
The Evolution of a Generalized
Neural Learning Rule

Jeff Orchard
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

Email: jorchard@uwaterloo.ca

Lin Wang
Shandong Provincial Key Laboratory of
Network Based Intelligent Computing

University of Jinan
Jinan, 250022, China

Email: ise wanglin@ujn.edu.cn

Abstract—Evolution is extremely creative. The mere availabil-
ity of a mechanism for synaptic change seems to be enough
for evolution to derive a learning rule. Many simulations of
evolution have evolved learning in a highly guided manner. Either
by constraining the update function to a Hebbian form, or by
supplying an error/teaching signal. In this paper, we aim to evolve
a more general learning rule. And since neural networks are so
versatile, we construct the learning function itself out of a neural
network. Our evolved networks excel at the foraging task they
evolved in. Amazingly, they even function robustly when tested
outside of their historical niche. The same cannot be said for the
Hebbian learning networks we compare to.

I. INTRODUCTION

We are interested in the role that synaptic plasticity plays in
the evolution of life forms with complex brains. All vertebrates
have complex brains that take sensory input (vision, touch,
smell, etc.) and determine an appropriate motor output (an
action). The brain’s function, in essence, is to carry out this
mapping. For neural networks (such as brains), the form of
the mapping is determined by the strengths of the connections
between the neurons. An interesting question is how these
connection weights get set. What are the relative roles of
genetics and environment.

In this paper, we ask the question: would evolution favour
brains that could adjust their own connection weights over
brains with static connection weights? And if so, what would
the nature of the weight adjustments be?

To answer these questions, we ran a series of simulations
that evolved populations of virtual organisms, composed on
neural networks. Among the simulations, we evaluated three
basic conditions: organisms that have fixed connection weights
(denoted non-learning), organisms that can adjust their con-
nection weights using a simple, Hebbian plasticity mechanism
(denoted Hebbian update), and organisms that can adjust their
connection weights and biases using a more complex plasticity
mechanism based on a neural network (denoted NWB-update
which stands for “Neural Weights and Biases” update).

II. RELATED WORK

Neural networks have shown to be a flexible method for
learning complex mappings from input to output. The chal-
lenge is to find the set of neural connection weights that
performs the desired transformation on the input to generate

the required output. Popular methods such as error back-
propagation [1], and contrastive divergence [2] have been used
to find connection weights.

Evolutionary algorithms have also been used to optimize
the connection weights. Given many input-to-output examples,
the fitness function is chosen to reflect the error between
the network’s output and the desired output. An evolutionary
algorithm is used to find connection weights for a neural
network that exhibits the same input-to-output behaviour. But
those weights are usually fixed, or are changed by a human-
designed learning rule such as a Hebbian learning or a delta
rule.

The interaction between evolution and learning is more in-
teresting than simply finding fixed connection weights. Neural
networks that learn can enhance evolution by smoothing out
the fitness landscape [3]. This feedback, called the Baldwin
effect, arises because learning neural networks can cope with
a wider variety of environments. In another study involving
foraging, evolving neural networks were given a capacity to
learn to predict the outcome of their next move [4]. Even
though the networks were not trained to forage better, the
networks that learned (or evolved) to predict the outcome of
their actions foraged better, and vice versa!

But what about evolving the capacity for learning? Can
evolution automatically take advantage of a generic synap-
tic plasticity mechanism to implement a learning rule? The
earliest example that we are aware of allowed alteration of
each synaptic connection based on a quadratic function of four
inputs: pre-synaptic activiy, post-synaptic activity, the current
connection weight, and a training signal [5]. They evolved
the linear weights for the various terms in the quadratic
plasticity function. The resulting neural networks learned to
solve a host of linearly-separable binary classification tasks.
It demonstrated that evolutionary algorithms can evolve a
learning method. However, their network had only an input
layer and an output layer, and was strictly feed-forward.

Other examples of evolving learning appeared, many of
which used a parameterized Hebbian rule as an update function
[6]–[8]. The Hebbian update rule often takes the form

∆wij = η (Axixj +Bxi + Cxj +D) ,

where xj and xi are the pre- and post-synaptic neural ac-

tivities, ∆wij is the weight adjustment, and A-D and η are
parameters. Evolution was tasked with finding the parameter
values so that the update rule changed the connection weights
in a helpful manner.

A variant of those evolved learning methods involves neu-
romodulation, in which a separate population of neurons
functions to turn on or turn off synaptic plasticity [8], [9].
These methods are effective for implementing reinforcement
learning tasks, but – as such – still require a teaching signal,
and hence are supervised learning methods.

Some unsupervised evolved learning methods have also
been published. For example, Floreano and Urzelai [10]
evolved the parameters of a Hebbian update function without
an error or teaching signal. A small robot evolved and learned
how to efficiently turn on a light and approach it. Unlike most
previous implementations of the Hebbian update rule, in which
the update function is the same for all connections, Floreano
and Urzelai allowed the update rule to vary; each node or
connection could choose one of 4 update-rule options, as well
as a learning rate. This heterogeneous learning method was
encoded in the organism’s genome, storing which rule and
learning rate was used for each node or connection.

Since then, more heterogeneous update rules have been
proposed. One method, dubbed hyperNEAT, evolves spatial
functions that encode two parameters that control the up-
date function. A more advanced version, called adaptive ES-
hyperNEAT, stores different Hebbian parameters for each
connection using compositional pattern producing networks
(CPPNs) [11]. These hierarchically-defined functions take the
locations of the pre- and post-synaptic neurons as input, as
well as the pre- and post-synaptic activity, and generate an
update for the connection weight.

Finally, one can even use a neural network to compute
the update function. Runarsson and Jonsson [12] evolved a
neural network that learns to classify binary patterns. Their
connection weights are updated throughout each organism’s
life. Those updates are computed using another neural net-
work. This “learning-rule” network has weights that are fixed
within the lifetime of a single individual, but evolved over
generations. Their update rule takes, as input, the pre- and
post-synaptic activities, as well as a teaching signal. Their
networks were very simple – just one feed-forward layer. But
they successfully learned to do linear classification.

For a more comprehensive review of evolving plastic net-
works, see Coleman and Blair [13].

We wanted to break away from the parametric Hebbian
paradigm, and continue with Runarsson and Jonsson’s idea
[12] of using a neural network to compute the update rule. Our
hypothesis is that even a 3-layer feed-forward neural network
could be used to model a wide array of update functions – far
more than the parametric Hebbian update rule. We improve
substantially on [12] by adopting a recurrent, fully-connected
brain network, and evolve it in a foraging task that requires
the organism to adapt.

Fig. 1. The foraging arena is 100× 100. The dark dots are food items, and
the red dot shows the location of the organism, along with an indication of
which direction it is facing.

III. METHODS

We wanted to see if the simple presence of a complex mech-
anism for synaptic plasticity was enough to evolve learning.
Foraging is a common animal behaviour, so we tested our
organisms in a foraging task. Individuals receive information
about the location of the nearest food item. The location is
input to their neural-network “brain”, which then produces
output indicating the individual’s next action.

We evolved three types of populations: those without synap-
tic plasticity; those with a parametric Hebbian update rule;
and those with an NWB-update rule. We compare the three
methods in a number of evolutionary simulations.

Our hypothesis is that populations of neural networks with
a facility to update their connection weights will be more
able to adapt to varying environments, and be more successful
foragers overall.

A. Foraging World

Each organism is placed in a virtual 100× 100 arena with
10 food items placed randomly, as shown in Fig. 1. The
organism’s task is to move around the arena and collect as
many food items as possible in a limited amount of time.
Based on sensory input, composed of the angle and distance of
the nearest food item, the organism has four possible actions:
move forward, turn 90◦ left, turn 90◦ right, or do nothing.
The organism is allowed 50 actions before the food items
expire and another set of 10 food items are randomly placed.
Each individual is given a 3000-action lifetime during which
to collect food.

B. Sensory Offset

To make the task more difficult, we perturb the sensory
system of each individual, inducing a lifelong sensory-angle
offset. For example, suppose an individual has a sensory offset

Next Actions

Pre-Actions Angle Distance

Fig. 2. Neural-network brain. There are 4 input nodes, and 2 output nodes.
Different experiments use a different number of internal nodes, either 3 or 5.
The network is recurrent and fully connected (bilateral connections between
all pairs of neurons).

of 60◦. If the nearest food item is at an angle of 30◦ (at one
o’clock), then the sensory input would reflect that the food
item is in the direction of 90◦.

The fitness of a genome is averaged over 32 individual life-
times. For each individual, a sensory offset is chosen between
−270◦ and 270◦, and held constant during its lifetime. A
genome’s fitness is the average number of food items collected
in a lifetime, calculated over the 32 individuals with sensory
offsets chosen uniformly from [−270◦, 270◦].

C. Brain Neural Network

Each organism has a “brain”, a neural network with four
inputs and two outputs. The two output nodes specify the
action that the organism will take: (0,0) means do nothing;
(0,1) means turn 90◦ right; (1,0) means turn 90◦ left; and (1,1)
means move forward. Figure 2 illustrates the neural-network
brain.

There are four inputs for the neural network, two of which
are sensory, and two of which are an efference (internal) copy
of the organism’s previous action. The two sensory inputs are:
distance to the nearest food item, and egocentric angle to the
nearest food item. These inputs are the same as those used in
[4]. The distance is normalized so that a value of 1 corresponds
to 100 grid units (the width of the arena). The angle is also
normalized so that a value of 0 corresponds to straight ahead,
0.5 and -0.5 correspond to directly left and right (respectively),
and a value of ±1 indicates the food is in the direction opposite
where the organism is facing.

The number of internal nodes (neither input nor output
nodes) is either three or five, depending on the experiment (see
section IV). These neural networks of either 9 or 11 nodes are
fully connected and thus recurrent. That is, each node projects
to each other node, and vice versa. That means that a network
of 9 (11) nodes has 72 (110) internal connections. Including

4 input weights, these brain networks have a total of 76 (114)
connection weights.

In addition to the connection weights, each node also has a
bias current, adding 9 (11) coefficients to the list of parameters
that specify the network.

The network is run in discrete time so that each node’s
state is overwritten each time step. Furthermore, the updates
are synchronous; all nodes have their states updated simulta-
neously, based on the last time-step’s states.

The brain network is used to determine actions from the
input (both sensory input, and efference copy of the previous
action). The network is run for 10 “deliberation steps” before
the state of the output nodes are read to determine the next
action. This allows the network to reach a steady state before
committing to an action. After each action, the state of each
node is reset to a value of 0.5.

D. Neuron Model
Each node in the neural network follows the rule,

xi = f
(
βi +

∑
j

wijxj

)
(1)

where xi is the activity of node i, wij is the strength of the
connection from node j to node i, βi is the bias current for
node i, and f(·) is the logistic function. Hence, each node’s
activity is in the range [0, 1]. When each output node is read,
its activity is rounded to either 0 or 1 to determine the next
action.

E. Synaptic Plasticity
To enable a plastic network (one that can change over its

lifetime), we created a mechanism for computing a synaptic-
weight update function. Our function is computed by a feed-
forward neural network with four input nodes, four internal
nodes, and one output node, as illustrated in the left panel
of Fig. 3. The network is used to determine an adjustment to
each connection in the brain network. For the connection from
node j to node i, the update takes the form,

∆wij = L

(
wij , xj ,

∑
i

wij , βi

)
where wij , xj , and βi are as defined earlier, and Σi is the
total input current impinging on node i from all neurons. The
function L represents the update function as computed by the
update neural network. Each connection in the brain is updated
according to the value ∆wij output by the network, using the
rule,

wij ← wij + ∆wij .

Since our NWB-update function outputs a value between 0
and 1, we linearly map its value to the range [−0.005, 0.005].

The bias of each node in the brain is also updated by an
NWB-update rule. As shown on the right in Fig. 3, an update
∆βi is generated for each node i.

The nodes in this update-function network follow the same
model as shown in (1). However, the weights of the connec-
tions are fixed within an individual’s lifetime, and arrived at
through an evolutionary process.

wij xj ij j
w x∑ i

β

wij∆

ij j
w x∑ i

β

i
β∆

Fig. 3. NWB-update networks: weight update network (left), and bias update
network (right). These networks are feed-forward.

F. Evolutionary Algorithm and Its Parallelization

Recent studies have shown that artificial evolutionary com-
putation is able to discover models of natural laws [14].
Furthermore, a neural learning rule itself can also be the
result of evolution. In this subsection, we describe a genetic
algorithm [15] for evolving a learning rule, as well as its
corresponding initialization connection weights. The classic
binary genetic algorithm is adopted here because it follows
the basic theory of evolution without adding other strategies;
it enables us to investigate the evolution of learning in a natural
way.

The genome consists of two parts: the initial connection
weights, and the learning rule. Direct coding is used for the
initial connection weights. Each gene represents either an
initial weight for a synapse or an initial bias for a neuron. For
the learning rule part, it is further divided into two subparts:
a global learning rule for synapses, and a global learning rule
for biases. Two three-layer feedforward neural networks are
used to play the role of these learning rules. Both neural-
network-based learning rules are encoded in the genome by
direct coding of their connection weights and biases (these
networks are evolved, not learned).

In our evolutionary simulations, we evolve populations of
192 genomes (individuals). Each population evolves for 200
generations. A uniform crossover strategy is used with a
crossover probability of 0.7. The mutation probability is set
to 0.01. Based on the fitness (defined in the next section),
the selection operator reproduces the next generation using
tournament selection with a size of 15.

Evolutionary algorithms can be very time-consuming. The
evolution of an indirect adaptation, like a learning rule, can
make the problem even harder. For our experimental platform,
we used a CUDA-based high performance computer with a
Linux operation system and C programming environment to
accelerate the evolution process using parallel computation.
The computer consists of four Kepler GK104S GPUs produced
by NVIDIA. Each GPU contains 8 stream multiprocessors
(SMs), which further contains 192 stream processors (SPs).

The clock frequency of each SP is 0.75GHz. Therefore, this
computer reaches a peak speed of 9Tflops. This work uses
a Master/Slave strategy as the parallelization architecture. It
performs the evaluation of individuals using the GPU, and
performs the other procedures using the CPU. In total, 6144
threads are performed on GPUs at the same time to evaluate
each life time trial for each genome in parallel.

IV. EXPERIMENTS

We performed three basic simulations in order to compare
their performance on the sensory-offset foraging task.

A. Non-Learning

As an experimental control condition, we evolved non-
learning neural networks to solve the foraging problem. These
networks do not have a mechanisms for synaptic plasticity.
The connection weights are fixed throughout an individual’s
lifetime, but the weights evolve over generations. The brains
of these organisms have 11 nodes (4 input, 2 output, and 5
internal). Their genome thus contains 125 values encoding the
connection weights and biases for the brain.

B. Hebbian Update Rule

In a second set of simulations, we implemented a parametric
Hebbian update rule. The rule has the form,

H(xi, xj) = η (Axixj +Bxi + Cxj +D) ,

where xj and xi are pre- and post-synaptic activities (re-
spectively), and A, B, C, D, and η are parameters to be
optimized by evolution. The brains of these organisms have
11 nodes (4 input, 2 output, and 5 internal). Their genomes,
therefore, contain a total of 130 values (125 for the brain’s
initial connection weights and biases, and 5 for the parameters
for the Hebbian update rule).

C. NWB-Update Rule

In the third set of simulations, we used neural networks to
compute the update rule (as described in section III-E). In par-
ticular, two networks were used: one to compute connection-
weight updates, and the other to compute bias updates.

The connection-weight update network has 4 input nodes
(see Fig. 3), 4 internal nodes, and 1 output node (∆w). The
bias update network has 2 inputs (the current bias, and input
current), 3 internal nodes, and 1 output node (∆β).

To make a fair comparison between the different simula-
tions, we wanted to keep the genome sizes roughly compa-
rable. However, the NWB-update rules require more values
to encode their connection weights and biases (25 values for
the weight-update network, and 13 values for the bias-update
network). To make space in the genome to accommodate these
values, we reduced the size of the brain so that it only has
3 internal nodes instead of 5. Hence, the genomes of these
organisms contain 85 values for encoding the brain’s initial
connection weights and biases, and 38 values for encoding
the update networks, for a total of 123 values.

Fig. 4. Evolutionary progression during simulations: non-learning (blue),
Hebbian update rule (green), and NWB-update rule (red). The solid lines
show the mean number of food items eaten by an individual in a population,
while dotted lines show the maximum for each generation.

D. Fitness Evaluation

An organism’s fitness naturally depends on its success in
locating food. Hence, a large part of the fitness value depends
on how many food items it consumes. However, there is also
a metabolic cost associated with having a hyper-connected
brain with very large connection weights. We included a fitness
penalty term for having excessively large connection weights.
For the Hebbian simulations, that penalty took the form∑

i,j

|wij |+
∑
j

|βj |

C , (2)

for some constant C. For the simulations involving the NWB-
update function, we used the same weight penalty term, but
with a scaled constant C to balance the fact that the smaller
brain has fewer connections and fewer biases.

To evaluate how well an organism performs in our foraging
world, we simulated it through 32 lifetimes. For each lifetime,
we allowed 3000 actions. The 32 lifetimes all had different
sensory offsets, chosen uniformly from the range [-1.5, 1.5].
The organism’s fitness value is the average number of food
items acquired per lifetime, minus the synaptic-size penalty.
This ensures that the organisms evolve a general strategy to
handle a large range of sensory offsets, while simultaneously
bounding the connection weights.

V. RESULTS

A. Evolutionary Progression

Figure 4 plots the number of food items eaten during the
progress of evolution. The solid lines show each population’s
mean number of food items eater per lifetime, and the dashed
lines show the number of food items eaten by each genera-
tion’s top individual.

Since the parametric Hebbian update rule has only 5 param-
eters, it is not surprising that it develops a learning rule more
quickly than the NWB-update rule. This can be seen in Fig. 4

Fig. 5. Lifetime food consumption rate for a non-learning organism, over
a range of sensory offsets. For each offset, the lifetime curve represent the
average over 20 lifetimes. The red curve on the left gives the consumption
rate over the individual’s lifetime, averaged over all offsets. The red curve on
the right shows the average lifetime consumption rate over various sensory
offsets.

as the green curves (Hebbian update) climb more quickly than
the red curves (NWB-update).

B. Robustness to Sensory Offset

We were surprised how well the non-learning networks
performed, despite the varying sensory offsets. However, we
discovered that their success was based on expert performance
over a small range of offsets, with little or no food consumed
for the other (non-preferred) offsets. Figure 5 shows the
lifetime food consumption rate for a non-learning individual,
over a range of different sensory offsets. For each offset, 20
simulations were run, and the number of food items eaten per
100 steps was averaged over those 20 lifetimes. The Figure
shows that this individual is specialized for offsets around
-0.5, and 1. For offsets near those values, its performance
is exceptionally good. However, half of the offset values
yielded poor results. The red line at the left of the figure
shows the lifetime food consumption rate averaged over all
offsets. We repeatedly observed this behaviour in non-learning
evolutionary trials; the resulting best individual showed a
preference for small ranges of offsets, but with peaks at
different locations.

On the other hand, the organisms that had the NWB-update
rule exhibited adaptability to all the sensory offset values we
tried. Its performance was the same no matter what the sensory
offset was. Figure 6 shows the success of one individual taken
from the NWB-update population.

Although not shown here, the Hebbian update rule simula-
tions were similar in nature to the NWB-update rule simula-
tions, showing a brief learning phase at the beginning of life,
and exhibiting little or no influence from the sensory offset.

C. Generalizability

Figure 7 plots the total number of food items eaten by the
top individuals from the non-learning, Hebbian update, and

Fig. 6. Lifetime food consumption rate for an organism with an NWB-
update rule, over a range of sensory offsets. For each offset, the lifetime
curve represent the average over 20 lifetimes. The red curve on the left gives
the consumption rate over the individual’s lifetime, averaged over all offsets.
The red curve on the right shows the average lifetime consumption rate over
various sensory offsets.

NWB-update trials over an extended lifetime of 25,000 steps.
Recall that these organisms evolved in an environment where a
lifetime was 3000 steps, so this extended trial is new to them.
Not only that, but the sensory offset was changed every 1,000
steps. During evolution, these organisms did not experience a
changing sensory offset within a lifetime.

Not surprisingly, the non-learning individual failed to ac-
quire much food, except when the sensory offset happened to
fall within its preferred range. The individual with the Hebbian
update rule performed well at first, but then seemed to stall
after around13,000 steps. This stalling behaviour was observed
with the best individuals from most of the evolutionary trials
of the Hebbian update rule.

The individual with the NWB-update rule was able to ac-
commodate all sensory offset changes, and continue collecting
food items throughout the entire 25,000-step lifetime.

VI. DISCUSSION

In our experiments, the Hebbian update rule has 5 parame-
ters (spanning 4 degrees of freedom), while the NWB-update
rules have a total of 38 parameters. Having more parameters
makes the search space much larger, but is it worth it? In
our experiments, yes it is. As evolution progresses, the NWB-
update populations increase their fitness more gradually, but
show more generalizability.

We made the brains of the NWB-update organisms smaller
than their non-learning or Hebbian-update counterparts. In
particular, the NWB-update organisms had only 3 internal
nodes, instead of 5. This was done to equalize the number
of variables that the evolutionary search had to optimize over:
the non-learning populations had 125 variables, the Hebbian-
update populations had 130 variables, and the NWB-update
populations had 123 variables. It is not clear how the NWB-
update populations would fare if they also had 5 internal nodes,
and hence a total of 163 variables. The brain would clearly

Fig. 7. Total food eaten over an extended lifetime: non-learning (blue),
Hebbian update rule (green), and NWB-update rule (red). The sensory offset
was changed every 1000 steps to see if the organisms could adapt quickly to
changing circumstances.

have more computational power, but the evolutionary search
would be in a higher-dimensional space. We plan to investigate
this question in the future.

The populations in our study were evolved in a foraging
scenario that had a static sensory offset. That is, during
evolution, no individual ever had to deal with a changing
sensory offset. Despite never having been exposed to such
hardship, the NWB-update populations were able to adapt to
seemingly unlimited changes in sensory offsets during their
lifetime. This is in contrast to organisms from the Hebbian-
update populations, which seem to eventually saturate their
ability to adapt to such changes.

In a previous version of our experiments, the neural learning
rule tended to generate unbounded connection weights that
diverged linearly over an individual’s lifetime. This observa-
tion is what prompted us to include the connection weight
penalty term in the fitness function, shown in equation (2).
Once that penalty term was included, the connection weights
of the neural learning organisms stabilized. It is worth noting
that the size of the weight penalty term is quite small compared
to the number of food items consumed, typically less than 5%
for the NWB-update rule organisms, and less than 10% for
the Hebbian update rule organisms.

VII. CONCLUSION

The added complexity of the NWB-update rules was still
manageable for our evolution simulations. The NWB-update
populations thrived, even in the face of unprecedented sensory
updates. After a brief learning phase at the beginning of life,
the neural-learning organisms were robust to all sensory offsets
that we tested. While their performance was not quite as
high as the Hebbian update-rule populations, they were more
generalizable.

Many questions still remain. In the future, we would like
to investigate the nature of the NWB-update functions. We
looked briefly at them, but it will take more careful analysis

to decipher how these update functions render such robust and
flexible brains.

We would also like to study how different metabolic con-
straints influence the learning function. Will a penalty for
neural activity yield more efficient solutions? Will evolving
with dynamic sensory offsets induce faster learning? Can the
populations still thrive with a greater challenge, such as offsets
applied to both sensory inputs?

ACKNOWLEDGMENT

This work was partially supported by the National Natural
Science Foundation of China under Grant No. 61573166,
No. 61572230, No. 61373054, No. 61472164, No. 81301298,
No. 61302128, No. 61472163, Natural Sciences and Engi-
neering Research Council of Canada (NSERC), Shandong
Provincial Natural Science Foundation, China, under Grant
ZR2015JL025, and the Science and technology project of
Shandong Province under Grant No. 2015GGX101025.

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[2] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm
for Deep Belief Nets,” Neural Computation, vol. 18, pp. 1527–1554,
2006.

[3] G. E. Hinton and S. J. Nowlan, “How learning can guide evolution,”
Complex Systems, vol. 1, pp. 495–502, 1987. [Online]. Available:
https://www.complex-systems.com/pdf/01-3-6.pdf

[4] S. Nolfi, J. L. Elman, and D. Parisi, “Learning and Evolution in Neural
Networks,” Adaptive Behavior, vol. 3, no. 1, pp. 5–28, 1994.

[5] D. J. Chalmers, “The evolution of learning: An experiment in
genetic connectionism,” Proceedings of the 1990 Connectionist
Models Summer School, pp. 1–20, 1990. [Online]. Available:
http://consc.net/papers/evolution.pdf

[6] Y. Niv, D. Joel, I. Meilijson, and E. Ruppin, “Evolution of Reinforce-
ment Learning in Uncertain Environments: A Simple Explanation for
Complex Foraging Behaviors,” Adaptive Behavior, vol. 10, no. 1, pp.
5–24, 2002.

[7] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Evolving adaptive
neural networks with and without adaptive synapses,” Congress on
Evolutionary Computation, vol. 4, pp. 2557–2564, 2003. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1299410

[8] P. Tonelli and J.-B. Mouret, “On the relationships between
synaptic plasticity and generative systems,” Proceedings of the
13th annual conference on Genetic and evolutionary computation
- GECCO ’11, pp. 1531–1538, 2011. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=2001576.2001782

[9] A. Soltoggio, J. A. Bullinaria, C. Mattiussi, P. Dürr, and D. Floreano,
“Evolutionary Advantages of Neuromodulated Plasticity in Dynamic,
Reward-based Scenarios,” in Artificial Life XI: Proceedings of the
11th International Conference on Simulation and Synthesis of Living
Systems (ALIFE 2008). MIT Press, 2008, pp. 569–576. [Online].
Available: https://dspace.lboro.ac.uk/2134/17039

[10] D. Floreano and J. Urzelai, “Evolutionary robots with on-line self-
organization and behavioral fitness,” Neural Networks, vol. 13, pp. 431–
443, 2000.

[11] S. Risi and K. O. Stanley, “Indirectly encoding neural plasticity as a
pattern of local rules,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6226 LNAI, no. Sab, pp. 533–543, 2010.

[12] T. P. Runarsson and M. T. Jonsson, “Evolution and Design of Distributed
Learning Rules,” in IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks, 2000, pp. 59–63.

[13] O. J. Coleman and S. A. Blair, “Evolving Plastic Neural Networks for
Online Learning: Review and Future Directions,” in Artificial Intelli-
gence, M. Thielscher and D. Zhang, Eds., no. LNCS 7691, 2012, pp.
326–337.

[14] H. L. Michael Schmidt, “Distilling free-form natural laws from experi-
mental data,” Nature, vol. 324, no. 5923, pp. 81–85, 2009.

[15] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence., 2nd ed. Michigan: MIT Press, 1992.

