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Abstract

Hyperdimensional (HD) computing (a.k.a. Vector Symbolic Architectures, VSAs) offer
a method for encoding symbols into vectors, allowing for those symbols to be combined
in different ways to form other vectors in the same vector space. The vectors and opera-
tors form a compositional algebra, such that composite vectors can be decomposed back
to their constituent vectors. Many useful algorithms have implementations in HD com-
puting, such as classification, spatial navigation, language modelling, and logic. In this
paper, we propose a spiking implementation of Fourier Holographic Reduced Repre-
sentation (FHRR), one of the most versatile VSAs. The phase of each complex number
of an FHRR vector is encoded as a spike time within a cycle. Neuron models derived
from these spiking phasors can perform the requisite vector operations to implement an
FHRR. We demonstrate the power and versatility of our spiking networks in a number
of foundational problem domains, including: symbol binding/unbinding, spatial repre-
sentation, function representation, function integration, and memory (i.e. signal delay).

1 Introduction
Artificial neural networks are ubiquitous tools in modern computing, but bring with
them substantial power demands. Spiking neural networks could have a big impact on
the future of computing since they can take full advantage of the extreme parallelism



and low power requirements of neuromorphic hardware. While it is possible to trans-
late gradient-based learning to spiking neural systems, implementing backpropagation
methods in neuromorphic hardware, as in the brain, brings with it the weight transport
problem, which imposes real, material costs in implementation. An alternative means
to implementing powerful algorithms in spiking neural networks is to combine local
learning rules in combination with symbolic structure imposed on neural circuits.

Vector symbolic architectures (VSAs) are one way of imposing structure on neural
systems, but often the translation from their algebraic statements to their implementa-
tion in populations of spiking neurons comes at a considerable overhead, i.e., repre-
senting each dimension of a hyperdimensional vector with multiple spiking neurons.
While neuromorphic computers are coming closer to commercial realization, the mem-
ory technologies used to implement neuron dynamics and synaptic memories are still
costly (Davies, 2021), hence there is a clear need for neuron-efficient implementations
of VSAs.

In this paper, we demonstrate how a versatile and powerful neural paradigm can be
implemented using a relatively small number of spiking neurons. We extend previous
work (Renner et al., 2022b; Bent et al., 2022; Orchard and Jarvis, 2023) that shows how
spike times within a cycle can be leveraged to represent hypervectors in a Vector Sym-
bolic Architecture. We propose a specific neuron model, which we implement using the
Brian2 simulator, that enables the translation of the chosen VSA into a population of
neurons that need only one neuron per dimension of the VSA’s hyperdimensional vec-
tors. This particular VSA, the Fourier Holographic Reduced Representation (FHRR;
Plate, 2003, Ch. 4), is capable of implementing an impressive array of algorithms, and
here we demonstrate some of those on a substrate of spiking neurons.

Below we provide a brief review of VSAs, and in particular the Fourier Holographic
Reduced Representation VSA (Section 1.1). Next we propose a specific neuron model
that translates three key operations (binding, unbinding, and clean up memory) into ef-
ficient neural populations (Section 2). Finally, we demonstrate a number of applications
of VSAs using our neuron model (Section 3), before discussing the implications of the
proposed approach (Section 4), and finally, concluding.

1.1 Vector Symbolic Architectures
A VSA offers a way to represent data using high-dimensional vectors (Gayler, 2003).
Also called Hyperdimensional (HD) computing, the “hypervectors” can be combined
in different ways to produce other (hyper)vectors in the same vector space. Amazingly,
those new vectors can still be decomposed into their constituent vectors. Hence, a VSA
forms a type of compositional language over a set of symbols. The set of symbols in a
VSA is called a vocabulary.

A VSA is comprised of a vector space paired with a small collection of operations:
similarity ⊙, binding ⊗, unbinding ⊘, bundling ⊕, permutation ρ(·), and clean-up.

The similarity operation measures how “close” two vectors are. Importantly, pairs
of randomly-chosen, high-dimensional vectors of a VSA tend to yield a similarity close
to zero. For example, consider a vector space V, and two random vectors, u, v ∈ V. We
would expect that u⊙ v ≈ 0, while v ⊙ v = u⊙ u = 1.

Binding combines two vectors to get another vector that is not similar to either of
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the two. Thus, if w = u ⊗ v, then w ⊙ u ≈ 0 and w ⊙ v ≈ 0. Binding can be used
to represent the conjunction of elementary symbols of the vocabulary. In some VSAs,
binding can also be used as the basis for constructing continuous representations, but
this is contingent on the definition of the binding operator. Unbinding does the opposite
of binding to recover the constituent elements of the conjunction, so that w ⊘ u ≈ v.

Bundling creates a vector that is still highly similar to the two constituent vectors.
If w = u⊕v, then w⊙u≫ 0, though not necessarily equal to 1. This corruption comes
from the fact that some information is lost in the bundling operation. How much is lost
depends on the vector space, the specific bundling operation, and how many vectors
were bundled together. Bundling can be used to construct vectors that represent sets of
the constituent vector-symbols.

Permutation shuffles a vector – in a reversible way – so that the resulting vector
is dissimilar from the original. Thus, if w = ρ(v), then w ⊙ v ≈ 0, but ρ−1(w)
yields v back. Permutation is used to construct data structures that are represented
as vectors. Permutation induces structure by removing the commutativity of operations
like bundling and binding, while preserving similarity between vectors. For example, an
ordered sequence can be constructed: v⊕ρ(u)⊕ρ(ρ(w))⊕· · · . In this way, bundles can
be constructed to reflect structures, including sequences, trees, and graphs (Kanerva,
2009; Plate, 2003).

Finally, clean-up takes a vector and restores it to the closest match in the VSA’s
vocabulary. The clean-up is helpful because the operations of binding, bundling, etc.,
tend to corrupt the vectors, and noise can accumulate. Using the noisy vectors in fur-
ther operations could start to affect their proper function and produce unpredictable
behaviours. The clean-up operation can undo that corruption and the clean vector can
be used with greater confidence.

1.2 Fourier Holographic Reduced Representation
Fourier Holographic Reduced Representation (FHRR) is a VSA that uses complex-
valued vectors to encode symbols (Plate, 1995). Let v ∈ CN be a complex vector. The
vectors of an FHRR are simply the Fourier transform of Holographic Reduced Rep-
resentation (HRR) vectors; many HRR VSA operations can be done more efficiently
using this Fourier representation (Plate, 1995). The complex number vk can be written
|vk|eiϕk , where |vk| is the modulus, and ϕk is its phase. If the vectors in the FHRR
exhibit conjugate symmetry (so that vk = vN−k for k = 0, . . . , N − 1, where the bar
notation indicates complex conjugation), then taking the inverse Fourier transform of v
yields a real-valued vector, v̂ ∈ RN .

A complex-valued vector v is said to be unitary if |vk| = 1 for each of its elements
(Plate, 1995). If all the vectors in an FHRR are unitary, we will refer to it as a normal-
ized FHRR. The use of unitary vectors in an FHRR simplifies binding and unbinding,
since no arithmetic is required to compute the modulus.

Binding: In a normalized FHRR, the binding operation is done using element-
wise multiplication, the Hadamard product. The vectors of a normalized FHRR are
unitary, meaning that the vector elements are unit-modulus complex numbers, so that
multiplying them is equivalent to adding their phases, eiϕ1 eiϕ2 = ei(ϕ1+ϕ2). The inverse
operation – unbinding – is element-wise division (or multiplication by the conjugate),
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as in eiϕ1 e−iϕ2 = ei(ϕ1−ϕ2).
Similarity: If u and v are vectors in an FHRR, then their similarity, u ⊙ v, is

computed using the complex inner product, u · v̄, where v̄ is the complex conjugate of
of v. For a normalized FHRR, this similarity is the same as cosine similarity.

Bundling: In many VSAs, including the FHRR, the bundling operation is simply
vector addition. Consider adding two unit-modulus complex numbers, eiϕa + eiϕb . The
resulting complex number will have a phase of 1

2
(ϕa + ϕb), but will probably not be

unit-modulus. In a normalized FHRR, the modulus is ignored, and only the phase is
kept. Discarding the modulus is a source of information loss, and is one of the reasons
that bundling has limitations.

Permutation: Permutation is done by literally permuting the vector elements. If P
is a permutation matrix, then ρ(v) = Pv, and ρ−1(u) = PTu.

Clean-up: In an HRR or FHRR, clean-up is often done either by an recurrent,
Hopfield-like associative memory (in which the vocabulary vectors are fixed points)
(Frady et al., 2018; Frady and Sommer, 2019; Frady et al., 2022), or by a feed-forward
associative memory (Stewart et al., 2011).

Fractional Binding: The FHRR has an additional operation that is not present in
all VSAs. Consider binding a vector v with itself, yielding v ⊗ v. In the FHRR, ⊗
is the Hadamard product, so you can write that as v2, where the exponent is applied
to the vector elementwise. But now one can contemplate using non-integer exponents,
such as v1.5, or v0.7 (Plate, 1995). This is called fractional binding (Lu et al., 2019),
or Fractional Power Encoding (FPE) (Frady et al., 2018, 2021, 2022). If one of the
elements of a unitary vector is eiϕ, with −π < ϕ ≤ π, then raising that vector to the
exponent α yields a vector with the element eiϕα. In other words, the fractional power
encoding of α is the same as multiplying all the phases in the vector by α.

1.3 Spiking Phasors
In most neural network simulations, a neuron’s activity is represented by a real number.
However, there is utility in modelling a neuron’s activity state as a unit-modulus com-
plex number, or phasor (Noest, 1988). This approach works well with the normalized
FHRR, since its vector components are unit-modulus complex numbers. Moreover,
since each complex number in a normalized FHRR vector really only encodes phase,
that complex number can also be represented by the timing of a spike within a cycle –
the spike’s phase. Thus, each complex number in a normalized FHRR hypervector can
be represented by a single neuron. All the neurons spike at the same frequency, but they
spike at different times with respect to a global, baseline cycle. Each neuron’s spike
time in that cycle represents that neuron’s phase (Frady et al., 2018). These neurons
are called spiking phasors. An N -dimensional vector in a normalized FHRR can be
represented by the spikes of a population of N spiking phasors. Each neuron emits one
spike per cycle, so that the population, as a whole, renders the FHRR vector each cycle
as N spike trains coming from N neurons.

Binding (unbinding) amounts to phase summation (or phase subtraction) in a nor-
malized FHRR. Put in terms of spiking phasors, binding (unbinding) two incoming
spike trains amounts to adding together (subtracting) the incoming spike times, and
generating a spike at this new phase sum (difference). A discretized version of such
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Figure 1: Phase sum neuron model. (A) illustrates the model for the case when the sum
of the incoming phases is less than 1 cycle. (B) shows how the method still works even
if their sum is longer than 1 cycle. Lines for c and q are only shown where they are
relevant.

binding was demonstrated using binary one-hot vectors, where the location of the 1 in-
dicated the binned spike time (Laiho et al., 2015). In that VSA, binding was done using
circular bit shifts. Rather than binning a spike time, one can use the spike time itself
to represent phase. Binding is done by adding these spike times (Renner et al., 2022b;
Bent et al., 2022). Similarly, fractional binding can be implemented in a spiking-phasor
neuron model by multiplying its phase offset by the desired multiplier (α). These neu-
ron models will be described in more detail in the next section.

2 Methods

2.1 Binding (Phase Sum)
In the normalized FHRR, binding is done by the element-wise multiplication of unit-
modulus complex numbers, which is equivalent to adding their phases as discussed in
Section 1.2. We developed a spiking-phasor neuron model that receives spikes from
2 other spiking phasors, and is able to add the phases of those incoming spikes and
generate its own spike at that phase sum.

The neuron model has 2 internal integrators. One is the cycle-tracking variable, or
clock. Suppose the neuron cycles at frequency λHz. Then its period is L = 1

λ
seconds.

The variable c starts at 0 at the beginning of the cycle and follows the differential equa-
tion ċ = 1 until it reaches its threshold value of L, indicating the end of the cycle, at
which point c resets to 0 and the cycle repeats.

When the first spike arrives, a second integrator q is set equal to c, thus recording
the spike’s arrival time. The integrator q holds that value by following the differential
equation q̇ = 0 until another spike arrives. After the second spike, q starts integrating
down following q̇ = −1 until it reaches its threshold value of 0, at which point the
neuron generates its own spike. This process is illustrated in Fig. 1A. Part B of that
figure shows that the neuron model still works when the sum of the spike times is larger
than the cycle period.

The spikes that arrive are not labelled “first” or “second”. Rather, the neuron model
performs the same internal operation as each spike arrives, regardless of whether it’s the
first or second spike. The differing effects of the two spikes are implemented using a
max and min function. Here is how. We initialize q̇ ← 1 and decrement q̇ ← q̇ − 1 for
each spike that arrives. Also, when a spike arrives, we increment q ← q+max(q̇, 0)∗c,
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which only affects q on the first spike since that is the only incoming spike for which
q̇ > 0. Similarly, instead of incrementing the integrator q using q ← q+∆t∗q̇ each time
step (where ∆t is the step size), it is incremented by q ← q + ∆t ∗min(q̇, 0). Thus, q
does not change until q̇ is negative, which will happen after the 2nd spike. This strategy
adds extra comparisons to each time step, but allows the spike-arrival behaviours to be
generic. This model is summarized in Algorithm 1.

Data: c← 0, and q̇ ← 1
for each time step of ∆t do

Update integrators:
c← c+∆t
q ← q +∆t ∗min(q̇, 0)
if a spike arrives then

q ← c ∗max(q̇, 0)
q̇ ← q̇ − 1

end
if q < 0 then

SPIKE, and q ← 0, q̇ ← 1
end
if c > L then

Cycle Reset: c← 0
end

end
Algorithm 1: Phase-sum neuron model

Note that the outgoing spike will always occur before the first incoming spike in a
cycle, as long as the the phases of the incoming spikes stay constant. The binding model
will still work even if the phases are changing, since it recomputes the phase sum every
cycle. However, depending on the specific spike times, it might take an extra cycle to
settle to the correct phase sum.

Our binding model assumes that two spikes arrive each cycle. If 3 or more spikes
arrive in a cycle, this neuron model will not work properly. However, a similar model
can be constructed to bind together 3 spikes per cycle, or 4, or more. For a given phase-
sum layer, the number of vectors being bound together would need to be known a priori
so the appropriate neuron model could be used. If not, the model will not correctly sum
the incoming phases.

2.2 Unbinding (Phase Subtraction)
A similar neuron model, illustrated in Fig. 2, is used to implement unbinding by sub-
tracting spike times. In this model, the variable q starts integrating from 0 when the first
spike arrives, according to q̇ = 1. When the second spike arrives, an internal threshold
variable, θ, is set equal to the instantaneous value of q. The neuron spikes when the
cycle-tracking variable, c, reaches the threshold (c = θ), after which a refractory toggle
is set to 1 until the start of the next cycle (preventing the neuron from spiking again until
the next cycle). Unlike the other neuron models described in this paper, the unbinding
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Figure 2: Phase subtraction neuron model. Both plots illustrate spike time b subtracted
from spike time a. In (A), the spike b occurs before a in the cycle. In (B), the spike a
occurs before b. In each plot, the two horizontal arrows are the same width. Lines for
c, q, and θ are only shown where they are relevant for the cycle’s computation.

neuron model is the only one that distinguishes between its two input synapses, since
a− b is different from b− a. In contrast to the binding neuron model, where the spike
could be generated in the same cycle or the next cycle in which the spikes arrived, the
unbinding neuron model always generates spikes in the following cycle.

2.3 Fractional Binding (Phase Multiplication)
The operation of fractional binding of the value α turns into multiplying phase by α. In
terms of spike times, the displacement of the spike from the nearest cycle boundary is
multiplied by α.

In this model, the clock variable (which we will denote ĉ) follows the differential
equation ˙̂c = λ and wraps half-way through the cycle; it starts at 0 at the beginning
of the cycle, then jumps from 1

2
to −1

2
mid-cycle. This allows the clock variable ĉ to

increase smoothly from negative to positive as one cycle ends and the next begins. This
continuous transition is important because ĉ is multiplied by α when the spike arrives,
setting a threshold variable, θ = αĉ. When ĉ > θ, the neuron sends an outgoing spike
and engages an internal refractory toggle that stops the neuron from firing another spike
until the next mid-cycle reset. Half-way through the next cycle, the toggle is reset and
the neuron is ready to fire again.

The inner workings of the phase multiplication neuron model are depicted in Fig. 3.
Notice that the red spike’s displacement (ϕ) from the cycle start/end is multiplied by α
to yield the outgoing spike’s time (αϕ, in green). The figure also shows how the clock
variable ĉ sets the threshold θ when the spike arrives, and a spike is generated as soon
as ĉ reaches that threshold. Note that the resulting (green) spike could be in the current
cycle, or in the next cycle, depending on when the incoming spike arrives, and the value
of α being encoded.

If α is large, the resulting threshold could be outside of the range
[
−1

2
, 1
2

]
. However,

this simply means that the desired spike time has to be phase-wrapped. For example, a
threshold of θ = 0.7 corresponds to the same spike time as a threshold of θ = −0.3. If θ
is outside

[
−1

2
, 1
2

]
, the neuron model increments (decrements) θ by 1 (-1, respectively)

each time step until −1
2
< θ ≤ 1

2
.
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Figure 3: Phase multiplication neuron model. This neuron is reset halfway through
the baseline cycle, as tracked by the integrator variable ĉ. The relative displacement of
the incoming spike (ϕ, red), is multiplied by α to get the desired time for the outgoing
spike (αϕ, green). When the red spike arrives, θ is set to αĉ. The neuron generates a
spike when ĉ > θ, after which the neuron is unable to spike again until ĉ resets at the
next mid-cycle. Lines for ĉ and θ are shown only where they are relevant to the cycle’s
computation.

2.4 Clean-Up Memory
The clean-up memory is based on the two-part Hopfield architecture outlined in (Kro-
tov and Hopfield, 2021). It consists of two populations, G and H , each containing
resonate-and-fire (RF) neurons. When G receives an input pattern (hypervector), the
two populations (G and H) continuously exchange activity until they settle into an
equilibrium state, where G (hopefully) stores the nearest vocabulary vector.

Suppose the vectors in our VSA are d-dimensional, so that the population G has d
RF neurons. That population projects to H , which is a population of m RF neurons,
where m is the number of patterns we have in our vocabulary. Let W ∈ Cm×d be the
connection-weight matrix from G to H . Each row of W contains one of the vocabulary
vectors. If we suppose that G is encoding a unitary vector g ∈ Cd, then the input to
H can be written as the matrix-vector product Wg. This input is like taking the inner
product (similarity) between g and each vocabulary vector. If g is most similar to the kth
row of W , then we would expect the input to hk to be larger than the input to the other
neurons in H . In this sense, each neuron in H represents one of the vocabulary vectors.
Importantly, even though this matrix-vector product involves complex numbers, it is
implemented using scalar weights and spike delays, as described in (Frady et al., 2018;
Frady and Sommer, 2019).

The neurons in H all inhibit each other; each time a neuron spikes, it sends strong,
inhibitory input to all the other neurons in H . Because of this mutual inhibition, the
population tends toward a winner-takes-all (one-hot) state. In our experience, this con-
vergence usually takes about 6 cycles.

Finally, H projects back to G using connection weights WT (again, using scalar
weights and synaptic delays). In other words, each time a neuron in H spikes, it sends to
G a weighted copy of the pattern it represents. Figure 4 shows the G and H populations
of the clean-up network.
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Figure 4: Clean-up network. Each neuron in H represents one of the vocabulary vec-
tors. The connections from a neuron in H to all the neurons in G have a weight of 0.5,
but delays that are determined by the phase of the vocabulary vector. The connections
going the other way have the same weight, but with opposite (negative) delay.

The differential equations governing the neurons in G and H are,

for each neuron in G

{
ẋG(t) = −2πλ yG − 0.4 xG

ẏG(t) = 2πλ xG − 0.4 yG

(1)

for each neuron in H


ẋH(t) = −2πλ yH − (0.02 + η) xH

ẏH(t) = 2πλ xH − (0.02 + η) yH

η̇(t) = − η

τη

(2)

where λ is the cycle frequency (in Hz). Each time a neuron in G or H receives a spike,
its x-value is incremented by the amount specified by the corresponding connection
weight. The only exception is the inhibitory interactions between neurons in H . The
neuron’s variable η integrates the inhibitory spikes from all other neurons in H . Each
time a neuron in H spikes, it increments the η-value of all other neurons in H by 3.
These RF neurons send a spike when both x > 0.9 and y > 0, after which their x-value
is reset to 0.7.

3 Experiments
In this section, we demonstrate the utility of these spiking-phasor neuron models, and
show that they effectively implement state-of-the-art VSA algorithms. All these experi-
ments were implemented in Python, using the Brian2 neural simulation language (Stim-
berg et al., 2019). The code can be downloaded from https://github.com/
jorchard/SpikingPhasorVSA.
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3.1 Impact of Clean-Up Memory
We wanted to investigate the effect of clean-up memory on the performance of our
spiking-phasor networks. Because the vectors are not perfectly orthogonal, there is a
slight loss of information when unbinding a bound vector. For example, suppose you
have the unitary FHRR vectors v and a, and they are bound together to form a new
vector w = v ⊗ a. The unbound vector, â = w ⊘ v, will be close to a but contain some
noise. That is, their similarity, â⊙ a, will be slightly less than the ideal value of 1.

A more significant source of error is bundling. A population of spiking-phasor
neurons can only encode a unitary vector, but bundles (from adding vectors together)
are not usually unitary. Renormalization back to a unitary vector results in a loss of
information. To see this, consider the set of m unitary vectors V = {v1, . . . , vm}. Let
B be the bundle of all the vectors in V , so that B =

∑
k vk. Since ∥vk∥2 = 1 for each

k, we know that ∥B∥2 can be as large as m. If we define B̂ as B
∥B∥ , then the similarity

B̂ ⊙ vk will likely be smaller than 1√
m

, much lower than the ideal value of 1.
Let us put these two factors together. In addition to the set of vectors, V , we intro-

duce two more sets of m unitary vectors, A = {a1, . . . , am} and U = {u1, . . . , um}.
Using these sets of vectors, we construct two bundles by pairwise binding, so that

V =
m∑
k=1

vk ⊗ ak , and

U =
m∑
k=1

uk ⊗ ak .

Finally, let V̂ and Û be unitary versions of those two bundles.
Given those bundle vectors, Û and V̂ , as well as a particular vj , we would like

Û ⊘
(
V̂ ⊘ vj

)
(3)

to yield a vector that is closest to uj . Why? Because V̂ ⊘vj should give a vector closest
to aj , and Û ⊘ aj should give a vector closest to uj . The problem is that V̂ ⊘ vj is
unlikely to be close enough to aj to work in the second unbinding operation.

The clean-up memory can help by taking the result from the first unbinding oper-
ation, the vector from V̂ ⊘ vj , and cleaning it up by converging it toward the closest
vector in A. That cleaned-up vector has a much better chance at working in the second
unbinding operation.

The following experiment compares the performance of two different networks at
evaluating the sequential unbinding expression in (3). Denote the clean-up operation as
a function CS such that, given a set of vectors S ,

CS(w) ≈ argmin
s∈S

(w ⊙ s) .

One network, denoted Net-1, performs the operation without clean-up,

r1 = Û ⊘
(
V̂ ⊘ vj

)
, (4)
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Figure 5: Network diagrams for Net-1 and Net-2. (A) Net-1 does not use a clean-up
memory. (B) Net-2 uses a clean-up memory to restore V̂ ⊘ vj to aj . The “relay” node
is a population of neurons that simply spike when they receive a spike, but go dormant
after 250ms. For the remaining 250ms, the clean-up memory operates without input.

while the other network, Net-2, performs the operation with clean-up,

r2 = Û ⊘ CA

(
V̂ ⊘ vj

)
. (5)

If Net-1 (or Net-2) is successful, then r1 (or r2) will be more similar to uj than any
of the other vectors in U . The two networks are shown in Fig. 5. The “relay” node
in Net-2 allows the spikes to reach CA for the first 250ms, but then blocks the spikes
for the remaining 250ms. This allows the clean-up memory to converge. The spiking
phasors were cycling at 40Hz.

In our experiment, we used hypervectors of dimension of 512, and bundles contain-
ing m = 30 vectors. We used Net-1 and Net-2 to evaluate r1 and r2 from equations
(4) and (5), for all 30 vectors. We counted how many times r1 or r2 had the highest
similarity to the correct vector in U . We ran this experiment 10 times, each time gen-
erating new vector sets (V , A, U), giving a total of 300 trials. The non-clean-up Net-1
was successful in 48 of the 300 trials (16% accuracy), while the clean-up Net-2 was
successful in 289 of the 300 cases (96% accuracy).

3.2 Spatial Memory
Several objects, and their locations, can be stored in a single vector. For example, given
different vectors for each of {Red, Green, Blue, Square, Triangle, Circle, X, Y}, we can
represent a red square at location (−1.3,−1.1) as the vector,

Red⊗ Square⊗ X−1.3 ⊗ Y−1.1 .
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(A) (B)

Figure 6: Queries of spatial memory vector, M . (A) shows the similarity between
possible object vectors and the query M ⊘ X−1.3 ⊘ Y−1.1. (B) shows the similarity
between M ⊘

[
(Blue⊗ Circle) ⊕ (Green⊗ Triangle)

]
and hypervectors of the form

Xx ⊗ Yy. Notice that the similarity is highest at the locations of the blue circle and
green triangle.

We can also encode several objects by bundling their vectors,

M̂ =
∑
k

Colourk ⊗ Shapek ⊗ Xxk ⊗ Yyk ,

where Colourk, and Shapek are different hypervectors corresponding to different colours
and shapes, and xk and yk are scalars. Note that in order to store M̂ in a spiking-phasor
population, its elements must first be made unit-modulus, so that Mj = M̂j/|M̂j|.
This bundle vector, M , can then be queried with questions like, “What is at location
(−1.3,−1.1)?”, or “Where is the blue circle?”.

We constructed a neural network consisting of multiple populations of 480 spiking-
phasor neurons, each representing a 480-dimensional hypervector. One population en-
coded M , while another encoded the query qa = X−1.3⊗Y−1.1. Both M and qa project
to a phase subtraction population that unbinds qa from M . The output of the unbinding
population projects to a relay population of 480 spiking-phasor neurons, which then
projects to a clean-up memory of 495 neurons (480 neurons in G for the hypervec-
tor, and 15 neurons in H for the 15 candidate vectors in the vocabulary). Figure 6(B)
shows the configuration of the 3 objects used to build the memory bundle vector, M .
Figure 6(A) shows the results of that query; the vector for “red square” was the most
similar.

Figure 6(B) also shows the results from the query, “Where are the blue circle and
green triangle?” The corresponding query vector is

qb = (Blue⊗ Circle)⊕ (Green⊗ Triangle) .

The heatmap in the figure indicates the similarity if M ⊘ qb to hypervectors of the form
Xx ⊗ Yy over a region of the (x, y) plane. Notice that the similarity is highest at the
locations of the blue circle and green triangle.

From a biological perspective, it is interesting to note that the phases of the location
basis vectors can be chosen in a way that can easily yield grid cells (Welday et al., 2011;
Orchard et al., 2013; Dumont and Eliasmith, 2019). Figure 7 shows a simulation of an
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Figure 7: Grid cell. The blue line shows the trajectory of a simulated mouse running
around in a pen for 16 minutes. The red dots show the spikes of a grid cell.

animal moving throughout an arena. As it moves, the spikes of one neuron are shown
as red dots. That neuron is a resonate-and-fire (RF) neuron that receives spikes from
6 spiking-phasor neurons encoding position using HexSSPs (Dumont and Eliasmith,
2019), a strategy for choosing hypervectors so that their phases align at locations on a
hexagonal grid (hence the name). The RF neuron behaves like a grid cell because it
only fires when the spikes coming from the 6 incoming connections are synchronized.

These grid cells, which are used to represent state spaces in biological models, have
also been employed as a basis for path integration that unifies symbolic representation
and neural implementation (Dumont et al., 2022). Furthermore, they have been used to
represent state spaces that decrease the time to convergence of reinforcement learning
agents (Bartlett et al., 2022). It is worth noting that these models of biological repre-
sentations of state spaces (e.g., position in space, head direction cells; Sargolini et al.,
2006; Langston et al., 2010) are proving useful in more traditional ML settings.

3.3 Function representation
A function can be represented by a vector in a VSA using a bundle. Consider a scalar
function f : [−L,L] → R. We can encode a single sample of that function, (x, f(x)),
by encoding its ordinate as a hypervector, Xx, and encoding its abscissa as a hyper-
vector, F f(x). The sample is then represented by binding those two hypervectors,
Xx ⊗ F f(x). If we do that for many samples, (xk, f(xk)), k = 1, . . . , K, then we
can represent the entire function using the bundle,

V̂ =
∑
k

Xxk ⊗ F f(xk) . (6)

Finally, in order to encode the vector in a population of spiking-phasor neurons, the
vector V̂ has to be converted to a unitary vector, V , by setting the modulus of each of
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Figure 8: Function bundles. The red line shows the true function, the black dots show
the values decoded from the bundle, and the heatmap in the background shows the
similarity of the bundle to corresponding hypervectors Xx ⊗ F f . Top: deterministic
function. Bottom: stochastic function, where the dashed lines show ±2 standard devia-
tions.

its elements to 1. This normalization operation results in loss of information. However,
the vector still maintains important aspects of the function (as we will demonstrate).

Figure 8 (top) shows an example of a randomly-generated (band-limited) function
(red line), as well as an illustration of its encoding into a single vector with 8640 ele-
ments. The function was sampled uniformly along its arc-length, resulting in approx-
imately 1000 samples, all encoded and bundled using (6). The vector V was encoded
into a population of 8640 spiking-phasor neurons firing at 10 Hz. Based on (Dumont
and Eliasmith, 2019), we used HexSSPs in which the phases for the hypervectors X
and F form a polar sampling of 2D space, with 5◦ angular increments, and 120 samples
at each angle, covering a radius of π. The heat map in the figure shows

V ⊙
(
Xx ⊗ F f

)
, for x ∈ [−5, 5], f ∈ [−2, 2] ,

the similarity between the vector V and a grid of hypervectors that uniformly sample
the region. For each x-value, the black dot indicates the f -value with the maximum
similarity, calculated using

fmax = argmax
f

[
V ⊙

(
Xx ⊗ F f

)]
. (7)

The bottom pane of Fig. 8 illustrates that stochastic functions can also be repre-
sented using the same strategy. Let µ(x) be a band-limited function, and let σ(x) be
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another function that dictates the standard deviation of samples around µ(x). For each
x value, 4 samples were drawn from the normal distribution N (µ(x), σ(x)) and added
to the bundle. The bundle was then made into a unitary vector and encoded into a pop-
ulation of 8640 spiking-phasor neurons. The same method as the top plot was used to
create the bottom plot. However, the dashed lines show the ±2σ deviations from the
mean. Notice that the bundle vector’s similarity spreads out in these regions of non-zero
deviation.

Others have used VSAs to represent functions (Frady et al., 2022), where they ap-
peal to techniques developed for function representation in reproducing kernel Hilbert
spaces (RKHSs). Relying on the fact that the dot product between fractionally bound
values induces a kernel function, one can appeal to the representer theorem (Schölkopf
et al., 2001) to show that optimal function representations exist for a set of encoded
sample points.

An interesting aspect of this approach is the connection with the definition of a
function. A function can be uniquely defined by the set of all pairs (x, f(x)) over the
domain x ∈ X . Similarly, we can understand bundles of observations, Xx ⊗ F f(x) as
sets of those pairs, but imbued, under the dot product, with a kernel function defined
by the phasors of the FHRR encoding. Furlong and Eliasmith (2022) identified that
VSA representations with continuous encodings are inherently probabilistic, and what
we see here is that a natural definition of a function is also inherently probabilistic.
This supports the notion that these hyperdimensional computing frameworks provide a
probabilistic model for neuromorphic computing.

3.4 Integrator
An integrator is a system that receives a signal, v(t), and computes the time integral
of that signal, p(t) =

∫ t

0
v(τ)dτ . We wanted to see if we could use a spiking-phasor

network to perform integration.
An hypervector, X ∈ C200, was generated by randomly choosing 200 phases uni-

formly from (−π, π). A population of 200 spiking-phasor neurons encoded X by spik-
ing at those phases. Another population of 200 phase-multiplication neurons received
X and multiplied their phases by v(t), thus encoding Xv(t). The input v(t) changes
over time, so the phase multiplication neurons were adjusting their phases every cycle
according to the value of v(t). Finally, that population sent its spikes to an integrating
population that also had 200 neurons. Each neuron in the integrating population sim-
ply added the phase of the incoming spike to its own phase. All the populations were
firing at 10 Hz, so the integrator could only update its estimate of the integral once ev-
ery 100 ms. As a result, this integration process is roughly equivalent to doing discrete
integration using a rectangle quadrature rule.

We ran 20 trials of integrating random band-limited signals for 5 seconds, and com-
pared the output of the spiking-phasor integrator (denoted the “estimate”) to a numerical
integrator that took 100 times as many steps (denoted “ground truth”). We measured
the error between the estimate and the ground truth every 100 ms over all 20 trials. The
standard deviation of the error was consistently less than 5% of the standard deviation
of the ground truth signal itself. The network had a total of 601 neurons: 200 for the
population that encodes X , another 200 neurons that encode Xv(t), another 200 neurons
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Figure 9: Integrator results. The blue line is the signal to be integrated (velocity, v(t)).
The red line shows its ground truth integral (distance, p(t)). The black dots show the
value encoded in the intergrator population for each 100 ms cycle (the estimate).

for the integrator population, and one more neuron that fires a single spike that resets
the integrator to zero at the beginning of the run.

Figure 9 shows the result of a typical run. The velocity signal is shown in blue, and
its ground truth integral (“distance”) is drawn in red. The black dots show the neural
integrator’s estimate (at 10 Hz).

A similar type of (non-spiking) phasor-based integrator was used for visual odome-
try (Renner et al., 2022a). The spiking-phasor implementation presented here could be
used in that work.

3.5 Legendre Delay Network
An interesting application of a neural integrator is a Legendre Delay Network (LDN).
An LDN optimally encodes the recent history of a continuous-time signal into a set of
time-varying coefficients. A snapshot of those coefficients can be used, in conjunction
with Legendre basis polynomials, to reconstruct the previous θ seconds of the input
signal (Voelker et al., 2019). Briefly, the ℓ Legendre coefficients, m(t), are determined
by a system of ℓ differential equations of the form

θṁ(t) = Am(t) +Bu(t)

where A ∈ Rℓ×ℓ and B ∈ Rℓ are constant, and u(t) is the input signal to be recorded.
The LDN is foundational to the Legendre Memory Unit (LMU). The LMU is one of

the earliest examples of what are now known as state space models – recurrent networks
that can model long-range dependencies without the quadratic complexity of transform-
ers’ attention. LMUs have achieved comparable or better performance to transformers,
with 2×-10× improvements in the number of parameters (Chilkuri et al., 2021; Chilkuri
and Eliasmith, 2021). Other state space models have demonstrated improvements over
transformers (Gu et al., 2021, 2022; Smith et al., 2022; Gu and Dao, 2023).

We constructed a spiking-phasor Legendre Delay Network by connecting a number
of integrator populations (described in section 3.4). We used hypervectors of dimension
100. A population of 100 phase multiplication neurons was used to encode the input
signal u(t) using Xu(t). The LDN itself consisted of 10 integrator populations, each
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Figure 10: Legendre Delay Network results. (A) shows the spike raster plots for the 10
integrating populations (of 100 neurons each), as well as the decoded Legendre coeffi-
cients, m(t). The colour of the spikes matches the line for the corresponding Legendre
coefficient. (B) shows the corresponding input signal (blue), as well as reconstructions
with varying delays; the lighter the curve, the longer the delay. (C) shows an enlarged
view of the region outlined in (A). Notice that as the green dot-line climbs toward zero
(the black axis), the horizontal distribution of green spikes reduces, and as the red dot-
line gets further from the axis, the red spikes disperse.

with 100 neurons, encoding hypervectors L0 through L9. We found that accuracy was
greatly improved if we used a higher frequency, so this network cycled at 40 Hz. The
entire network had 1201 neurons: 100 for the population that generates the hypervector
X , another 100 neurons that encode the input signal Xu(t), 1000 for the LDN integrators
(encoding L0, . . . , L9), and one more neuron that fires a single spike that resets all the
LDN integrators to zero at the beginning of the run.

To visualize the encoding, we first had to decode the coefficients from the LDN
integrator populations. This was done using mi = argmaxm (Li ⊙Xm).

Figure 10 illustrates a typical run of the LDN. Panel (A) shows the spiking activity
of all 10 LDN integrator populations (organized by colour) beneath plots of the esti-
mated Legendre coefficients (colour-matched to the spike rasters). Panel (B) uses those
coefficients and reconstructs the input signal at a variety of different delays, with longer
delays rendered with progressively lighter greys. Panel (C) shows a close-up of the
delineated region of the raster plot.
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4 Discussion
Our focus on spiking implementations of VSAs is to enable their implementation on
neuromorphic hardware, where the largest gains in energy efficiency are realized by
spiking networks. Furthermore, we concentrate on HRR and FHRR vector symbolic
architectures because they have been shown to be among the highest capacity methods
(Schlegel et al., 2022), and they can support fractional binding.

4.1 Model Complexity
How many arithmetic operations (“ops”) does it take to perform a binding operation?
Let us consider a single phase-sum neuron, and assume that our implementation takes T
times steps per cycle. Note that if the time variable is scaled so that ∆t is one time step
on the hardware, then there is no need to multiply by ∆t in Algorithm 1. Thus, in each
time step, the model requires up to 3 ops to increment the integrators: one addition to
increment c, one conditional (i.e. q̇ > 0), and one addition to (conditionally) increment
q. There are also 2 other conditionals per time step: q < 0 for spiking, and c > L for
end-of-cycle. Putting those all together, each time step requires at most 5 ops.

There are also some processes that (usually) happen once per cycle. When a spike
arrives, it incurs up to 3 ops: 1 conditional (i.e. if q̇ > 0), another to (conditionally)
assign q ← c, and 1 to decrement q̇. If the neuron spikes, it causes 2 ops, and when the
cycle resets, it costs 1 op.

Hence, the operation count for a single phase-sum neuron for one cycle is 5T + 7.
It can take 2 cycles for the computation to settle, so the real operation count would be a
small multiple of 5T + 7. If we assume that our hypervectors are of dimension d, then
the computational complexity class for a single cycle is O(dT ).

4.2 Potential for Neuromorphic Speedup
One advantage of spiking neural network models is that they are implementable on
neuromorphic systems. Assuming that the neuron model can run in parallel on the
neuromorphic chip, then we can remove d from the time complexity. In other words,
binding can be done in O(T ) ops. In our experiments, we used time steps of 0.1ms,
and cycle lengths between 0.025s and 0.2s. This gives us T -values in the range 250 to
2000.

The computation involved in the neuron models is relatively simple. After the initial
set-up of the network, they do not use any transcendental functions like sin, log, or exp.
The arithmetic is within a limited range, typically between -1 and 1, which places fewer
demands on the precision of the number system. A fixed-point number system would
probably suffice for these computations. Furthermore, most of the operations required
in the neuron models can be done using addition and conditionals. For example, the
multiplications in Algorithm 1 can be implemented by a conditional. There are only 2
models that require multiplication. One is the fractional binding (phase multiplication)
model, which needs to compute the product αĉ to set the threshold. However, that
multiplication is only done once per cycle. The other model is the oscillators in the
clean-up memory, governed by the differential equations (1) and (2).
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4.3 Connection Efficiency
One of the main benefits of the spiking-phasor approach to FHRR is the sparseness
of connections. Take as an example the binding operation between two vectors. Each
vector is encoded by a population of spiking phasors; let us denote them as A and B.
Both populations, A and B, project to a phase-sum population, C. If the vectors are
d-dimensional, then each population (A, B, and C) has d neurons, for a total of 3d neu-
rons. But the whole network has only 2d connections, since each neuron in C has only 2
incoming connections, one from its counterpart in A, and one from its counterpart in B.
This simplified connectivity affords even more parallelization, whereby each Fourier
coefficient essentially forms an independent channel through the network. Even the
permutation operation maintains channelization. The only place that this “channeliza-
tion” breaks down is in our clean-up memory, where the connections between layers in
the Hopfield-like network are all-to-all. However, in a network encoding d-dimensional
vectors, and a vocabulary of m vectors, the number of connections in the Hopfield net-
work is only 2dm+m2.

Another approach to building spiking neural networks that implement a VSA is to
use the Neural Engineering Framework (NEF) (Eliasmith and Anderson, 2003). How-
ever, the NEF implementation does not have the same benefit of channelization because
its default VSA implementation is HRR (Komer et al., 2019), and uses a DFT and IDFT
to implement the circular convolution for binding. The DFT and IDFT are dense trans-
formations, requiring all-to-all connectivity. Moreover, each of the vector elements is
encoded by a population of neurons. That is, each of the d-dimensional input vectors
(a and b) is encoded using Nd leaky integrate-and-fire (LIF) neurons, with N neurons
encoding each of the d vector elements. The process of circular convolution proceeds
as follows: (1) The values of the vectors a and b are decoded from their populations
(requiring 2Nd connections), (2) then Fourier transformed (O(d2) connections), and
(3) fed into an array of roughly 4d populations (with N

2
neurons each) in preparation

for element-wise multiplication (O(Nd) connections). From there, (4) decoding from
those populations takes anotherO(Nd) connections, followed by (5) an inverse Fourier
transform (O(d2) connections). The whole process of binding two d-dimensional vec-
tors involves O(Nd) neurons, and O(d2 + Nd) connections. See Fig. 6 in (Bekolay
et al., 2014) for a detailed description of circular convolution in Nengo, the software
library implementation of the NEF.

For a concrete comparison, consider binding two vectors of dimension 100. Using
the NEF with N = 50, it would take about 20,000 LIF neurons, and optimistically take
150,000 connection weights (assuming that low-rank connection-weight matrices can
be implemented as a sequence of connections through “phantom” nodes). However,
the same binding network using spiking phasors would take only 300 neurons, and
200 connection weights. Or, using vectors of dimension d = 480 (like for the spatial-
memory network in section 3.2), the NEF would involve 96,000 neurons and 2,908,800
connections, while the spiking-phasor implementation used 1,440 neurons, and 960
connections. It should be noted that spiking-phasor neurons are more complex than LIF
neurons. However, the arithmetic operations carried out inside these spiking-phasor
neurons is relatively simple, requiring linear integrators, a value copy, and simple logic.
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4.4 Silicon Costs
Purely algebraic implementations of VSA algorithms, in and of themselves, can provide
computational benefits compared to traditional algorithm formulations, as surveyed by
Kleyko et al. (2023). Similarly, they have been proposed as a framework for program-
ming neuromorphic computing (Kleyko et al., 2021).

However, due to the intermingling of memory and processing that is typical in neu-
romorphic computers, it is difficult to exploit cheaper memory hardware, like that found
in the memory hierarchies of von Neumann computers. For example, the Loihi proces-
sor relies on SRAM to store state variables with neurons, which is 100 times more
expensive than the DRAM that is used to provide off-chip memory in traditional com-
puters (Davies et al., 2021; Davies, 2021). This high cost has spurred researchers to
explore alternative memory technologies, but these cheaper memories come with prob-
lems in variability and reliability that need to be resolved (Rajendran and Alibart, 2016;
Adam et al., 2018).

Until those problems can be suitably mitigated, there is a pressing need to reduce
the number of neurons required in a given network implementation. Consequently, this
makes our spiking phasor implemenation of VSA algorithms all the more timely – it
permits one to take advantage of the benefits of VSA algorithms and neuromorphic
computers while not unnecessarily consuming on-chip resources. This means that one
can either fit more VSA algorithms on one chip of a fixed capacity, or one can de-
sign smaller chips with fewer neurons, reducing costs per chip while still being able to
implement VSA-style algorithms.

5 Conclusions and Future Work
We have shown how a relatively simple set of spiking neuron models can perform all
the basic operations of an FHRR. The spiking-phasor implementation behaves just like
its complex-valued counterpart. Numerical experiments using complex-valued hyper-
vectors (not shown) often yielded indistinguishable results from our spiking-phasor im-
plementation. The differences between the two emerged in the context of dynamic
scenarios. The discrete-time nature of the spiking-phasors – the fact that a cycle was
required to encode a phase angle – resulted in inaccuracies in the integrators. Choosing
a higher firing rate (like 40 Hz) helped in those situations.

These methods all use local information only and, for the most part, involve a small
number of synaptic connections; only 2 neurons synapse onto 1 neuron for phase sum-
mation and subtraction, and neurons are connected 1-to-1 for phase multiplication. The
denser synaptic connections are in the Hopfield clean-up memory, which involves all-
to-all d-to-m connections for d-dimensional hypervectors and m vocabulary vectors,
and in the LDN connections, which involve ℓ-ℓ connections for ℓ Legendre coefficients.

The spiking nature of these networks, and the fact that the connection structure tends
to be sparse, makes this spiking-phasor framework an excellent candidate for neuromor-
phic implementation. Indeed, a similar implementation of spiking-phasor binding was
demonstrated on Intel’s Loihi chip (Renner et al., 2022b). However, this paper extends
that work with an unbinding neuron model, a fractional binding neuron model, and
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a Hopfield-like clean-up memory, and demonstrates their capabilities on a number of
foundational algorithms, such as spatial memory, function representation, signal inte-
gration, and signal replay.

This work raises a number of follow-up investigations. The sensitivity of these
methods to random jitter in the spike times should be studied. To what extent do small
disturbances in the spike times disrupt the overall functioning of these networks? This
is a topic for immediate future work. Also, a neuromorphic implementation of the
spiking-phasor FHRR methods – even in emulation mode – would allow us to study the
impact of reduced precision floating-point or fixed-point number systems. It would also
be enlightening to do a detailed analysis of the expected execution speed on neuromor-
phic hardware. How do the relative costs of internal neural dynamics, spike delivery,
and neuron count affect the speed and power efficiency on a given neuromorphic plat-
form? Finally, it would be valuable to devise a method for synchronizing the start/end
of the cycles. With the current solution – every neuron tracking its own cycle using
its clock variable – might be prone to drift. We plan to investigate mechanisms for
synchronization across many spiking-phasor neurons.
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