+ max(4,0) ® c,
which affects g only on the first spike since that is the only incoming spike
for which 4 > 0. Similarly, instead of incrementing the integrator g using
q < q+ At x g each time step (where At is the step size), it is incremented
by q < g+ At x min(4, 0). Thus, q does not change until 4 is negative,
which will happen after the second spike. This strategy adds extra compar-
isons to each time step but allows the spike-arrival behaviors to be generic.
This model is summarized in algorithm 1.

Note that the outgoing spike will always occur before the first incoming
spike in a cycle as long as the phases of the incoming spikes stay constant.
The binding model will still work even if the phases are changing, since it
recomputes the phase sum every cycle. However, depending on the specific
spike times, it might take an extra cycle to settle to the correct phase sum.

Our binding model assumes that two spikes arrive each cycle. If three
or more spikes arrive in a cycle, this neuron model will not work properly.
However, a similar model can be constructed to bind together three spikes
per cycle or four, or more. For a given phase-sum layer, the number of vec-
tors being bound together would need to be known a priori so the appro-
priate neuron model could be used. If not, the model will not correctly sum
the incoming phases.

2.2 Unbinding (Phase Subtraction). A similar neuron model, illus-
trated in Figure 2, is used to implement unbinding by subtracting spike
times. In this model, the variable g starts integrating from zero when the
first spike arrives, according to § = 1. When the second spike arrives, an
internal threshold variable, 6, is set equal to the instantaneous value of 4.
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Algorithm 1: Phase-Sum Neuron Model.
Data: c < 0,and g < 1

for each time step of At do
Update integrators:
c+c+ At

q < q+ Atemin(g,0)
if a spike arrives then

q < cemax(q,0)

Gg—q—1

end
if ¢ < O then

| SPIKE, and g < 0, ¢ « 1
end
if ¢ > L then

| Cycle Reset: ¢ < 0
end

end

SSSEN

(A) refractoy __ (B), . refracto:'y
1 =] 9444 L == | BN
a

4 + t
b Spike b I Spike

Q fr—

—

t

Figure 2: Phase subtraction neuron model. Both plots illustrate spike time b
subtracted from spike time a. (A) Spike b occurs before a in the cycle. (B) Spike a
occurs before b. In each plot, the two horizontal arrows are the same width.
Lines for ¢, g, and 6 are shown only where they are relevant for the cycle’s
computation.

The neuron spikes when the cycle-tracking variable, ¢, reaches the threshold
(c = 0), after which a refractory toggle is set to one until the start of the next
cycle (preventing the neuron from spiking again until the next cycle). Un-
like the other neuron models described in this letter, the unbinding neuron
model is the only one that distinguishes between its two input synapses,
since a — b is different from b — 4. In contrast to the binding neuron model,
where the spike could be generated in the same cycle or the next cycle in
which the spikes arrived, the unbinding neuron model always generates
spikes in the following cycle.
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Figure 3: Phase multiplication neuron model. This neuron is reset halfway
through the baseline cycle, as tracked by the integrator variable ¢. The relative
displacement of the incoming spike (¢, red), is multiplied by « to get the desired
time for the outgoing spike (a¢, green). When the red spike arrives, 6 is set to
ac. The neuron generates a spike when ¢ > 6, after which the neuron is unable
to spike again until ¢ resets at the next midcycle. Lines for ¢ and 6 are shown
only where they are relevant to the cycle’s computation.

2.3 Fractional Binding (Phase Multiplication). The operation of frac-
tional binding of the value o turns into multiplying phase by «. In terms of
spike times, the displacement of the spike from the nearest cycle boundary
is multiplied by «.

In this model, the clock variable (which we will denote ¢) follows the
differential equation ¢ = A and wraps halfway through the cycle; it starts at
zero at the beginning of the cycle, then jumps from 3 to —3 midcycle. This
allows the clock variable ¢ to increase smoothly from negative to positive as
one cycle ends and the next begins. This continuous transition is important
because ¢ is multiplied by & when the spike arrives, setting a threshold vari-
able, 0 = a¢. When ¢ > 0, the neuron sends an outgoing spike and engages
an internal refractory toggle that stops the neuron from firing another spike
until the next midcycle reset. Half-way through the next cycle, the toggle is
reset, and the neuron is ready to fire again.

The inner workings of the phase multiplication neuron model are de-
picted in Figure 3. Notice that the red spike’s displacement (¢) from the cy-
cle start and end is multiplied by « to yield the outgoing spike’s time (c¢,
in green). The figure also shows how the clock variable ¢ sets the threshold
0 when the spike arrives, and a spike is generated as soon as ¢ reaches that
threshold. Note that the resulting (green) spike could be in the current cycle
or the next cycle, depending on when the incoming spike arrives and the
value of « being encoded.

If « is large, the resulting threshold could be outside the range [—1, 1].
However, this simply means that the desired spike time has to be phase-
wrapped. For example, a threshold of & = 0.7 corresponds to the same spike
time as a threshold of & = —0.3. If 6 is outside [—% %], the neuron model
increments (decrements) 6 by 1 (—1, respectively) each time step until —% <

1

20z Jequieldas 90 Uo pueydle|y euowey Aq Jpd €910 B 000U/yGE59YZ/988 L/6/9E/IPA-0[01LIE/000U/NPS NIJoR.IP//:d]lY WOl PaPEO|UMOQ



1894 J. Orchard, P. Furlong, and K. Simone

2.4 Cleanup Memory. The cleanup memory is based on the two-part
Hopfield architecture outlined in Krotov and Hopfield (2021). It consists of
two populations, G and H, each containing resonate-and-fire (RF) neurons.
When G receives an input pattern (hypervector), the two populations (G
and H) continuously exchange activity until they settle into an equilibrium
state, where (it is hoped that) G stores the nearest vocabulary vector.

Suppose the vectors in our VSA are d-dimensional, so that the population
G has d RF neurons. That population projects to H, which is a population
of m RF neurons, where m is the number of patterns we have in our vo-
cabulary. Let W € C"* be the connection-weight matrix from G to H. Each
row of W contains one of the vocabulary vectors. If we suppose that G is
encoding a unitary vector g € C?, then the input to H can be written as the
matrix-vector product Wg. This input is like taking the inner product (sim-
ilarity) between g and each vocabulary vector. If g is most similar to the kth
row of W, then we would expect the input to /i to be larger than the in-
put to the other neurons in H. In this sense, each neuron in H represents
one of the vocabulary vectors. Importantly, even though this matrix-vector
product involves complex numbers, it is implemented using scalar weights
and spike delays, as described in Frady et al. (2018) and Frady and Sommer
(2019).

The neurons in H all inhibit each other; each time a neuron spikes, it
sends strong, inhibitory input to all the other neurons in H. Because of this
mutual inhibition, the population tends toward a winner-take-all (one-hot)
state. In our experience, this convergence usually takes about six cycles.

Finally, H projects back to G using connection weights W' (again, using
scalar weights and synaptic delays). In other words, each time a neuron in
H spikes, it sends to G a weighted copy of the pattern it represents. Figure 4
shows the G and H populations of the cleanup network.

The differential equations governing the neurons in G and H are

Xc(t) = -2mA Ve — 0.4 XG

For each neuron in G (2.1)
yc(f) =27) XG — 04 Ye
XH(t) = -27A YH — (002 + 77) XH

For each neuronin H { yu(t) =274 xy — (0.02 + n) yu (22)
i) = -2

where 1 is the cycle frequency (in Hz). Each time a neuron in G or H re-
ceives a spike, its x-value is incremented by the amount specified by the
corresponding connection weight. Inhibitory interactions are the only ex-
ception between neurons in H. The neuron’s variable » integrates the in-
hibitory spikes from all other neurons in H. Each time a neuron in H spikes,
it increments the n-value of all other neurons in H by three. These RF
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Figure 4: Cleanup network. Each neuron in H represents one of the vocabu-
lary vectors. The connections from a neuron in H to all the neurons in G have
a weight of 0.5 but delays that are determined by the phase of the vocabulary
vector. The connections going the other way have the same weight, but with
opposite (negative) delay.

neurons send a spike when both x > 0.9 and y > 0, after which their x-value
is reset to 0.7.

3 Experiments

In this section, we demonstrate the utility of these spiking-phasor neuron
models and show that they effectively implement state-of-the-art VSA al-
gorithms. All of these experiments were implemented in Python, using the
Brian2 neural simulation language (Stimberg et al., 2019). The code can be
downloaded from https://github.com/jorchard /SpikingPhasorVSA.

3.1 Impact of Cleanup Memory. We wanted to investigate the effect
of cleanup memory on the performance of our spiking-phasor networks.
Because the vectors are not perfectly orthogonal, there is a slight loss of
information when unbinding a bound vector. For example, suppose you
have the unitary FHRR vectors v and 4, and they are bound together to
form a new vector, w = v ® a. The unbound vector, 4 = w @ v, will be close
to a but contain some noise. That is, their similarity, 4 © 4, will be slightly
less than the ideal value of one.

A more significant source of error is bundling. A population of spiking-
phasor neurons can encode only a unitary vector, but bundles (from adding
vectors together) are not usually unitary. Renormalization back to a unitary
vector results in a loss of information. To see this, consider the set of m uni-
tary vectors V = {v1, ..., vy}. Let B be the bundle of all the vectors in V' so
that B =Y, vx. Since [|v[|*> = 1 for each k, we know that ||B||? can be as large
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as m. If we define B as %, then the similarity B o v will likely be smaller

than im, much lower than the ideal value of 1.

Let us put these two factors together. In addition to the set of vectors,
V, we introduce two more sets of m unitary vectors, A = {ay, ..., a,} and
U =A{uy, ..., uy}. Using these sets of vectors, we construct two bundles by
pairwise binding so that

m

V = ka ® a; and
k=1

m
u-= Zuk ® a.
k=1

Finally, let V and U be unitary versions of those two bundles.
Given those bundle vectors U and V, as well as a particular v;, we would
like

Uo (Vov) (3.1)

to yield a vector that is closest to u;. Why? Because V @ v; should give a
vector closest to a;, and U @ a; should give a vector closest to u;. The prob-
lem is that V @ v; is unlikely to be close enough to a; to work in the second
unbinding operation.

The cleanup memory can help by taking the result from the first unbind-
ing operation, the vector from V @ v;, and cleaning it up by converging it
toward the closest vector in A. That cleaned-up vector has a much better
chance at working in the second unbinding operation.

The following experiment compares the performance of two different
networks at evaluating the sequential unbinding expression in equation 3.1.
Denote the cleanup operation as a function Cs such that, given a set of vec-
tors S,

Cs(w) ~ argmin (w © s).
seS

One network, denoted Net-1, performs the operation without cleanup,
71 :a®(V®vj), (3.2)
while the other network, Net-2, performs the operation with cleanup,

rn=UoCV @v)). (3.3)
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Figure 5: Network diagrams for Net-1 and Net-2. (A) Net-1 does not use a
cleanup memory. (B) Net-2 uses a cleanup memory to restore V @ v; to a;. The
“relay” node is a population of neurons that simply spike when they receive
a spike but go dormant after 250 ms. For the remaining 250 ms, the cleanup
memory operates without input.

If Net-1 (or Net-2) is successful, then 1 (or r2) will be more similar to #; than
any of the other vectors in /. The two networks are shown in Figure 5. The
“relay” node in Net-2 allows the spikes to reach C4 for the first 250 ms, but
then blocks the spikes for the remaining 250 ms. This allows the cleanup
memory to converge. The spiking phasors were cycling at 40 Hz.

In our experiment, we used hypervectors of dimension of 512 and bun-
dles containing m = 30 vectors. We used Net-1 and Net-2 to evaluate r; and
1o from equations 3.2 and 3.3 for all 30 vectors. We counted how many times
r1 or 1 had the highest similarity to the correct vector in ¢/. We ran this ex-
periment 10 times, each time generating new vector sets (V, A, U), giving
a total of 300 trials. The non-cleanup Net-1 was successful in 48 of the 300
trials (16% accuracy), while the cleanup Net-2 was successful in 289 of the
300 cases (96% accuracy).

3.2 Spatial Memory. Several objects and their locations can be stored in
a single vector. For example, given different vectors for each of {Red, Green,
Blue, Square, Triangle, Circle, X, Y}, we can represent a red square at location
(—=1.3, —1.1) as the vector,
Red ® Square ® X 1? @ Y.

We can also encode several objects by bundling their vectors,

M= Z Colory ® Shape, ® X* @ Y¥,
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Figure 6: Queries of spatial memory vector, M. (A) The similarity between
possible object vectors and the query M @ X™% @ Y~1. (B) The similarity be-
tween M @ [(Blue ® Circle) ® (Green ® Triangle)] and hypervectors of the form
X* ® YY. Notice that the similarity is highest at the locations of the blue circle and
green triangle.

where Colory, and Shape, are different hypervectors corresponding to dif-
ferent colors and shapes and x; and y; are scalars. Note that in order to
store M in a spiking-phasor population, its elements must first be made
unit-modulus, so that M; = M i /|1\7I jl. This bundle vector, M, can then be
queried with questions like, “What is at location (—1.3, —1.1)?” or “Where
is the blue circle?”

We constructed a neural network consisting of multiple populations
of 480 spiking-phasor neurons, each representing a 480-dimensional hy-
pervector. One population encoded M, while another encoded the query
go = X1 ® Y711, Both M and g, project to a phase subtraction population
that unbinds g, from M. The output of the unbinding population projects to
a relay population of 480 spiking-phasor neurons, which then projects to a
cleanup memory of 495 neurons (480 neurons in G for the hypervector, and
15 neurons in H for the 15 candidate vectors in the vocabulary). Figure 6B
shows the configuration of the three objects used to build the memory bun-
dle vector, M. Figure 6A shows the results of that query; the vector for “red
square” was the most similar.

Figure 6B also shows the results from the query, “Where are the blue
circle and green triangle?” The corresponding query vector is

q» = (Blue ® Circle) & (Green ® Triangle).

The heat map in the figure indicates the similarity if M @ g, to hypervectors
of the form X* ® YY over a region of the (x, y) plane. Note that the similarity
is highest at the locations of the blue circle and green triangle.

From a biological perspective, it is interesting to note that the phases of
the location basis vectors can be chosen in a way that can easily yield grid
cells (Welday et al., 2011; Orchard et al., 2013; Dumont & Eliasmith, 2019).
Figure 7 shows a simulation of an animal moving throughout an arena. As
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Figure 7: Grid cell. The blue line shows the trajectory of a simulated mouse
running around in a pen for 16 minutes. The red dots show the spikes of a grid
cell.

it moves, the spikes of one neuron are shown as red dots. That neuron is a
resonate-and-fire (RF) neuron that receives spikes from six spiking-phasor
neurons encoding position using HexSSPs (Dumont & Eliasmith, 2019), a
strategy for choosing hypervectors so that their phases align at locations on
a hexagonal grid (hence the name). The RF neuron behaves like a grid cell
because it only fires when the spikes coming from the six incoming connec-
tions are synchronized.

These grid cells, which are used to represent state spaces in biological
models, have also been employed as a basis for path integration that unifies
symbolic representation and neural implementation (Dumont et al., 2022).
Furthermore, they have been used to represent state spaces that decrease the
time to convergence of reinforcement learning agents (Bartlett et al., 2022).
It is worth noting that these models of biological representations of state
spaces (e.g., position in space, head direction cells; Sargolini et al., 2006;
Langston et al., 2010) are proving useful in more traditional ML settings.

3.3 Function Representation. A function can be represented by a vector
in a VSA using a bundle. Consider a scalar function f : [-L, L] — R. We can
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Figure 8: Function bundles. The red line shows the true function, the black dots
show the values decoded from the bundle, and the heat map in the background
shows the similarity of the bundle to corresponding hypervectors X* @ F /. Top:
Deterministic function. Bottom: Stochastic function, where the dashed lines
show +2 standard deviations.

encode a single sample of that function, (x, f(x)), by encoding its ordinate
as a hypervector, X* and encoding its abscissa as a hypervector, F/®. The
sample is then represented by binding those two hypervectors, X* ® F/®). If
we do that for many samples, (xx, f(xx)), k =1, ..., K, then we can represent
the entire function using the bundle,

V=> X*gF/®, (3.4)
k

Finally, in order to encode the vector in a population of spiking-phasor neu-
rons, the vector V has to be converted to a unitary vector, V, by setting the
modulus of each of its elements to one. This normalization operation re-
sults in loss of information. However, the vector still maintains important
aspects of the function (as we will demonstrate).

Figure 8 (top) shows an example of a randomly generated (band-limited)
function (red line), as well as an illustration of its encoding into a single
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vector with 8640 elements. The function was sampled uniformly along its
arc length, resulting in approximately 1000 samples, all encoded and bun-
dled using equation 3.4. The vector V was encoded into a population of
8640 spiking-phasor neurons firing at 10 Hz. Based on Dumont & Elia-
smith (2019), we used HexSSPs in which the phases for the hypervectors
X and F form a polar sampling of 2D space, with 5° angular increments,
and 120 samples at each angle, covering a radius of 7. The heat map in the
figure shows

Vo ((X*®Ff), for xe[-55], fel[-22],

the similarity between the vector V and a grid of hypervectors that uni-
formly sample the region. For each x-value, the black dot indicates the
f-value with the maximum similarity, calculated using

fmax = argmax [V © (X* ® Ff)] . (3.5)
f

The bottom pane of Figure 8 illustrates that stochastic functions can also
be represented using the same strategy. Let j.(x) be a band-limited func-
tion, and let o (x) be another function that dictates the standard deviation
of samples around p(x). For each x value, four samples were drawn from
the normal distribution N (u(x), o (x)) and added to the bundle. The bun-
dle was then made into a unitary vector and encoded into a population of
8640 spiking-phasor neurons. The same method as the top plot was used
to create the bottom plot. However, the dashed lines show the +2¢ devia-
tions from the mean. Notice that the bundle vector’s similarity spreads out
in these regions of nonzero deviation.

Others have used VSAs to represent functions (Frady et al., 2022), where
they appeal to techniques developed for function representation in repro-
ducing kernel Hilbert spaces (RKHSs). Relying on the fact that the dot
product between fractionally bound values induces a kernel function, one
can appeal to the representer theorem (Scholkopf et al.,, 2001) to show
that optimal function representations exist for a set of encoded sample
points.

An interesting aspect of this approach is the connection with the defini-
tion of a function. A function can be uniquely defined by the set of all pairs
(x, f(x)) over the domain x € X. Similarly, we can understand bundles of
observations, X* ® F/®, as sets of those pairs, but imbued, under the dot
product, with a kernel function defined by the phasors of the FHRR encod-
ing. Furlong & Eliasmith (2022) identified that VSA representations with
continuous encodings are inherently probabilistic, and what we see here is
that a natural definition of a function is also inherently probabilistic. This
supports the notion that these hyperdimensional computing frameworks
provide a probabilistic model for neuromorphic computing.
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Figure 9: Integrator results. The blue line is the signal to be integrated (velocity,
v(t)). The red line shows its ground truth integral (distance, p(t)). The black dots

show the value encoded in the integrator population for each 100 ms cycle (the
estimate).

3.4 Integrator. An integrator is a system that receives a signal, v(t) and
computes the time integral of that signal, p(t) = fot v(t)dtr. We wanted to
see if we could use a spiking-phasor network to perform integration.

A hypervector, X € C*®, was generated by randomly choosing 200
phases uniformly from (-, w). A population of 200 spiking-phasor neu-
rons encoded X by spiking at those phases. Another population of 200
phase-multiplication neurons received X and multiplied their phases by
v(t), thus encoding X'®. The input v(t) changes over time, so the phase
multiplication neurons were adjusting their phases every cycle according
to the value of v(t). Finally, that population sent its spikes to an integrating
population that also had 200 neurons. Each neuron in the integrating pop-
ulation simply added the phase of the incoming spike to its own phase. All
the populations were firing at 10 Hz, so the integrator could only update
its estimate of the integral once every 100 ms. As a result, this integration
process is roughly equivalent to doing discrete integration using a rectangle
quadrature rule.

We ran 20 trials of integrating random band-limited signals for 5 sec-
onds and compared the output of the spiking-phasor integrator (denoted
the “estimate”) to a numerical integrator that took 100 times as many steps
(denoted “ground truth”). We measured the error between the estimate and
the ground truth every 100 ms over all 20 trials. The standard deviation
of the error was consistently less than 5% of the standard deviation of the
ground truth signal itself. The network had a total of 601 neurons: 200 for the
population that encodes X, another 200 neurons that encode X*®), another
200 neurons for the integrator population, and one more neuron that fires
a single spike that resets the integrator to zero at the beginning of the run.

Figure 9 shows the result of a typical run. The velocity signal is shown in
blue, and its ground truth integral (“distance”) is drawn in red. The black
dots show the neural integrator’s estimate (at 10 Hz).
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A similar type of (nonspiking) phasor-based integrator was used for vi-
sual odometry (Renner, Supic, Danielescu, Indiveri, Frady, et al., 2022). The
spiking-phasor implementation presented here could be used in that work.

3.5 Legendre Delay Network. An interesting application of a neural
integrator is a Legendre delay network (LDN). An LDN optimally encodes
the recent history of a continuous-time signal into a set of time-varying co-
efficients. A snapshot of those coefficients can be used, in conjunction with
Legendre basis polynomials, to reconstruct the previous 6 seconds of the
input signal (Voelker et al., 2019). Briefly, the ¢ Legendre coefficients, m(t),
are determined by a system of ¢ differential equations of the form

or(t) = Am(t) + Bu(t),

where A € R and B € R are constant and u(t) is the input signal to be
recorded.

The LDN is foundational to the Legendre memory unit (LMU). The LMU
is one of the earliest examples of what are now known as state-space models—
recurrent networks that can model long-range dependencies without the
quadratic complexity of transformers” attention. LMUs have achieved per-
formance that is comparable to or better than that of transformers, with 2x
to 10x improvements in the number of parameters (Chilkuri et al., 2021;
Chilkuri & Eliasmith, 2021). Other state-space models have demonstrated
improvements over transformers (Gu et al., 2021, 2022; Smith et al., 2022;
Gu & Dao, 2023).

We constructed a spiking-phasor Legendre delay network by connect-
ing a number of integrator populations (described in section 3.4). We used
hypervectors of dimension 100. A population of 100 phase multiplication
neurons was used to encode the input signal u(t) using X*®). The LDN it-
self consisted of 10 integrator populations, each with 100 neurons, encoding
hypervectors Ly through Lg. We found that accuracy was greatly improved
if we used a higher frequency, so this network cycled at 40 Hz. The entire
network had 1201 neurons: 100 for the population that generates the hyper-
vector X, another 100 neurons that encode the input signal X"® 1000 for
the LDN integrators (encoding Ly, ..., Lg), and one more neuron that fires
a single spike that resets all the LDN integrators to zero at the beginning of
the run.

To visualize the encoding, we first had to decode the coefficients from the
LDN integrator populations. This was done using m; = argmax,, (L; © X™).

Figure 10 illustrates a typical run of the LDN. Figure 10A shows the
spiking activity of all 10 LDN integrator populations (organized by color)
beneath plots of the estimated Legendre coefficients (color-matched to the
spike rasters). Figure 10B uses those coefficients and reconstructs the in-
put signal at a variety of different delays, with longer delays rendered with
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Figure 10: Legendre delay network results. (A) The spike raster plots for the 10
integrating populations (of 100 neurons each), as well as the decoded Legendre
coefficients, m(t). The color of the spikes matches the line for the correspond-
ing Legendre coefficient. (B) The corresponding input signal (blue), as well as
reconstructions with varying delays; the lighter the curve, the longer the delay.
(C) An enlarged view of the region outlined in panel A. Notice that as the green
dotted line climbs toward zero (the black axis), the horizontal distribution of
green spikes reduces, and as the red dotted line gets farther from the axis, the
red spikes disperse.

progressively lighter grays. Figure 10C shows a closeup of the delineated
region of the raster plot.

4 Discussion

Our focus on spiking implementations of VSAs is to enable their imple-
mentation on neuromorphic hardware, where the largest gains in energy
efficiency are realized by spiking networks. Furthermore, we concentrate
on HRR and FHRR vector symbolic architectures because they have been
shown to be among the highest capacity methods (Schlegel et al., 2022), and
they can support fractional binding.

4.1 Model Complexity. How many arithmetic operations (“ops”) does
it take to perform a binding operation? Let us consider a single phase-sum
neuron and assume that our implementation takes T times steps per cycle.
Note that if the time variable is scaled so that At is one time step on the
hardware; then there is no need to multiply by At in algorithm 1. Thus, in
each time step, the model requires up to 3 ops to increment the integrators:
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one addition to increment ¢, one conditional (i.e., § > 0), and one addition to
(conditionally) increment q. There are also two other conditionals per time
step: g < 0 for spiking and ¢ > L for the end of the cycle. Putting those all
together, each time step requires at most 5 ops.

There are also some processes that (usually) happen once per cycle.
When a spike arrives, it incurs up to 3 ops: 1 conditional (i.e., if § > 0), an-
other to (conditionally) assign q <— ¢, and 1 to decrement 4. If the neuron
spikes, it causes 2 ops, and when the cycle resets, it costs 1 op.

Hence, the operation count for a single phase-sum neuron for one cycle
is 5T + 7. It can take two cycles for the computation to settle, so the real
operation count would be a small multiple of 5T + 7. If we assume that our
hypervectors are of dimension d, then the computational complexity class
for a single cycle is O(dT).

4.2 Potential for Neuromorphic Speedup. One advantage of spiking
neural network models is that they are implementable on neuromorphic
systems. Assuming that the neuron model can run in parallel on the neu-
romorphic chip, then we can remove d from the time complexity. In other
words, binding can be done in O(T') ops. In our experiments, we used time
steps of 0.1 ms and cycle lengths between 0.025 s and 0.2 s. This gives us
T-values in the range 250 to 2000.

The computation involved in the neuron models is relatively simple. Af-
ter the initial setup of the network, they do not use any transcendental func-
tions like sin, log, or exp. The arithmetic is within a limited range, typically
between —1 and 1, which places fewer demands on the precision of the
number system. A fixed-point number system would probably suffice for
these computations. Furthermore, most of the operations required in the
neuron models can be done using addition and conditionals. For example,
the multiplications in algorithm 1 can be implemented by a conditional.
There are only two models that require multiplication. One is the fractional
binding (phase multiplication) model, which needs to compute the product
ac to set the threshold. However, that multiplication is only done once per
cycle. The other model is the oscillators in the cleanup memory, governed
by the differential equations 2.1 and 2.2.

4.3 Connection Efficiency. One of the main benefits of the spiking-
phasor approach to FHRR is the sparseness of connections. Take as an ex-
ample the binding operation between two vectors. Each vector is encoded
by a population of spiking phasors; we denote them as A and B. Both pop-
ulations, A and B, project to a phase-sum population, C. If the vectors are
d-dimensional, then each population (A, B, and C) has d neurons, for a to-
tal of 34 neurons. But the whole network has only 2d connections, since
each neuron in C has only two incoming connections, one from its coun-
terpart in A and one from its counterpart in B. This simplified connec-
tivity affords even more parallelization, whereby each Fourier coefficient
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essentially forms an independent channel through the network. Even the
permutation operation maintains channelization. The only place that this
“channelization” breaks down is in our cleanup memory, where the con-
nections between layers in the Hopfield-like network are all-to-all. How-
ever, in a network encoding d-dimensional vectors and a vocabulary of
m vectors, the number of connections in the Hopfield network is only
2dm + m?.

Another approach to building spiking neural networks that implement
a VSA is to use the neural engineering framework (NEF; Eliasmith & An-
derson, 2003). However, the NEF implementation does not have the same
benefit of channelization because its default VSA implementation is HRR
(Komer et al., 2019) and uses a DFT and IDFT to implement the circular
convolution for binding. The DFT and IDFT are dense transformations,
requiring all-to-all connectivity. Moreover, each of the vector elements is
encoded by a population of neurons. That is, each of the d-dimensional
input vectors (2 and b) is encoded using Nd leaky integrate-and-fire (LIF)
neurons, with N neurons encoding each of the d vector elements. The
process of circular convolution proceeds as follows. (1) The values of the
vectors a and b are decoded from their populations (requiring 2Nd connec-
tions), (2) then Fourier-transformed (O(d?) connections), and (3) fed into
an array of roughly 4d populations (with % neurons each) in preparation
for element-wise multiplication (O(Nd) connections). From there, (4) de-
coding from those populations takes another O(Nd) connections, followed
by (5) an inverse Fourier transform (O(d?) connections). The whole pro-
cess of binding two d-dimensional vectors involves O(Nd) neurons and
O(d? + Nd) connections. See Figure 6 in Bekolay et al. (2014) for a detailed
description of circular convolution in Nengo, the software library imple-
mentation of the NEF.

For a concrete comparison, consider binding two vectors of dimension
100. Using the NEF with N =50, it would take about 20,000 LIF neu-
rons and, optimistically, take 150,000 connection weights (assuming that
low-rank connection-weight matrices can be implemented as a sequence
of connections through “phantom” nodes). However, the same binding
network using spiking phasors would take only 300 neurons and 200 con-
nection weights. Or, using vectors of dimension d = 480 (e.g., for the spatial-
memory network in section 3.2), the NEF would involve 96,000 neurons and
2,908,800 connections, while the spiking-phasor implementation used 1440
neurons, and 960 connections. It should be noted that spiking-phasor neu-
rons are more complex than LIF neurons. However, the arithmetic opera-
tions carried out inside these spiking-phasor neurons is relatively simple,
requiring linear integrators, a value copy, and simple logic.

4.4 Silicon Costs. Purely algebraic implementations of VSA algorithms,
in and of themselves, can provide computational benefits compared to
traditional algorithm formulations, as surveyed by Kleyko et al. (2023).
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Similarly, they have been proposed as a framework for programming neu-
romorphic computing (Kleyko et al., 2021).

However, due to the intermingling of memory and processing that is
typical in neuromorphic computers, it is difficult to exploit cheaper mem-
ory hardware, like that found in the memory hierarchies of von Neumann
computers. For example, the Loihi processor relies on SRAM to store state
variables with neurons, which is 100 times more expensive than the DRAM
that is used to provide off-chip memory in traditional computers (Davies
et al., 2021; Davies, 2021). This high cost has spurred researchers to explore
alternative memory technologies, but these cheaper memories come with
problems in variability and reliability that need to be resolved (Rajendran
& Alibart, 2016; Adam et al., 2018).

Until those problems can be suitably mitigated, there is a pressing need
to reduce the number of neurons required in a given network implementa-
tion. Consequently, this makes our spiking phasor implemenation of VSA
algorithms all the more timely; it permits one to take advantage of the ben-
efits of VSA algorithms and neuromorphic computers while not unneces-
sarily consuming on-chip resources. This means that one can either fit more
VSA algorithms on one chip of a fixed capacity, or one can design smaller
chips with fewer neurons, reducing costs per chip while still being able to
implement VSA-style algorithms.

5 Conclusion and Future Work

We have shown how a relatively simple set of spiking neuron models can
perform all the basic operations of an FHRR. The spiking-phasor imple-
mentation behaves just like its complex-valued counterpart. Numerical ex-
periments using complex-valued hypervectors (not shown) often yielded
indistinguishable results from our spiking-phasor implementation. The dif-
ferences between the two emerged in the context of dynamic scenarios. The
discrete-time nature of the spiking-phasors—the fact that a cycle was re-
quired to encode a phase angle resulted in inaccuracies in the integrators.
Choosing a higher firing rate (like 40 Hz) helped in those situations.

These methods all use local information only and for the most part in-
volve a small number of synaptic connections; only two neurons synapse
onto one neuron for phase summation and subtraction, and neurons are
connected one-to-one for phase multiplication. The denser synaptic connec-
tions are in the Hopfield cleanup memory, which involves all-to-all d-to-
m connections for d-dimensional hypervectors and m vocabulary vectors,
and in the LDN connections, which involve ¢-¢ connections for £ Legendre
coefficients.

The spiking nature of these networks and the fact that the connection
structure tends to be sparse, makes this spiking-phasor framework an ex-
cellent candidate for neuromorphic implementation. Indeed, a similar im-
plementation of spiking-phasor binding was demonstrated on Intel’s Loihi
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chip (Renner, Supic, Danielescu, Indiveri, Olshausen, et al., 2022). However,
our letter extends that work with an unbinding neuron model, a fractional
binding neuron model, and a Hopfield-like cleanup memory, and demon-
strates their capabilities on a number of foundational algorithms, such
as spatial memory, function representation, signal integration, and signal
replay.

This work raises a number of follow-up investigations. The sensitivity
of these methods to random jitter in the spike times should be studied. To
what extent do small disturbances in the spike times disrupt the overall
functioning of these networks? This is a topic for immediate future work.
Also, a neuromorphic implementation of the spiking-phasor FHRR meth-
ods, even in emulation mode, would allow us to study the impact of re-
duced precision floating-point or fixed-point number systems. It would also
be enlightening to do a detailed analysis of the expected execution speed
on neuromorphic hardware. How do the relative costs of internal neural
dynamics, spike delivery, and neuron count affect the speed and power ef-
ficiency on a given neuromorphic platform? Finally, it would be valuable
to devise a method for synchronizing the start and end of the cycles. With
the current solution—every neuron tracking its own cycle using its clock
variable—might be prone to drift. We plan to investigate mechanisms for
synchronization across many spiking-phasor neurons.
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