
Improving Reinforcement Learning with Biologically Motivated Continuous State
Representations

Madeleine Bartlett1† (madeleine.bartlett@uwaterloo.ca),
Kathryn Simone1† (kpsimone@uwaterloo.ca),

Nicole Sandra-Yaffa Dumont2† (ns2dumont@uwaterloo.ca),
P. Michael Furlong2 (michael.furlong@uwaterloo.ca),

Chris Eliasmith2 (celiasmith@uwaterloo.ca),
Jeff Orchard1 (jorchard@uwaterloo.ca),

and Terrence C. Stewart3 (terrence.stewart@nrc-cnrc.gc.ca)
1 Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
2 Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON N2L 3G1, Canada

3 National Research Council of Canada, University of Waterloo Collaboration Centre, Waterloo, ON N2L 3G1, Canada

Abstract

Learning from experience, often formalized as Reinforcement
Learning (RL), is a vital means for agents to develop success-
ful behaviours in natural environments. However, while bio-
logical organisms are embedded in continuous spaces and con-
tinuous time, many artificial agents use RL algorithms that im-
plicitly assume some form of discretization of the state space,
which can lead to inefficient resource use and improper learn-
ing. In this paper we show that biologically motivated rep-
resentations of continuous spaces form a valuable state rep-
resentation for RL. We use models of grid and place cells in
the Medial Entorhinal Cortex and hippocampus, respectively,
to represent continuous states in a navigation task and in the
CartPole control task. Specifically, we model the hexago-
nal grid structures found in the brain using Hexagonal Spa-
tial Semantic Pointers, and combine this state representation
with single-hidden-layer neural networks to learn action poli-
cies in an Actor-Critic framework. We demonstrate our ap-
proach provides significantly increased robustness to changes
in environment parameters (travel velocity), and learns to sta-
bilize the dynamics of the CartPole system with comparable
mean performance to a deep neural network, while decreasing
the terminal reward variance by more than 150x across trials.
These findings at once point to the utility of leveraging biolog-
ically motivated representations for RL problems, and suggest
a more general role for hexagonally-structured representations
in cognition.
Keywords: Reinforcement Learning; Grid Cells; Spatial Se-
mantic Pointers; Representations

Introduction
Humans and animals are able to learn how to interact with
their environment through a process of trial-and-error, repeat-
ing behaviours that lead to high rewards, and avoiding behav-
iors that lead to punishments. This process is known as con-
ditioning and has inspired the development of Reinforcement
Learning (RL) algorithms for training computational systems.
RL algorithms, in turn, have provided further insights into the
nature of learning in biological agents.

Classical RL algorithms discretize state and action spaces,
and assume that time can be divided into discrete time steps.
However, biological agents exist and evolve in continuous
time and space, and therefore their learning mechanisms must

† These authors contributed equally.

also operate in continuous domains. While discretized repre-
sentations are convenient when working with standard com-
puters and can often produce good results in RL, they have
limitations. For instance, a coarse discretization can result
in non-smooth control output and poor performance, while
a fine discretization can lead to an explosion in the number
of states, memory resources, and time required to learn. Ad-
ditionally, selecting a discretization that does not match the
“correct discretization” of the environment may result in ei-
ther poor representation or inefficient resource use, or both.
Obtaining a good discretization scheme often requires prior
knowledge or trial and error. Furthermore, the environment
itself may not remain stable during its operational lifespan.
This could cause the selected and optimal discretizations to
diverge over time, at the expense of either performance or
wasted representational resources.

In RL, feature representation plays a crucial role in per-
formance. Various feature encoding methods have been pro-
posed, including discretization of the state space through
techniques like tile coding (Sutton, 1996) and using deep
auto-encoders to obtain latent state representations (Lange
& Riedmiller, 2010). In deep RL networks, a linear output
layer is typically used, and so the majority of the neural net-
work can be viewed as a state encoding network followed by
linear value function approximation. Additionally, biologi-
cally inspired state representations have been explored. For
instance, RL agents using grid-cell-like representations have
outperformed both deep AC models and agents with place-
cell-like representations in 2D navigation tasks (Banino et al.,
2018). This supports the idea that grid cells provide a useful
basis for RL tasks. However, to our knowledge these benefits
have been established only for navigation tasks. The extent to
which these benefit generalize to other types of tasks remains
an open question.

The use of grid or place cell-like encodings of spatial in-
formation in RL networks has been demonstrated to facili-
tate faster learning on spatial navigation tasks (Gustafson &
Daw, 2011; Banino et al., 2018; Dumont & Eliasmith, 2020;
Bartlett et al., 2022a,b). The method of modelling grid cells

used in the present work, first presented by Dumont & Elia-
smith (2020), builds on Spatial Semantic Pointers (SSPs; Du-
mont et al., 2023; Komer & Eliasmith, 2020; Komer et al.,
2019), a high-dimensional representation of continuous val-
ues used in cognitive models that employ vector symbolic ar-
chitectures (VSAs). This method allows us to represent con-
tinuous state information as a specific type of SSP (hexag-
onal SSPs, or HexSSPs). The resulting representations can
be mapped to individual neurons giving rise to grid cells.
HexSSPs have been demonstrated to be flexible, computa-
tionally efficient and, being a VSA, highly interpretable (Du-
mont et al., 2023; Komer & Eliasmith, 2020; Bartlett et al.,
2022a,b). In general, SSPs can be generated for any spatial
environment regardless of size or shape, and scaled to ac-
commodate changes in the environment (Komer & Eliasmith,
2020). Komer & Eliasmith (2020) further demonstrated that
HexSSPs encoding spatial location can support supervised
learning of policies to navigate through complex, continuous-
space environments containing obstacles. HexSSPs have
also proven useful as representations for semantic mapping,
Bayesian optimization, and neural representations of proba-
bility (Dumont et al., 2023; Furlong et al., 2022; Furlong &
Eliasmith, 2022). Due to their ability to represent structured
data as vectors (e.g., Voelker et al., 2021), these representa-
tions may permit extending simple algorithms to more com-
plex spaces. In particular, SSPs can be used to represent se-
quences or trajectories through continuous spaces, along with
hierarchical representations that mix discrete and continuous
data. Consequently, algorithms designed to use SSP input can
be applied to tasks with complex feature data.

Recent research has illustrated the usefulness of HexSSPs
when learning navigation policies in an online fashion us-
ing RL (Bartlett et al., 2022a,b). However, this past work
was limited to a task defined in discrete space (Gymnasium’s
MiniGrid: Chevalier-Boisvert et al., 2018). In this paper, we
present the results of a series of simulations demonstrating
the benefit of using HexSSPs to represent continuous state to
solve tasks with an Advantage Actor-Critic (A2C) network.
The A2C network is first tested on a novel spatial naviga-
tion task ‘RatBox’, designed as a continuous-space variant
of MiniGrid. Additionally, as the representational capacity
of HexSSPs generalizes to representing continuous feature
spaces (Dumont & Eliasmith, 2020), we also run simulations
on a continuous state RL benchmark task, CartPole (Brock-
man et al., 2016). This problem is analogous to balancing an
inverted pendulum, relevant for numerous animal behaviors,
such as walking or perching on a branch. CartPole has previ-
ously been solved efficiently with continuous representations
of the state in an actor-critic model with neural networks (An-
derson, 1989) and spiking neural networks (Frémaux et al.,
2013). Furthermore, grid cell-like representations of the state
have been shown to improve the performance of a Deep Q
network on the CartPole problem (Yu et al., 2020).

Methods
Hexagonal SSPs
Spatial Semantic Pointers (SSPs) are a high-dimensional
vector representation of lower-dimensional continuous
spaces (Plate, 1995; Komer et al., 2019; Komer & Elia-
smith, 2020), developed within the framework of the Se-
mantic Pointer Architecture (Eliasmith, 2013). SSPs repre-
sent state variables by selecting frequency components in the
Fourier domain and using those components to project con-
tinuous state variables into the high-dimensional frequency
space, followed by an inverse Fourier transform. Specifically,
to represent m-dimensional data, x ∈ Rm, we generate an en-
coding matrix, Θ ∈ Rd×m, and define the SSP representation
of x as:

φ(x) = F −1{eiΘx}, (1)

where elements of Θ are sampled uniformly from the interval
[−π,π] and d is the dimensionality of the SSP representation.
We further constrain Θ so that eiΘx has conjugate symme-
try, to ensure the inverse Fourier transform does not generate
imaginary components. This method for representing con-
tinuous values is also known as fractional binding (Komer
et al., 2019), fractional convolution powers (Plate, 1994), or
fractional power encoding (Frady et al., 2022).

In this work we use Hexagonal SSPs (HexSSPs), a variant
of SSPs in which the encoding matrix is specifically struc-
tured to model grid cell activity. The encoding matrix is con-
structed so that the dot product with an encoded point and
other points in the domain mimics the activity of grid cell
neurons in the medial entorhinal cortex (MEC) of the hip-
pocampus (Dumont & Eliasmith, 2020).

Algorithm 1 Hexagonal SSP Generator. Given data x with
dimensionality m, this returns its SSP encoding φ(x). The
input scales, S , are scalar values, and rotations, R , are a set
of m-dimensional rotation matrices.

1: procedure HEX-SSP(x, m, S , R)
2: v1, . . . ,vm+1←Coordinates of regular m-dim simplex

3: V←
(
| |

v1 ... vm+1
| |

)T

4: Θ← stack({sRV |s ∈ S ,R ∈ R })
5: φ(x) = F −1

{
eiΘx}

6: return φ(x)
7: end procedure

The algorithm for constructing HexSSPs is given in Al-
gorithm 1. HexSSP encoding matrices are constructed from
m+1 vectors that form a regular m-simplex in m-dimensional
space. The simplex is determined by minimizing the expres-
sion ∑

m
i ∑

m
j=1,i ̸= j vi ·v j, where vi,v j are unit vectors that make

up the simplex. Stacking these vectors produces an initial
(m+ 1)×m encoding matrix, V. We can specify the kernel
function, k(x,x′) that is approximated by the dot product be-
tween two SSPs, φ(x) and φ(x′). With this initial encoding

matrix, V, the resulting kernel function will have a hexago-
nally tiled pattern.

5 0 5
x

4

2

0

2

4

y 1

S(x)= 1{ei
T
1x}

5 0 5
x

4

2

0

2

4

1
2

3

S(x)= 1{ei[1 2 3]Tx}

5 0 5
x

4

2

0

2

4

S(x)= 1{ei x}

0.0

0.5

1.0

S
im
ila
rity

Figure 1: Construction of HexSSPs from Fourier basis
functions. Left: An encoding matrix consisting of a sin-
gle Fourier basis function, eiθT

1 x, results in a kernel function,
k(x,x′), with oscillations in 2D space characteristic of spatial
frequency representation. k(x,x′), in turn, is approximated
by the dot product between HexSSPs, each representing 2-
dimensional variables. Middle: When m+1 such Fourier ba-
sis functions are included (3 for the 2-dimensional space de-
picted here, and spaced 120◦ apart), the interference pattern
results in the hexagonally-patterned kernel function. Right:
As more rotations and scales of these vectors are used to
generate the encoding matrix, the kernel function becomes
smoother, with one centralized peak and more shallow local
optima.

The firing patterns of grid neurons in the MEC of the
hippocampus are characterized by different orientations and
sizes. To mimic this features, the complete encoding matrix,
Θ, used to construct HexSSPs is composed of multiple rota-
tions and scalings of V. This choice also has useful prac-
tical implications: as more rotations and scales are added
to the representation, the kernel function becomes smoother,
with one centralized peak and more shallow local optima, as
shown in Figure 1. SSPs created with such encoding matrices
are also more robust to noise than randomly generated repre-
sentations, and so can be more accurately encoded in spiking
neural networks via grid cells (Dumont & Eliasmith, 2020).

Advantage Actor-Critic Network
The Advantage Actor-Critic (A2C) network implemented
for these simulations was the same as that presented
in (Bartlett et al., 2022a). The network architecture is
shown in Figure 2. It was implemented in Python and
Nengo (Bekolay et al., 2014) using the principles of the
Neural Engineering Framework (NEF; Eliasmith & Ander-
son, 2003). The code is available at https://github.com/
maddybartlett/ImprovedRLContinuousStateReps.

States were represented either as a one-hot vector or by a
population of rectified linear neurons. When solving the Rat-
Box task, encoders were sampled from the regions of SSP
space associated with the observation space using the Sobel
sampling method, thus generating a population of grid cell
neurons. The number of neurons in this case was calculated
such that the number of neurons was at least 10 times the di-
mensionality of the HexSSP and a power of 2 (a requirement

of the Sobel sampling method). For the CartPole task, the
encoders were randomly sampled from the whole SSP space,
as the observation space is unbounded for some state vari-
ables. Other than the state representation layer, no other part
of the network used neurons. Learning was performed on the
connection weights from the state representation layer to the
output. Connection weights were initialized to zero.

State

Input

Hidden layer

Output

HexSSP

Value

Reward Action

Activities Error signal

Wencoders Wcritic

Wactor

TD update

...

Figure 2: A schematic of the Advantage Actor-Critic (A2C)
network. Wencoders project a HexSSP representation of the
state to neurons in the Hidden Layer.

Hyperparameter optimization

The performance of RL networks and algorithms is sensitive
to the selection of hyperparameters (Sutton & Barto, 2018).
To identify the hyperparameter configuration that maximizes
performance, we first defined the performance metric as the
terminal return, in turn computed as the mean reward received
in the last 100 episodes of a single trial. We then searched for
the configuration of hyperparameters that maximize perfor-
mance, a process referred to as hyperparameter optimization,
using the simulated annealing algorithm implemented in the
Neural Network Intelligence (NNI; Microsoft, 2021) Python
package. This algorithm begins by randomly sampling from
the hyperparameter space, and progresses by sampling from
regions that achieved higher performance. Each NNI experi-
ment therefore determines the performance achievable given
the stochastic selection of hyperparameters. For both the
HexSSP network and all state discretizations, 100 such NNI
experiments were conducted. The random seed was fixed
across all NNI experiments. Hyperparameter optimization
was performed over the parameter ranges specified in Ta-
ble 1, which were selected based on performance results ob-
tained through systematic exploration of the hyperparameter
space (Bartlett et al., 2022a) on a navigation task similar to
that used in this present work. In cases where identical, opti-
mal performance could be achieved with multiple sets of hy-
perparameters, the set of hyperparameters was selected based
on the most temporally stable terminal behavior. For discrete
representations of the state, the number of bins per state was
set for each NNI experiment and the remaining hyperparam-
eters were left free.

https://github.com/maddybartlett/ImprovedRLContinuousStateReps
https://github.com/maddybartlett/ImprovedRLContinuousStateReps

Symbol Variable Range - RatBox Range - CartPole
ε probability of an off-policy action [0.3,0.6] [0.2,0.6]
α learning rate [0.001,0.5] [0.001,0.5]
β action value discount [0.8,1.0] 0.9
γ state value discount [0.8,1.0] 0.99
η proportion of active cells 9 [0.01,0.5] 9 [0.01,0.5]
N number of neurons 9 {1024,2048,4096}
R rotations of V 9 [4,5,6,7,8,9,10] 9 [4,5,6,7]
S scalings of V 9 [4,5,6,7,8,9,10] 9 8
l length scale of representation 9 [1,100] 9 [0.01,1.0]

Table 1: Hyperparameter values tested during optimization of
networks solving each task. Hyperparameters marked by 9
apply only to models using HexSSPs for state representation.

Evaluation on continuous space navigation with
obstacles (RatBox)

Discrete state representations are incapable of perfectly cap-
turing the boundaries of irregularly shaped objects. A novel
2D environment, ‘RatBox’, containing 4 obstacles that an
agent must navigate around to reach a goal location was de-
veloped for these experiments (see Figure 3), to assess the
ability of HexSSPs to learn an efficient policy in this scenario.
The state of the agent in this environment is its 2D position
and heading, s = (x,y,w). The state space within the envi-
ronment is continuous in that the agent can be in any location
within the 600×600 space. Additionally the agent is able to
face any direction, w ∈ [0,2π].

The discrete agent’s action space consists of a set of vec-
tors, {a1,a2, . . . ,ana}. In this task there are 4 action primi-
tives, each corresponding with a ‘compass’ direction (North,
South, East, West). The discrete A2C network learns a pol-
icy over this discrete action space. To allow for a continuous
action space, the action taken is a weighted sum of the action
primitives, i.e., a(t) = ∑

na
i ciai. In this case, the output from

the actor portion of the network is a 4-vector, c, consisting
of the learned value for each action primitive. This weighted
sum is the direction vector for the agent moving at a fixed
speed. The agent’s maximum speed was set to 10,000 pps
(pixels per second), which equates to 100 pixels per timestep.

To use this method of representing a continuous action
space, we formulate our policy as an isotropic Gaussian
distribution over the action vector, πW (s) = N (µW (s),σ2I),
with small isotropic noise, σ2 << 1, and where µW (s) is the
weighted sum of the discrete action vectors,

µW (s) = softmax(Wφ(s))T [a1, . . . ,ana]
T (2)

This parameterization of the mean action vector is the soft-
max of a linear decoding from the state population, Wφ(s).

Figure 3: The RatBox environment

We assume the isotropic Gaussian noise added to this
action is small to obtain an approximately-deterministic
stochastic policy. Then we can derive the approximate pol-
icy gradient from the expected rate of reward as a function of
the policy parameters, J(W):

∇W J(W) = E[∇W logπW (s) A(s,a)] (3)

∇w logπW (s) = (I−πW (s))πW (s)φ(s)T (4)
Wnew =Wold +α∇W J(W), (5)

where A(s,a) is the advantage function, α is the learning rate,
and I is the na×na identity matrix. With this update, we can
improve the policy – parameterized by the decoding weight
matrix, W ∈Rna×d – with the TD(0) actor-critic learning rule.

The network was tested under two different conditions. In
the baseline condition, the agent’s state was represented using
a tabular representation. We generated several resolutions by
applying 6, 8, 10 or 12 partitions to each of the three state di-
mensions. In the second condition, the state was represented
using HexSSPs and a population of grid cell neurons. In the
10- and 12-bin discrete conditions, none of the hyperparam-
eter combinations tested by NNI were able to solve the task.
We therefore instead used the hyperparameters found for the
6-bin condition. The optimal network for each condition was
then trained 10 times using 10 different random seeds. Inter-
estingly, in the 10-bin condition, the final network was able
to learn the task on some of the random seeds.

The average reward was calculated over a 100-trial win-
dow, and then averaged across the 10 random seeds. The re-
sults, shown in Figure 4, illustrate that the HexSSP and 6-bin
solutions were able to learn the task. Performance declines as
the resolution becomes finer in the discrete condition.

Learning in non-stationary environments can be challeng-
ing for RL algorithms that use a tabular representation of the
state, as changes in the environment can potentially cause
incompatibilities between the optimal and actual discretiza-
tions. In general, continuous state representations avoid this
limitation by allowing for generalization between states. This
holds for the HexSSP approach we use here, where the extent
of generalization over the state space is specified by the length
scale parameter. Assuming an appropriate length scale, we
would therefore expect our algorithm to exhibit robustness
to changes in the environment, as compared to the state dis-
cretization approaches. To test this prediction, we performed
hyperparameter optimization on the network with the agent’s
speed set to 10,000 pixels per second (pix/sec), and then as-
sessed performance with the agent’s speed set to either 10,000
pix/sec or reduced to 5,000 pix/sec. No other changes were
made and the networks were tested again with 10 random
seeds. The results are shown in Figure 4. While the perfor-
mance of the network using HexSSPs to represent the state
drops slightly following the change in speed, closer inspec-
tion revealed that this was due to two of the ten random seeds
resulting in no learning, while the rest of the seeds led to per-
formance as good as the original (data not shown). In con-
trast, none of the baseline networks were able to solve the

0 100 200 300 400
Episodes

0

20

40

60

80

100

R
ol

lin
g

M
ea

n
R

ew
ar

d

6 bins
8 bins

10 bins
12 bins

Hex SSP

6 8 10 12
Discretization (# bins per state)

0

50

100

150

Te
rm

in
al

 R
ew

ar
d

10,000 pix/sec
5,000 pix/sec

HexSSP

Figure 4: Performance on RatBox. Left: Learning curves
using HexSSPs or tabular approaches for state representa-
tions, averaged across 10 random seeds. The shaded area
depicts the standard error of the mean. Right: Average termi-
nal reward (with 95% confidence interval) across the different
representations when the agent’s maximum speed was 10,000
pix/sec vs. 5,000 pix/sec.

task following the change in agent speed, suggesting that the
networks would need a different discretization, or to be re-
optimized, in order to adapt. This result shows that continu-
ous HexSSPs are a more general solution that is less sensitive
to changes in the task or environment compared to standard
discrete representations.

Evaluation on the inverted pendulum
(CartPole) problem

Here we characterize learning on the standard CartPole task
from OpenAI’s Gym Library (Brockman et al., 2016). The
CartPole’s dynamics are unstable, making performance par-
ticularly sensitive to state representation accuracy. Errors in-
troduced due to state discretization should therefore cause
a decrease in performance. Indeed, prior work investigat-
ing learning with continuous and discrete control schemes
report fewer trials to learn with a continuous algorithm com-
pared to a discrete algorithm on the similar CartPole Swingup
task (Doya, 2000). We therefore first sought to validate that
the proposed continuous representation confers a learning ad-
vantage over the state discretization approach. We character-
ized learning across 5 discretizations corresponding to a dis-
tinct number of partitions applied to each of the 4 state vari-
ables. Hyperparameter optimization was performed for each
discretization, and performance characterized across 10 runs
of the model with different seeds.

As can be seen in Figure 5, terminal reward grows slowly
as the resolution of the discretization increases, but is well be-
low the terminal reward achieved by the HexSSP model. Cru-
cially, and in contrast to performance with most of the tabular
approaches, terminal performance using HexSSPs to repre-
sent state exhibits relatively small variation across seeds (95%
confidence interval: [496.88,499.97]). This is especially sur-
prising as the only source of randomness using tabular ap-
proaches is the initial conditions given by the environment;

0 200 400 600 800 1000
Epsiodes

100

200

300

400

500

Ro
llin

g
M

ea
n

Re
wa

rd

3 bins
7 bins

11 bins
15 bins

19 bins
HexSSP

3 7 11 15 19
Discretization (# bins per state)

100

200

300

400

500

Te
rm

in
al

 R
ew

ar
d

Figure 5: Performance on CartPole. Left: Learning curves
using HexSSPs or tabular approaches for state representation.
Shown is the mean across 10 runs of the model. The shaded
area depicts the standard error of the mean. The dotted line
indicates the maximum possible episodic reward achievable.
Right: Terminal rewards observed in 10 runs of each model
(and 95% confidence intervals) for each discretization condi-
tion. The gray bar denotes the 95% confidence interval for
performance using HexSSPs.

HexSSPs are subject to this source of randomness in addition
to that incurred by the sampling of encoders for each model
run. Of course, hand-tuned discretizations may facilitate su-
perior or more consistent performance, but this requires trial
and error or a priori knowledge of the problem. HexSSPs re-
liably produce high terminal performance regardless of initial
environment or network conditions in the tested scenario.

Performance comparison against a deep
network baseline

So far we have described two advantages of representing state
information as a continuous variable with HexSSPs, as mea-
sured against state discretization approaches. On the navi-
gation task with RatBox, HexSSP representations conferred
greater robustness to changes in model parameters. On the
CartPole control task, we observed better terminal perfor-
mance and lower sensitivity to initial conditions. However,
neural networks can also represent continuous state informa-
tion, and multi-layer networks, in particular, can learn ef-
fective representations for decoding value and policy func-
tions. This can include representations similar to that which
we have used here in their hidden layers. What specific ad-
vantage, if any, is offered by using HexSSP representations
on RL problems over the state-of-the-art?

To address this question, we compare the performance of
our algorithm to an A2C method that uses a multi-layer per-
ceptron policy (Raffin et al., 2021) on the CartPole task. Fig-
ure 6 shows learning curves for both the proposed HexSSP
single-layer network model and the deep network baseline
model. On the CartPole task, the two methods exhibit com-
parable performance, as shown by the overlap in the me-
dians and interdecile range produced by a range of initial
seeds. Interestingly, the HexSSP method produces more re-

0 50000 100000 150000
Number of Timesteps

0100200300400500
Ep

iso
di
cR

ew
ar
d

Baseline A2C
HexSSP

Figure 6: Performance of a Single layer A2C network with
HexSSPs and a deep A2C network on CartPole. Compar-
ing the moving average over episodic rewards between our
proposed method using HexSSP representations and a base-
line implementation of A2C with a multilayer perceptron pol-
icy from (Raffin et al., 2021). Solid lines are the medians
and shaded areas are the interdecile range, taken over 20 ran-
domly chosen seeds.

liable terminal performance, indicating less sensitivity to the
initial seed as shown by lower variance in the terminal reward
(Baseline: σ2 = 20966.52, HexSSP: σ2 = 127.84, L = 6.19,
P = 0.017, Levene’s test of equal variances using group me-
dians). The high reliability of performance with HexSSP rep-
resentations as compared to that observed with a state-of-the-
art approach suggests a fundamental robustness across dif-
ferent types of continuous feature spaces. We speculate that
since the baseline model must learn the state representation,
it is therefore able to modify this representation late in train-
ing when it may no longer be advantageous to do so. The
representation for the HexSSP model is fixed, so additional
training is not able to degrade its performance in this way.

Discussion
In this paper, we presented HexSSPs as a method for repre-
senting continuous states when solving tasks using RL. We
evaluated the HexSSPs on a spatial navigation task and com-
pared performance to networks using tabular representations,
and to a multi-layer perceptron where the state representation
is learned via backpropagation. While a discrete represen-
tation could solve the RatBox task as well as the HexSSP
method, we found that the discrete method was not robust
to changes in the task; the HexSSPs proved to be very ro-
bust. We also found that the HexSSP representation was
able to achieve a final performance greater than any of the
tabular representations on the standard benchmark CartPole
task. The HexSSP solution’s performance was also compa-
rable to that of the Deep A2C network, but it is noteworthy
that the HexSSP network produced a more reliable terminal
performance suggesting that it is more robust to changes in
network initialisation. Notably, the performance on CartPole
was achieved while adopting a relatively inefficient method of
sampling encoders from the subspace spanned by the problem

domain. An important direction for future work is therefore
to explore the impact of more efficient sampling methods on
this task.

Experiments comparing the HexSSP method and tabular
approaches were designed to assess differences in average
performance. Assuming the performance metric follows a
Gaussian distribution, the sample size of 10 opted for in this
work confers to us a 99.8 % probability that the mean perfor-
mance falls within the span of the sampled data points (com-
puted as P = (1− 1

2N−1)× 100%, where N is the number of
sample points). However, the observation that 2 (20%) of the
random seeds yield particularly poor performance on the Rat-
Box task suggest that more sampling would be needed if one
were to move beyond characterizing average performance
and towards understanding the full distribution of model be-
havior.

A key characteristic of the HexSSP method is that it allows
one to build neuron populations whose firing patterns mimic
those of grid and place cells found in MEC and hippocampus
across many animal species. The performance improvement
on the RatBox task gained by leveraging these hexagonally-
patterned representations is expected considering their role
in spatial navigation in biological agents. These firing pat-
terns are readily comparable to neural recordings from ani-
mal models used in neuroscience, such as rodents. However,
to our knowledge, these representations have not been impli-
cated in motor control analogous to that required to solve the
CartPole task. In this case, comparing the performance of our
network against the behavior of a biological agent may yield
insight into the specific role of hexagonally-patterned repre-
sentations in biological cognition.

On the RL problems explored in this work, we observed
the benefits of HexSSPs being more robust to noise and better
able to generalize to changes in the environment. These fea-
tures are essential for autonomous agents needing to learn on-
line, potentially in dynamic or unstable environments. Thus
an interesting avenue for future work would be to explore the
extent to which the HexSSP method proves useful in solv-
ing non-stationary problems. Additionally, the robustness to
noise is significant for cognitive models, and this representa-
tion supports encoding in spiking neural networks. Moreover,
these spiking implementations can be implemented straight-
forwardly on neuromorphic hardware.

Online Resources
All code necessary to reproduce these results are
hosted at: https://github.com/maddybartlett/
ImprovedRLContinuousStateReps

Acknowledgments
This project was supported in part by collaborative research
funding from the National Research Council of Canada’s
Artificial Intelligence for Logistics program (AI4L-116), as
well as by CFI (52479-10006) and OIT (35768) infrastructure
funding, the Canada Research Chairs program, and NSERC
Discovery grant 261453.

https://github.com/maddybartlett/ImprovedRLContinuousStateReps
https://github.com/maddybartlett/ImprovedRLContinuousStateReps

References
Anderson, C. W. (1989). Learning to control an inverted

pendulum using neural networks. IEEE Control Systems
Magazine, 9(3), 31–37.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T.,
Mirowski, P., . . . others (2018). Vector-based navigation
using grid-like representations in artificial agents. Nature,
557(7705), 429–433.

Bartlett, M. E., Stewart, T. C., & Orchard, J. (2022a).
Biologically-based neural representations enable fast on-
line shallow reinforcement learning. In Proceedings of the
annual meeting of the cognitive science society (Vol. 44).

Bartlett, M. E., Stewart, T. C., & Orchard, J. (2022b). Fast
online reinforcement learning with biologically-based state
representations. In Proceedings of the 20th international
conference on cognitive modeling.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart,
T. C., Rasmussen, D., . . . Eliasmith, C. (2014). Nengo: a
Python tool for building large-scale functional brain mod-
els. Frontiers in neuroinformatics, 7, 48.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAI
gym. arXiv preprint arXiv:1606.01540.

Chevalier-Boisvert, M., Willems, L., & Pal, S. (2018). Mini-
malistic gridworld environment for gymnasium. Retrieved
from https://github.com/Farama-Foundation/
Minigrid

Doya, K. (2000). Reinforcement learning in continuous time
and space. Neural computation, 12(1), 219–245.

Dumont, N. S.-Y., & Eliasmith, C. (2020). Accurate repre-
sentation for spatial cognition using grid cells. In Cogsci.

Dumont, N. S.-Y., Stöckel, A., Furlong, P. M., Bartlett, M. E.,
Eliasmith, C., & Stewart, T. C. (2023). Biologically-based
computation: How neural details and dynamics are suited
for implementing a variety of algorithms. Brain Sciences,
13(2), 245.

Eliasmith, C. (2013). How to build a brain: A neural archi-
tecture for biological cognition. Oxford University Press.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineer-
ing: Computation, representation, and dynamics in neuro-
biological systems. MIT press.

Frady, E. P., Kleyko, D., Kymn, C. J., Olshausen, B. A., &
Sommer, F. T. (2022). Computing on functions using
randomized vector representations (in brief). In Neuro-
inspired computational elements conference (p. 115-122).

Frémaux, N., Sprekeler, H., & Gerstner, W. (2013). Re-
inforcement learning using a continuous time actor-critic
framework with spiking neurons. PLoS computational bi-
ology, 9(4), e1003024.

Furlong, P. M., & Eliasmith, C. (2022). Fractional binding
in vector symbolic architectures as quasi-probability state-
ments. In Proceedings of the annual meeting of the cogni-
tive science society (Vol. 44).

Furlong, P. M., Stewart, T. C., & Eliasmith, C. (2022).
Fractional binding in vector symbolic representations
for efficient mutual information exploration. In Proc.
icra workshop, towards curious robots, mod. approaches
intrinsically-motivated intell. behav. (pp. 1–5).

Gustafson, N. J., & Daw, N. D. (2011). Grid cells, place
cells, and geodesic generalization for spatial reinforcement
learning. PLoS Computational Biology, 7(10), e1002235.

Komer, B., & Eliasmith, C. (2020). Efficient navigation using
a scalable, biologically inspired spatial representation. In
Cogsci.

Komer, B., Stewart, T. C., Voelker, A. R., & Eliasmith, C.
(2019). A neural representation of continuous space using
fractional binding. In 41st annual meeting of the cognitive
science society. Montreal, QC: Cognitive Science Society.

Lange, S., & Riedmiller, M. (2010). Deep auto-encoder neu-
ral networks in reinforcement learning. In The 2010 inter-
national joint conference on neural networks (ijcnn) (pp.
1–8).

Microsoft. (2021, 1). Neural Network Intelligence. Retrieved
from https://github.com/microsoft/nni

Plate, T. A. (1994). Distributed representations and nested
compositional structure. Citeseer.

Plate, T. A. (1995). Holographic reduced representations.
IEEE Transactions on Neural Networks, 6, 623-641.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M.,
& Dormann, N. (2021). Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268), 1-8.

Sutton, R. S. (1996). Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances
in neural information processing systems (Vol. 8). MIT
Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Voelker, A. R., Blouw, P., Choo, X., Dumont, N. S.-Y., Stew-
art, T. C., & Eliasmith, C. (2021). Simulating and pre-
dicting dynamical systems with spatial semantic pointers.
Neural Computation, 33(8), 2033–2067.

Yu, C., Behrens, T. E., & Burgess, N. (2020). Prediction and
generalisation over directed actions by grid cells. arXiv
preprint arXiv:2006.03355.

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
https://github.com/microsoft/nni

	Introduction
	Methods
	Hexagonal SSPs
	Advantage Actor-Critic Network
	Hyperparameter optimization

	Evaluation on continuous space navigation with obstacles (RatBox)
	Evaluation on the inverted pendulum (CartPole) problem
	Performance comparison against a deep network baseline
	Discussion
	Online Resources
	Acknowledgments

