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Cut-Out Image Mosaics

Jeff Orchard Craig S. Kaplan∗

David R. Cheriton School of Computer Science
University of Waterloo

Figure 1: Cut-out image mosaic involving various target tile shapes, colour correction, and the ability to select sub-images from images in
the source database. The target and source images were taken from the Library of Congress collection on flickrTM.

Abstract

An image mosaic is a rendering of a large target image by arranging
a collection of small source images, often in an array, each chosen
specifically to fit a particular block of the target image. Most mo-
saicking methods are simplistic in the sense that they break the tar-
get image into regular tiles (e.g., squares or hexagons) and take ex-
treme shortcuts when evaluating the similarity between target tiles
and source images. In this paper, we propose an efficient method
to obtain higher quality mosaics that incorporate a number of pro-
cess improvements. The Fast Fourier Transform (FFT) is used to
compute a more fine-grained image similarity metric, allowing for
optimal colour correction and arbitrarily shaped target tiles. In addi-
tion, the framework can find the optimal sub-image within a source
image, further improving the quality of the matching. The similar-
ity scores generated by these high-order cost computations are fed
into a matching algorithm to find the globally-optimal assignment
of source images to target tiles. Experiments show that each im-
provement, by itself, yields a more accurate mosaic. Combined, the
innovations produce very high quality image mosaics, even with
only a few hundred source images.
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squares, Fourier transform, assignment problem.

1 Introduction

The first image mosaics were large murals formed by placing thou-
sands of coloured tiles [Battiato et al. 2006]. Inspired by these
works of art, today the term “image mosaic” refers to a stylized
representation of a large image, the “target” image, formed by piec-
ing together a collection of carefully chosen smaller images called
“source” images. The target image is subdivided into small pieces,
called “target tiles” (typically rectangles), and each tile is filled with
a source image that approximates the tile’s contents.

Image mosaics communicate at two disparate scales. These two
scales act as a symbolic divide, so that the target image is concep-
tually set apart from the contents of the tiles that comprise it. This
dichotomy provides a rich environment for combining images that
either suggest the same message from two different perspectives,
or supply contrasting viewpoints. For example, an image of a car
might be made out of pictures of the employees that manufactured
it, or pictures of bicycles. Image mosaics are a powerful medium
for conveying such split-level messages.

Every image mosaic must strike a balance between the opposing
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goals of accuracy and discernability. Accuracy seeks to reproduce
the target image as closely as possible; discernability seeks to en-
sure that each of the source tiles is legible. It is easy to trade off be-
tween these two goals by controlling tile sizes, but more interesting
to attempt to achieve accuracy and discernability simultaneously.
In this paper we introduce a novel method for assigning source im-
ages to tiles with much higher accuracy than previous approaches.
This extra margin of quality allows us to achieve overall accuracy
comparable to previous techniques but with larger individual tiles,
thereby increasing discernability.

One way to improve the accuracy of a mosaic is increase the num-
ber of images in the source database. As the database grows, so
does the probability of finding a close match for a target tile. How-
ever, more source images require more processing time to create
the mosaic. Also, not every mosaic should be produced using thou-
sands or tens of thousands of images. Occasionally, limited re-
sources or thematic constraints may restrict us to a few hundred
source images.

Previous work has sought methods to speed up the matching pro-
cess to support efficient search over large image databases. Typi-
cally, these approaches summarize a source image as a “signature”
consisting of a few numbers. Matching can then be done at the sig-
nature level. The most common technique is to partition the source
image into a regular grid and average the contents of each grid cell
down to a single colour [Di Blasi et al. 2006; Silvers 2001; Tran
1999; Zhang 2002]. Di Blasi et al. [2006] partition each image into
a 3 × 3 grid and compute the average red, green and blue values
within each grid cell, yielding a signature of 27 numbers. They
arrange their source image database into an antipole tree data struc-
ture, reducing the number of comparisons needed to find a close
match. Zhang [2002] partitions source images into four cells. Each
cell is represented by a coarse histogram, and the histograms are
reduced in turn to binary signatures. Finkelstein and Range [1998]
use the wavelet signature approach of Jacobs et al. [1995] to ac-
celerate their mosaic method. The wavelet signature records the
largest coefficients of the wavelet transform of an image.

These aggregate signatures place a bound on the smallest image
features that can be used to compare source images to target tiles.
For example, the 3× 3 signatures of Di Blasi et al. mean that their
algorithm will be blind to any features smaller than one ninth of a
source image. For a mosaic consisting of an M × N grid of tiles,
accuracy can effectively be no better than that of a 3M×3N image.

These algorithms could clearly benefit from a finer-grained com-
parison metric, which could find correspondences between features
at any size. Still, without a huge database, the chances of finding
close matches is lower. The odds are greatly improved if we al-
low the possibility of matching a target tile to a portion (or cut-out)
of a source image, as in Figure 1(d). Given a user-defined target
tile, we would consider all possible shifts (translations) of the tar-
get tile’s footprint within the source image. This change would
logically multiply our source database by a large constant factor
(the number of possible shifts for each image), yielding more op-
portunities for closer matches with a relatively modest database. Of
course, we must deal with the seeming increase in computational
complexity. In Section 2, we present an FFT-based approach that
can feasibly compute fine-grained matching quality for all shifts.

A complementary strategy to improve mosaic accuracy is to allow
for colour shifting by applying a global scaling factor to the colour
components of an image. Doing so can alter the colour composi-
tion of an image dramatically, while still depicting geometric con-
tent [Di Blasi et al. 2005]. Finkelstein and Range [1998] also ap-
plied a colour shift, though their shift was potentially different at
each target pixel. This pixel-wise method can introduce phantom

features in the source images, even rendering them unrecognizable;
in other words, it increases accuracy at the expense of discernabil-
ity. We show in Section 2 how our technique can be extended to
compute an optimal colour adjustment for any source image as-
signment.

Assuming that we can feasibly compute the matching cost of every
shift of every source image against every target tile, we are still left
with the question of selecting the particular assignment of source
images to tiles that will produce a pleasing overall result with high
quality. The natural choice of a greedy algorithm is not always best.
In Section 3 we discuss our assignment algorithm, which makes a
global choice based on all matching costs.

We describe our implementation in Section 4. In Section 5 we
present results that isolate the effects of these various improve-
ments, and show that our technique helps to improve accuracy.

2 Evaluating matching cost

Let us assume that we are given a target image ~T (i, j) from which
we wish to construct a mosaic. (We use uppercase italic letters to
denote images, and include an arrow over an image name when
pixels in that image are vectors as opposed to scalars.) Fix a single
tile shape in the mosaic, and represent it via a characteristic func-
tion W (i, j) that is 1 inside the tile and 0 everywhere else. That
is, the non-zero part of W indicates the portal through which the
source image and target image are compared. Fix a source image
~S(i, j). We now consider the problem of computing C(a, b), the
image dissimilarity over all tile pixels between the target image and
the source image shifted by (a, b). A reliable metric is the weighted
sum of squared differences (SSD) cost function

C(a, b) =
∑
i,j

‖~S(i− a, j − b)− ~T (i, j)‖2W (i, j), (1)

where ‖ · ‖ represents the Euclidean distance between two colours
and the summation is taken simultaneously over all i and j.

We may also wish to allow for colour shifting by scaling the differ-
ent colour components in ~S to best match the target ~T . We let D be
a diagonal matrix with a scaling factor for each colour component
of ~S, and rewrite the cost function as

C(a, b,D) =
∑
i,j

‖D~S(i− a, j − b)− ~T (i, j)‖2W (i, j). (2)

Given a source image ~S, it is infeasible to find values of (a, b) and
D that minimize C(a, b,D) by direct computation of Equation 2.
If ~T and ~S are roughly N × N pixels in size, computing the cost
function for a single shift (a, b) requires O(N2) time. However,
there are also roughly N2 possible shifts, meaning that it would
takeO(N4) time to find the optimal (a, b), and even then we would
need to compute D. Bear in mind also that we will eventually want
to compute the matching costs for all possible source-image/target-
tile pairs. If there are P source images and M tiles, we would
expect a brute force algorithm to take O(N4PM) time in total.

However, we can greatly speed up this computation by considering
the problem in the frequency domain. To see how, we first separate
Equation 2 into expressions for each of three colour components k,
obtaining

Ck(a, b,Dk) =
∑
i,j

[
DkSk(i− a, j − b)− Tk(i, j)

]2
W (i, j) ,

(3)

80



where k ∈ {1, 2, 3}, Sk and Tk are scalar-valued images, and Dk

is a scalar. Note that the total cost is now given by

C(a, b,D) = C1(a, b,D1) + C2(a, b,D2) + C3(a, b,D3). (4)

For each value of k, we now expand Equation 3, giving us

Ck(a, b,Dk) =
∑
i,j

D2
kS

2
k(i− a, j − b)W (i, j)

−2
∑
i,j

DkSk(i− a, j − b)Tk(i, j)W (i, j)

+
∑
i,j

T 2
k (i, j)W (i, j) . (5)

The last term in Equation 5 is easy to compute because it does not
depend on (a, b). The first two terms are correlation terms, and can
be posed as convolutions simply by reflecting Sk. Letting Sk(i, j)
equal Sk(−i,−j), we reformulate Equation 5 as

Ck(a, b,Dk) = D2
k

(
S

2
k ∗W

)
(a, b)

−2 Dk

(
Sk ∗ (TkW )

)
(a, b) (6)

+
∑
i,j

T 2
k (i, j)W (i, j).

Here we use ∗ to denote the convolution operator and we have
dropped the explicit dependence on (i, j) in the convolution terms
for brevity.

Rephrasing the equation in this way allows us to transfer some of
the work into the frequency domain. Let F represent the discrete
Fourier transform operator. Then the convolution terms in Equa-
tion 6 can be written

S
2
k ∗W = F−1

{
F{S2

k} F{W}
}

Sk ∗ (TkW ) = F−1
{
F{Sk} F{TkW}

}
. (7)

Using the Fast Fourier Transform [Cooley and Tukey 1965], we
can compute F and F−1 on N ×N images inO(N2 logN) time.
This computation dominates the total effort of computing the con-
volution, since the Fourier coefficients can be multiplied pointwise
in only O(N2) time. The resulting algorithm is significantly more
efficient than the brute force O(N4) approach (though previous
experiments suggest that it is memory intensive [Orchard 2005]).
Note that we need not compute Sk (a reflected version of Sk)
explicitly before computing its FFT; we can equivalently take the
complex conjugate of F{Sk}.

The FFT has been used in similar image registration problems in the
past [Fitch et al. 2005; Friston et al. 1995; Kilthau et al. 2002; Or-
chard 2005]; once the cost function is evaluated for all shifts, simply
scanning to find the minimum element reveals the optimal transla-
tion. Dalal et al. used it in an NPR packing context to compute the
optimal shift of a geometric primitive within a region [Dalal et al.
2006]. In their case, the two images being compared were the char-
acteristic function of the primitive and the distance transform of the
region.

These convolution terms, once evaluated, form the coefficients for
a cost function that is simply a quadratic function of D1, D2 and
D3. Since these variables are decoupled in the cost function, their
optimal values can be found by taking the derivatives of Equation
4 with respect to each sk, setting them to zero, and solving for Dk.
We obtain the optimal Dk value for a given shift (a, b),

Dk =
S

2
k ∗W

Sk ∗ (TkW )
. (8)

Note that the numerator and denominator of Equation 8 are both
functions of (a, b), and the division is intended to be element-wise,
thus yielding a value of Dk for each possible offset (a, b). Using
these optimal D-values, we evaluate our cost function C(a, b) for
each (a, b). Finding the global minimum is simply a matter of scan-
ning through the N2 costs to find the smallest. The location of the
lowest cost indicates the optimal shift (and corresponding values
for D1, D2 and D3).

Similarly, we can compute the optimal shift for other colour correc-
tion schemes. Suppose, for example, that we only want to allowD1

to vary, while holding D2 and D3 fixed. We can compute the cost
for all possible shifts under this colour correction scheme simply
by setting D2 and D3 to 1, and recomputing Equation 4. All the
necessary convolution terms were already evaluated for the higher-
order colour correction, so the amount of additional computation
required for this alternate scheme is small.

3 Choosing an assignment

Once individual costs have been computed for all pairs of a target
tile and a source image, we must use these costs to construct an
assignment, a choice of image for each tile.

A simple approach with very high accuracy is a greedy algorithm
with replacement. We consider the target tiles independently. For
each one, we choose the source image with the lowest overall cost.
Most previous mosaicking techniques use this variety of assign-
ment. However, while its accuracy may in some sense be consid-
ered optimal, it is prone to distracting artifacts. Areas of roughly
constant colour will tend to be paved with copies of the same source
image, creating a repeating pattern that reduces the aesthetic appeal
of the final mosaic. Some previous approaches have mitigated this
problem by preventing two copies of a source image to occupy ad-
jacent tiles [Di Blasi et al. 2006].

We might instead consider a greedy algorithm without replacement,
in which each source image can be used only once (or any pre-
scribed number of times, if we include multiple copies). This ap-
proach works, but is unlikely to find an optimal assignment; the
quality of the result depends crucially on the incidental order in
which the target tiles are considered.

Given that we compute the costs of all pairs of target tiles and
source images, we have all the information we need to achieve a
globally optimal assignment without replacement. Observe that the
costs describe a complete bipartite graph whose vertices represent
the target tiles and source images. Each edge records the cost of
using a particular image for a tile. Finding the globally optimal
assignment is then equivalent to computing the minimum weight
matching of this graph. Efficient algorithms exist for this so-called
assignment problem. We use a Matlab-based implementation by
Markus Bühren [2007] of the Kuhn-Munkres algorithm [Munkres
1957].

4 Implementation

In this section, we outline how the above optimization framework
is built into an image mosaicking method. Our general exhaus-
tive search strategy is simply to consider every target-tile/source-
image pair, and find its minimum SSD solution (optimal shift and
colour correction). Given M target tiles and P source images of
size N × N , the exhaustive evaluation of all such comparisons
takesO

(
MPN2 logN

)
operations. Once all the comparisons are

made, we know the full ranking of all source images for each target
tile, and can pick and choose them as we see fit.
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The above strategy to optimize the SSD was implemented in Matlab
(MathWorks Inc., Natick, Massachusetts). In addition to the target
and source images, the user supplies an image of the target tiles.
Each tile is drawn in a unique colour; pixels of that colour will be
extracted to produce the W images below.

Suppose ~S is a source image and ~T is a piece of the target image
(the same size as ~S) that contains a target tile. We define the the
alpha image W to be the same size as ~S and ~T with a value of one
for pixels inside the target tile, and a value of zero outside (the tiles
provided by the user must therefore be small enough to fit inside the
source images). The following pseudocode efficiently computes the
optimal offset and D-values.

1. Compute F{Sk}, F{S
2
k}, F{TkW}, F{W}, and∑

ij
T 2

kW for k = 1, 2, 3.

2. Compute Qk = F−1{F{S2
k}F{W}} and Rk =

F−1{F{Sk}F{TkW}} for k = 1, 2, 3. Note that Qk and
Rk are both images, with a value for each possible offset
(a, b).

3. Compute Dk = Rk
Qk

for k = 1, 2, 3, where the division is on
an element-by-element basis.

4. Compute C =
∑3

k=1
D2

kQk − 2DkRk +
∑

ij
T 2

kW .

5. Scan C for its minimum element. Record the coordinates of
the minimum element as well as its correspondingDk-values.
These give the (a, b,D)-values that optimize the SSD cost
function in Equation 2.

We consider a number of performance factors in building our source
image database. The Fourier Transforms of the source images are
used repeatedly, once for each target tile. Hence, we compute
the source-image Fourier Transforms once, store them, and re-use
them.

All the source images we use in our experiments have a 4:3 aspect
ratio. As a pre-processing step, the source images are scaled down
to either 60× 80 or 80× 60. In terms of speed, it helps if many of
the source images are the same size because the target tile image,
alpha image and source image all have to be the same size to use
the FFT method outlined above. Having only two different source
image sizes means we can compute and store the Fourier Trans-
forms for our target tiles (F{TkW} and F{W}), and reuse them.
If a different sized source image is encountered, the appropriate
target-tile Fourier Transforms can be computed on the fly, but with
a performance penalty.

Once each target tile is assigned a source image, we use higher-
resolution versions of both the target image and source images to
build the actual mosaic. The optimal offsets and colour correction
parameters are all re-computed for this higher-resolution rendering.
Fine source image details are more discernible in the final high res-
olution mosaic.

In our experiments, all image manipulation is performed in YIQ
colour space rather than RGB (we expect similar results using
HSB). While the theory outlined in section 2 allows for three de-
grees of freedom (DOF) when performing colour correction, our
experiments use schemes with only two, one or zero degrees of free-
dom. In the 2-DOF scheme, we use one parameter to scale Y (lumi-
nance), and the other parameter to scale both I and Q (hue). In the
1-DOF scheme, only Y is scaled. Thus, for each target-tile/source-
image pair, three possible colour correction schemes are evaluated
and optimized. For M target tiles and P source images, we com-
pute a total of 3MP matches. Clearly, the higher-DOF matching

costs will be less than or equal to the lower-DOF costs. However,
the optimal parameters are recorded for all three colour correction
schemes and stored for later use.

5 Experiments

We present three experiments to illustrate the benefits of each of the
optimizations incorporated into our mosaicking method.

In the first experiment, our goal is to demonstrate that the selec-
tion of an optimal sub-image allows for more accurate matching of
the target tiles. For comparison, we ran both our method and the
method of Di Blasi et al. [2006]. The Di Blasi method includes
source images in their entirety, rescaling as necessary to fit the as-
pect ratio of the target tile. To compare our method directly to that
of Di Blasi, we used square tiles of size 40×40 pixels. Also, neither
method performed any colour correction.

Figure 2 illustrates the advantage of selecting optimal sub-images.
Both methods use the same source database of 400 images, allow-
ing each image to appear at most twice. The mosaic produced using
our method differs from the target image by a root mean squared er-
ror (RMSE) of 50.1, while the mosaic by Di Blasi differs by 67.1.
The figure also shows a sample target tile, and the source image
selected by each of the two methods. The Di Blasi method is in-
capable of matching the fine-grained structure of the target tile. In
our proposed method, the location of the source sub-image can be
fine-tuned to match the target tile. In the case of Figure 2(f), the
outline of the baby’s face is an excellent match for the contour of
the circle on the shirt.

The second experiment is designed to demonstrate the effect of
colour correction. Figure 3 shows three mosaics produced by our
method, each mosaic using successively higher-order colour correc-
tion. The mosaics were created using a source database of 400 im-
ages, where each image could be used up to three times, each time
with different colour correction parameters (where applicable). The
tile shapes are puzzle pieces, randomly generated using splines so
that no two puzzle pieces are exactly the same. The beveled edges
of the puzzle pieces are added in a post-processing step.

With no colour correction (Fig. 3(a)), the RMSE is 46.3. Allowing
only luminance correction yields an RMSE of 30.3. If we allow
both luminance and hue to be adjusted, the RMSE drops to 24.9.
The image inset in Fig. 3(b) shows tiles (puzzle pieces) filled with
source sub-images that have been darkened drastically to match a
dark target tile. The inset of (c) shows a tile containing sky and
clouds. The optimization process chose a negative scaling value for
the hue correction, turning the blue sky to orange.

In the third experiment, we study the effect of solving the global
assignment problem instead of using a greedy algorithm to as-
sign source images to target tiles. Figures 1 and 4 show mosaics
that we have dubbed “photo-heaps”, similar in appearance to join-
ers [Zelnik-Manor and Perona 2007], or coverpop [Bumgardner
2008]. To create a photo-heap mosaic, we cover most of the image
canvas with randomly-placed rectangles of size 50×30. The unoc-
cluded portion of each rectangle is then used as a target tile; there
are 1849 target tiles in each mosaic in Figure 4, some of which are
almost entirely occluded. To compare the target tiles to our source
images, we rotate each rectangle along with its target-image con-
tents to align it with the coordinate axes, considering both portrait
and landscape orientations. Hence, each target tile is matched to
each source image twice – the rectangles fit inside the 80× 60 and
60 × 80 source images in either orientation. Once a source image
is assigned to a target tile, the selected source image is then rotated
back so that it looks like a rotated photograph in the result. We also
add a subtle drop-shadow effect to enhance the layered appearance.
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Figure 2: Effect of choosing an optimal source sub-image. Our mosaic is shown in (a), generated using a grid of squares. Each source image
was used at most twice. A comparable mosaic of Di Blasi et al. is shown in (b), using the same grid of squares. Both mosaics used the same
source image database of 400 images without colour correction. The target image is shown in (c). The area indicated by the arrow is shown
in a close-up in (d). The source image used by Di Blasi is shown in (e), while the source sub-image used by our method is shown outlined in
(f). The RMSE for (a) is 50.1, while the RMSE for (b) is 67.1.
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Figure 3: Effect of colour correction. In (a), no colour correction was done. In (b), the optimal luminance scaling was used for the
reconstruction. The arrow shows a mosaic tile that was severely darkened. In (c), the optimal luminance and hue scaling were used. The
arrow shows a mosaic tile that depicts blue sky as orange, indicating that the optimal hue factor is a negative number. In each mosaic, each
of the 400 source images could be used up to three times. In (b) and (c), each of the three occurrences of a source image could have different
colour-correction parameters.

84



Figure 4: Effect of greedy versus global assignment. The mosaic in (a) was created by assigning source images to target tiles in order of
increasing cost (greedy algorithm), resulting in an RMSE of 93.3. The mosaic in (b) was created by solving the global assignment problem
between source images and target tiles, resulting in an RMSE of 63.1. The source database contained 422 cat images, where each image
could be used up to six times (three types of colour correction with two orientations). The insets show a close-up of the outlined portion.

In the greedy algorithm, all computed costs are sorted in increas-
ing order. Starting from the lowest cost, source images are as-
signed to target tiles. The globally optimal matching solution is
computed by considering all target-tile/source-image pairs simulta-
neously, choosing the pairings to minimize the SSD cost over the
entire mosaic. In Figure 4, each source image can be used up to six
times since there are three colour-correction schemes (0, 1 and 2
degrees of freedom), and two orientations (portrait and landscape).

The low quality of the greedy mosaic in Figure 4(a) stems from the
fact that many of the target tiles are quite small (because of occlu-
sion). These small tiles yield small SSD costs not only because they
have fewer pixels, but also because their size makes it easier to find
close matches for them. Hence, the greedy algorithm fills the small
tiles first, losing the opportunity to find good matches for the larger,
more visually important tiles.

The globally optimal matching method takes advantage of the fact
that many source images would fit a small tile fairly well. Finding
a good match for a larger tile is more difficult. Hence, the global
solution puts more weight on the larger tiles, thereby spreading the
error to find the best overall assignment to minimize the mosaic
RMSE.

Speed tests were performed using our Matlab-based implementa-
tion on an Apple MacBook with a 2.3GHz Intel DuoCore processor
and 2GB of RAM. Generating the low-resolution version of the mo-
saic in Figure 4 required five seconds to pre-process the 422 source
images, about 3.4 hours to evaluate all the target-tile/source-image
matching costs, and 42 minutes to solve the matching problem.

The mosaic in Figure 5 is the result of a modified version of the
same mosaicking framework. Instead of searching for the best
translational offset of each source image, we consider rotated ver-
sions of each source image. The source image database consists
of 600 randomly-selected images from the flickrTM “squared cir-
cle” group. All the target tiles are circles, laid down in back-
to-front order. We turn the problem of finding the best source-
image rotation into the problem of finding the best shift (along
the θ axis) by transforming all the target tiles, target character-
istic functions (W ), and source images to a polar representation.
This problem is easier to solve than the previous version because
it has only one shift parameter, rather than two. As a result,

the optimal shift can be found using the one-dimensional FFT in-
stead of the two-dimensional FFT, changing the running time from
O
(
MPN2 logN

)
to O

(
MP

(
N2 +N logN

))
.

6 Conclusions and Future Work

We have shown that it is computationally feasible to incorporate
deeper levels of complexity and optimization into the production
of image mosaics. Our method handles arbitrarily shaped target
tiles, and finds the optimal offset for each source image so that it
most resembles the target tile. The FFT is used to accelerate the
computation. Moreover, this framework also accommodates colour
correction with minimal overhead. Combining these improvements
with a globally optimal target-tile/source-image assignment algo-
rithm yields mosaics that more accurately depict the target image
while maintaining an impressive level of discernibility for the de-
tails within the source images.

The potential of the alpha image W has not been showcased in this
paper. We use it simply as a binary mask to define each target tile
shape. However, its role in the SSD cost function is that of an ar-
bitrary weighting function that could be used to assign continuous
weights to any pixel in the target tile. For example, the binary W
used in this study could be convolved with a simple windowed-
averaging kernel to achieve a tapered drop-off of weights on the
borders of the tile pieces. This change reduces the influence of the
image content near the borders of the tile. Conversely, a higher
weight could be assigned to the tile edges in an attempt to en-
force continuity of edges across tile borders. Blending across edges
might then obscure the seams between source images.

The cut-out image mosaic method outlined here is admittedly
slower than many other mosaicking methods. Our implementation
is not entirely optimized, and an implementation in C or C++ might
yield speed gains. However, the bulk of the processing is in com-
puting the inverse FFT, and Matlab has an efficient implementation
of this operation. Irrespective of such optimizations, we hope that
the improved mosaic quality justifies the additional effort.

The matching method here stems from an image registration
method, finding the optimal parameters to register each source im-
age to each target tile. In our experiments, we used translation
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Figure 5: St. Basil’s Cathedral rendered using a source database of 600 circle images from the flickrTM “squared circle” group. Each
source image was used up to three times (once for each colour-correction scheme). The five arrows indicate some places where the source
image and rotation angle provide a good fit for the underlying target.
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alone, or rotation alone. However, one could consider more com-
plex spatial transformations such as rigid-body motion (translation
and rotation together). Some work exists in rigid-body registration
using the fast SSD computational framework [Omanovic and Or-
chard 2006; Orchard 2007]. However, we should expect that adding
more dimensions to our parameter space will make the search take
longer.

Finally, we are considering the use of the singular value decomposi-
tion (SVD) [Golub and Van Loan 1996] to narrow our search of the
source database by comparing each target tile to the singular vec-
tors associated with the largest singular values. However, it is not
clear that the same fast SSD method can be used in this framework.
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