Biologically-Plausible Memory for Continuous-Time Reinforcement Learning

Madeleine Bartlett’ (madeleine.bartlett @uwaterloo.ca)
Cheriton School of Computer Science, University of Waterloo
Waterloo, ON, N2L 3G1, Canada

Nicole Sandra-Yaffa Dumont’ (ns2dumont @uwaterloo.ca)
Computational Neuroscience Research Group, University of Waterloo,
Waterloo, ON, N2L 3G1, Canada

Michael P Furlong (michael.furlong @uwaterloo.ca)

Computational Neuroscience Research Group, University of Waterloo
Waterloo, ON, N2L 3G1, Canada

Terrence C Stewart (tcstewar @uwaterloo.ca)
National Research Council of Canada, University of Waterloo Collaboration Centre,
Waterloo, ON, N2L 3G1, Canada

Abstract

Reinforcement learning, and particularly Temporal Difference
learning, has been inspired by, and offers insights into, the
mechanisms underlying animal learning. An ongoing chal-
lenge to providing biologically realistic models of learning is
the need for algorithms that operate in continuous time and
can be implemented with spiking neural networks. This pa-
per presents a novel approach to Temporal Difterence learning
in continuous time — TD(0). This approach relies on the use
of Legendre Delay Networks for storing information about the
past that will be used to update the value function. A com-
parison of the discrete-time TD(n) and continuous TD(0) rules
on a simple spatial navigation RL task in a largely non-spiking
network is presented, and the theoretical implications and av-
enues for future work are discussed.

Keywords: Reinforcement Learning; Temporal Difference
learning; continuous time; Legendre Delay Network

Introduction

Reinforcement Learning (RL), as opposed to supervised
learning, is a plausible description of animal learning. An-
imals must learn through continual interaction with their en-
vironment, and often demonstrate competence after very few
interactions. While RL models of learning are useful, their
implementations ignore fundamental aspects of biological
implementations. In this paper we present a method of im-
plementing continuous-time Temporal Difference (TD) learn-
ing rules with finite memory using a biologically plausible
component, the Legendre Delay Network (LDN), a recurrent
neural network that optimally represents time-varying signals
over a finite history window (see Figure 1).

Psychological studies of animal learning have inspired
many core RL algorithms, and similarities have been found
between structures and signals in the mammalian brain and
RL models. Dopaminergic neurons, thought to encode reward
prediction error (Schultz et al., 1997; Cohen et al., 2012),
similar to the TD error signal (Sutton, 1988; Sutton & Barto,
2018), project into the dorsal and ventral subdivisions of the
striatum (Bjorklund & Dunnett, 2007). These regions, in turn,
have been hypothesized to function like the actor and critic of
Actor-Critic (AC) models (Joel et al., 2002).

These authors contributed equally.

200

100

Neuron number

Value function
Delayed value memory

9 10 11
Time [s]

Figure 1: A spiking neural network was used to implement
the critic portion of an Actor-Critic network. The lower plot
shows a snippet of the value function learned by the network.
An LDN was used to remember this output and a delayed
value signal was decoded from this LDN and plotted. The
top spike raster plot displays the spiking activity of neurons
from the population representing the LDN memory.

TD learning reflects dopaminergic neurons’ behaviour dur-
ing an association task wherein repeated exposure to a
conditioned-unconditioned stimulus (CS-US) pairing results
in excitation at the time of the learned CS (Schultz et al.,
1997). The model further predicts a larger prediction error
in response to unexpected rewards compared to expected re-
wards, and a smaller prediction error when a predicted reward
is omitted than when it is received. Both of these predictions
are also reflected in the behaviour of dopaminergic neurons
(Schultz, 1998; Cohen et al., 2012; Nakahara et al., 2004).

Despite the similarities between the TD error signal and

neural correlates of RL, discrepancies between TD learning
and biological RL remain. Namely, TD learning rules often
operate in discrete time. The schedule of events — state tran-
sitions, actions taken, rewards received — must be described
in terms of discrete time steps.

When TD learning rules are implemented for training ar-
tificial systems, they operate in a retrospective manner; the
value of the state visited in a previous time step, ¢’ < ¢ is
updated according to the rewards received between then, ¢/,
and now, f. For example, the value of the state s,_; is up-
dated according to the discounted value of the state the agent
is currently in (i.e. s;) and the reward received at time ?.
TD(n) (Sutton & Barto, 2018, §7.1) improves the estima-
tion of a state’s value by updating the state value estimate
using the states s;_p,...,s; and the corresponding rewards
Tt—nyeoo sl

The difficulty with these approaches that make them bi-
ologically implausible is that the TD formulation requires
memory that is discretized across time steps. Spiking neu-
rons, however, evolve in continuous time. Making spiking
neurons implement discretized memory requires extra neural
machinery.

The gap between TD and neural behaviour could be closed
by using progressively smaller time steps, but this would re-
sult in larger memory requirements and longer training times
to find the optimal policy. Consequently, to create RL models
that more closely reflect biological systems, and that can cope
with more complex problems, we need TD learning rules that
exist in continuous time.

To address this problem we present a continuous time
TD learning model using a recurrent neural network mem-
ory, the LDN, that is formulated in continuous time and is
a biologically-plausible memory unit (Voelker & Eliasmith,
2018). An additional benefit of using the LDN is that our
model naturally adapts to memories with arbitrary lengths.
This is useful in mapping the TD(n) algorithm to a biolog-
ically plausible model that does not require additional re-
sources as 1 grows.

We begin by reviewing prior approaches to continuous
time RL, both non-spiking and spiking models of learning.
We then introduce the principles of the Neural Engineering
Framework, and the Legendre Delay Networks, which we use
in this work. We then outline our modelling approach and de-
scribe TD(0), our novel continuous time variant on the TD(n)
learning algorithm. Next, we demonstrate TD(0) working on
a continuous time RL task and in a spiking neural network.
Finally, we discuss particular advantages of this continuous
approach to modelling RL, as well as future directions for
research.

Review

There has been past work on implementing RL algorithms
in continuous time with spiking neural networks (Frémaux et
al., 2013; Rasmussen et al., 2017). In such set-ups with on-
line learning, future values are not available for TD learning.

Instead, current estimates must be used for training past es-
timates. Obtaining the past activity of spiking neurons for
such updates is a challenge. The Actor-Critic (AC) model
in Frémaux et al. (2013) does not actually compute TD sig-
nals with spiking neurons to avoid this. The hierarchical rein-
forcement learning (HRL) model in Rasmussen et al. (2017)
addresses the challenge by using two identical neural pop-
ulations to represent current and delayed Q functions, with
mechanisms for copying learned weights from one popula-
tion to the other. This is similar to a TD(0) algorithm with
a target network. However, the delay used is fixed in ad-
vance and this model does not generalize well to learning
over longer time spans. Different tasks may require credit
assignment over time windows of different lengths and, in
many cases, better performance can be achieved by using re-
ward information over many time steps for updates. Work on
continuous time RL models — particularly ones that are bio-
logically plausible — is limited. The theoretical framework of
RL, Markov decision processes, can be formulated in contin-
uous time and optimal policies can be obtained by solving the
Hamilton—Jacobi-Bellman partial differential equation. This
approach was used in Doya (2000) to develop algorithms for
learning value functions and policies, which were found to
learn a non-linear control task faster than traditional discrete
time AC models. Continuous-Time Attention-Gated Mem-
ory Tagging (Zambrano et al., 2015) implements on-policy
SARSA learning in continuous time using a neural working
memory.

Background
Reinforcement Learning

Continuous-time RL is modelled as a continuous-time
Markov decision process. There is a set of environment
states, S and a set of agent actions, 4. At any time f,
the environment will be in some state, s(t) € S. The agent
will choose when to act and what action to take based on a
stochastic policy, a(t) ~ m(s(t)). These actions will affect
the state of the environment and the reward rate function,
R(t) = R(s(t),a(t)). The task in RL is to learn a policy to
maximize the expected discounted integral of future rewards:

max Ey { B YR(t)dt] , (1)
T t=0

where y € [0,1] is the discount factor. The above function,
when at some particular state s at time #, is the value function.

V(s) = Ex [/k:()%R(Hk)dk

s(1) = s})

One can also define the ‘Q’ function, Q(s,a), in which the
above expectation is also conditioned on the action taken at
time ¢t. A value (or Q) function can be learned by TD algo-
rithms that take advantage of the recursive relationship be-
tween successive values.

V)~ [RO PVG040). O

This expression can be used to update the value function.

V(s(t)) < V(s(t))+A [/I{ZOV‘R(t+k)dk+ern(s(t+9)) ,
“

where A is the learning rate, and the term in the square brack-
ets is the TD error. This update, as written, is for tabular RL,
in which the values of all states are stored in a table. To gen-
eralize to an infinite state space, one can model V (s) with a
neural network trained using the TD error.

A popular architecture in RL is the Advantage Actor-Critic
(A2C) model. In this setup, one learns both a value function
(the critic) and a policy (the actor). The actor is used to select
actions, while the critic is used to train the actor using the
advantage function,

A(s,a) = Q(s,a) =V (s).)

This advantage function can be approximated with the TD
error signal.

Neural Engineering Framework

To create biologically realistic neural networks we require
methods for representing vectors by the activity of spiking
neurons, and to be able to perform computations on said vec-
tors via projections between neural populations. The Neural
Engineering Framework (NEF; Eliasmith & Anderson, 2003)
provides such methods in the form of three principles: repre-
sentation, transformation and dynamics.

The principle of representation explains how to encode a
vector, x € R?, in the activity of a population of neurons,
a(t) = GIEx +b], where E = [ey,...,ex]",€; € R? are en-
coder weights for the i € {1,...,N} neurons, b € R" are bias
terms, and G[] is the neuron transfer function. Our experi-
ments use the leaky integrate-and-fire neuron model for G|/,
or it’s rate approximation. Representation also explains how
to decode the activity to recover the input vector, x. The
NEF’s transformation principle provides the method for set-
ting weights between two neural populations to compute a
desired function. Transformation is achieved by solving for
decoders — one for each neuron, d; — that compute a function
of a population’s input, instead of recovering the original in-
put. Decoders can be solved for ahead of operations if the
function is already known.

In this paper, our focus is on leveraging the principle of
dynamics. Dynamical systems can be encoded in a popula-
tion of spiking neurons using recurrent connections. It has
been stated that synaptic weights (or more precisely, popula-
tion decoders) can be optimized in advance if desired function
samples are available. However, if the desired transformation
is not known in advance, for example, the mapping between
states and values in RL, online learning rules can be used to
modify synaptic weights. The Prescribed Error Sensitivity
(PES; MacNeil & Eliasmith, 2011) is a biologically plausi-
ble supervised learning rule. To learn a connection between

a pre- and post-population of neurons, this rule modifies the
pre-population’s decoders in response to an error signal:

Ad; = KS(Z)Cl,’7 (6)
which is equivalent to modifying synaptic weights by
AW,'J‘ = —KOj€e; - S(I)ai @)

where x is a learning rate, a; are pre-population neural activ-
ities (filtered spikes), o; are post-population activities, €; are
the post-population encoders, and £ is an error signal we seek
to minimize. This signal may be computed by other neural
populations in a model. Biologically, we can think of those
populations as dopaminergic neurons that can modify weights
in this way via dopamine levels. Real data of spike timing
dependent plasticity is matched by PES when used in com-
bination with the unsupervised Bienenstock, Cooper, Munro
(BCM) learning rule, which sparsifies weights (Bekolay et
al., 2013).

Legendre Delay Network

Consider the problem of computing a delay of some signal
u(t) (for example, computing a delayed reward for TD up-
dates) using a recurrent neural network. In deep learning,
recurrent networks are typically trained in a supervised fash-
ion using backpropagation-through-time. However, this is
not biologically plausible. In real behavioral tasks, exam-
ples of “correct” behavior are generally not available and,
instead, learning must be done using only temporally sparse
rewards. Additionally, it is unknown how derivatives of spik-
ing activity would be calculated in the brain and propagated
through multiple layers of neurons. Furthermore, the same
connections and weights are used in its forward and back-
wards passes, but real synapses are unidirectional.

In this work we use properties of Legendre polynomial rep-
resentations of time varying-functions, and the Legendre De-
lay Network (LDN; Voelker & Eliasmith, 2018) to encode
history. Legendre polynomials are orthogonal basis functions
that can be used to represent functions over fixed input win-
dows. We use the shifted Legendre basis polynomials, de-
fined by the functions Py(r) = 1,P; (t) = 2¢t — 1, and the recur-
sion (n+ 1)P,11(t) = (2n+ 1)P,(t) + nP,—1(¢). The polyno-
mials are defined over the domain [0, 1], and the coefficients
of the Legendre representation of a function f () over a win-
dow [t,+6] are a, = 5L t”“e f(O)P,((t—1)/0)dT. A rep-
resentation using the first g polynomials is said to have an
order of q. Legendre polynomials are orthogonal, such that
folPi(t)Pj(t)dt = ﬁ when i = j and zero otherwise. The
LDN is a dynamic system that approximates the Legendre
polynomial coefficients of an input signal over a sliding his-
tory window of length 8 € R™. The coefficients are repre-
sented using the LDN’s memory state, m € R?, for an or-
der g Legendre representation. m is updated according to
m(t) = Am(¢) + Bu(r), where u(¢) is the input signal. To ef-

Figure 2: Screenshot of the 8 x 8 Mini-Grid environment.

fect a Legendre basis, A and B are defined such that

2i4+1 -1 i<j (2i+1)(=1)
Aij=—9 sl s . Bim————.
(=1 i>j 0
®)
The values of A and B are fixed once 6 and ¢ are selected.
For discrete-time applications we approximate A and B with
A =¢A and B =A"!(¢e* —1I)B, using a zero-order hold and
dt = 1, as per Chilkuri & Eliasmith (2021).

Methods

In the case of RL, the PES learning rule can be used to modify
synaptic weights in response to the TD error signal. Such
errors are typically written as an update to the value function
at time ¢ using future information (rewards and/or values at
time ¢+ 1,142, etc.). When learning online, the network does
not have access to future information — it only has access to
present values and the past via an LDN memory. This means
that we will update the value function in the past (at say, ¢t —6)
using information obtained since then. This requires the use
of neurons’ past activities in the PES update.

Assume we have a population of N neurons representing
the state, s(¢) € RY. Let m, ;(1) € RN be the LDN memory
of the j'* neuron’s activities (a filtered spike train). Then the
PES update is given by

Adj =xE(1)P%(0)m,; (1),)

where P9 (@) € R!*4 is the vector of the shifted Legendre
polynomials (of degree one to ¢q,), evaluated at 6. The sim-
plest RL learning rule that can be implemented in this way is
the TD(0) rule — an update of the value at just a short time
in the past (t — Ar) using only the current reward rate. Let
my (z) € R? be an LDN memory of the value function. The
TD(0) error and PES update is given by

EO1) = R(t) +V (1) — P% (Ar)my, (10)
Ad; = K(R(1) +YV (1) — P (Ar)my)P% (8)my, (1). (11)

Learning rules that use a longer history of rewards require
an LDN memory of the reward rate over time, mg € R7. A

R d
i1 memory |
: mp(t)
£
g
g — State activites
E _l State memory

S (t)) m, (t)

Figure 3: A diagram of AC network using LDN memo-
ries. Blocks represent neural populations, grey blocks indi-
cate populations representing LDNs, solid arrows represent
connections, and dotted lines represent weight modification.
LDNs are used to remember the reward received from the
environment and the value function. The output of these
LDNs projects onto the TD error population with connection
weights given by (13). This TD error, along with decoded
output from the LDN representing the activities of the state
neurons, is used to modify the connection weights between
the state and value populations via (14).

learning rule that uses the full 6 time window of the LDN
memories is

1
£O (1) = / Y IR(—8T)dT V(1) — V(1 —), (12)
0

= (/()1¥1rpqr(e‘c)dt> mg(t) +yv(t) — P9 (0)my (1),
(13)
Adj = kE® ()P (G)maj (1). (14)

This is the novel TD(0) learning rule. The discounted in-
tegral over the reward history can be directly computed from
it’s LDN representation and used to update the value function.
An experiment was conducted to demonstrate how a simple,
non-spiking version of this rule could be implemented, and
how its performance compares to the standard TD(n) learning
rule on a simple spatial navigation RL task. This experiment
is a preliminary exploration of the developed learning rule, in-
tended as a starting point from which to build a fully spiking,
biologically plausible model of RL in continuous time. For
this experiment, two AC networks were implemented, one us-
ing the standard TD(n) learning rule and the other using the a
non-spiking version of TD(0). Each network was then tested
on the Gym MiniGrid environment (Chevalier-Boisvert et al.,
2018).

Hidden layer

Wencoders Weecoders

Output
State Value

Action
Preferences

QOO0

]
]
1
]
1
i
]

]

One Hot
Representation
f

Action wg l ;
/
TD update

Reward /

Figure 4: Schematic of the neural network. The TD update
(dashed line) is computed by the network in Figure 3.

Learning Task

For this demonstration, we used the 8 x 8 MiniGrid environ-
ment where the task is to learn how to navigate to a goal lo-
cation (see Figure 2). This environment consists of 6 x 6 (36)
possible locations. At each time step, the agent is able to take
1 of 3 possible actions (move forward, turn left, turn right).
At the beginning of each learning trial, the agent is initialised
in the top left-hand corner and goal location is the bottom
right-hand corner.

Per learning trial, the agent had a total of 200 time steps
in which to find the goal location. The trial would be termi-
nated either at the end of the 200 time steps or once the agent
had reached the goal, and the environment was reset for the
agent to try again. For each approach (TD(n) vs. TD(0)) the
network was run for a total of 500 learning trials, and we set
n=2.

Importantly, we found that when using TD(60), good per-
formance was obtained if the agent was made to wait for at
least 2 time steps in each state (i.e. spending a total of 3 time
steps in each state). We argue that this is because when the
agent was not made to wait, the duration of reward presen-
tation was too short, lasting only 1ms. By making the agent
wait, we extended the duration of the reward.

Actor-Critic Network

The AC Network was implemented in Python using the NEF
(Eliasmith & Anderson, 2003) (see Figure 4 for the network
schematic). The network’s input was the agent’s current state
(a 3D vector containing the agent’s X,y coordinate location
and the direction it’s facing), the most recent action selected
and the most recent reward. The state information was trans-
formed into a one-hot representation, which was then passed
to the hidden layer consisting of 3,000 rate neurons. The TD
update was performed in the rule node, and was used to train
the network’s decoder weights (Wyecoder). The network’s out-
puts were the updated state value, and a vector containing the
preferences for each action available to be taken in the next
time step.

1.0
0.8
©
©
= 0.6
[}
-4
< 0.4
S
o
|_
02 —— Baseline
—— TD(theta)
0.0
0 100 200 300 400 500

Learning Trial

Figure 5: Plot showing total reward per episode, across all
learning trials, for TD(n) Baseline and TD(0).

When using the standard TD(n) learning rule, rewards and
state values needed to perform the TD(n) update were stored
in arrays. However, with TD(0) where LDNs were used for
storing the rewards and values, the reward was passed into an
LDN node. The output from this node was the integral of the
discounted Legendre polynomials across the LDN window,

(fol yl’TP"’(GT)d’c) . A second LDN node (V(z)) was used to

store the value of each state encountered. This value would
be retrieved n time steps later when it was time for that state’s
value to be updated.

Results

To assess the performance of each network we calculated the
total reward gained in each learning trial and plotted the re-
wards over the 500 learning trials for each approach. In the
case of TD(0), the total reward received at the end of each
learning trial was divided by 3 to correct for the wait time.
These results are shown in Figure 5. Both approaches show
similar performance; both seem to find an effective, stable
policy within 200 learning trials.

The learned value for each state (location and direction) in
the MiniGrid task was also calculated and is shown in Figure
6. These plots reveal that both the TD(n) and TD(0) networks
assigned high value to those states that led in a straight-line
path to the goal. This further suggests that both networks
were able to learn similar solutions for the task. The main
take-away from this is that the TD(0) rule allows us to solve
RL problems where the reward history is represented in con-
tinuous time. Given the potential for the LDN to be im-
plemented in a spiking neural network, this approach shows
promise for modelling RL in a more biologically plausible
way.

Discussion

This paper presents a novel, continuous time approach to im-
plementing TD learning. The proposed TD(0) is a version
of TD(n) that incorporates LDNs for dynamically maintain-
ing a memory of received rewards in continuous time. As
a preliminary exploration of the novel TD(0) learning rule,
an experiment was run comparing the performance of an AC
network on a simple grid-world task when using the standard

Baseline 10

Left
o o 08
1 1
2 2
06
3
4
04
7 7 02
o 2 a4 & > a4

TD(theta) 10

Down

0

3

Left
|
R

s
s
7

4 6 ﬂ

o 2

Figure 6: The learned values for each state on the MiniGrid
task for TD(n) Baseline and TD(6). From left to right, these
plots show the learned values of each position in the MiniGrid
world when the agent is facing right, down, left and up.

TD(n) learning rule in discrete time vs. TD(0) for continuous
time. Figure 5 illustrates that TD(0) was able to learn a stable
policy in roughly the same number of trials as TD(n).

An advantage of this novel approach over other methods is
that it can be readily adapted for different lengths of memo-
ries without additional model complexity. With the standard
TD(n) rule, for example, additional memory resources must
be employed in order to use larger values of n. In contrast,
when using LDNs the only change needed to accommodate
a larger n is to increase 0 (the length of the LDN window).
The use of LDNs may also prove beneficial when applied to
the TD(A) learning rule, which requires resources to maintain
a memory of all previously visited states and their values, as
well as the eligibility trace which describes how recently and
frequently each state has been visited.

Further exploration is needed to establish whether the
novel TD(0) learns similar policies or produces behaviours
that deviate from existing TD learning rules. However, as
a preliminary finding, this result is promising. It should be
noted, however, that the TD(0) network did require that the
agent wait in each state in order to learn the task. First steps
for future work, therefore, will be to more fully explore the
effects of having the agent wait, and to establish why it was
needed. We will also explore possible alternative solutions to
mitigate any effects due to reward presentation duration.

The MiniGrid task used to test the novel approach is rela-
tively simple and formulated in discrete space and time. Fu-
ture work will therefore also focus on applying the novel
TD(0) rule to more complex, continuous problems. Addition-
ally, given that LDNs can be implemented in a spiking net-
work (Voelker & Eliasmith, 2018), by coupling this approach
with biologically plausible methods for representing contin-
uous state spaces such as Spatial Semantic Pointers (SSPs;
Komer et al., 2019), it is theoretically possible to implement
a critic network entirely in spiking neurons.

Online Resources

Experiment and analysis scripts can be found in the
github repository (https://github.com/maddybartlett/
Bio_Plausible Memory_Continuous_Time RL).

References

Bekolay, T., Kolbeck, C., & Eliasmith, C. (2013). Simul-
taneous unsupervised and supervised learning of cognitive
functions in biologically plausible spiking neural networks.
In Proceedings of the annual meeting of the cognitive sci-
ence society (Vol. 35).

Bjorklund, A., & Dunnett, S. B. (2007). Dopamine neuron
systems in the brain: an update. Trends in neurosciences,
30(5), 194-202.

Chevalier-Boisvert, M., Willems, L., & Pal, S. (2018).
Minimalistic Gridworld Environment for OpenAl Gym.
https://github.com/maximech/gym-minigrid.
GitHub.

Chilkuri, N. R., & Eliasmith, C. (2021, 18-24 Jul). Paralleliz-
ing legendre memory unit training. In M. Meila & T. Zhang
(Eds.), Proceedings of the 38th international conference on
machine learning (Vol. 139, pp. 1898-1907). PMLR.

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., &
Uchida, N. (2012). Neuron-type-specific signals for re-

ward and punishment in the ventral tegmental area. nature,
482(7383), 85-88.

Doya, K. (2000). Reinforcement learning in continuous time
and space. Neural computation, 12(1), 219-245.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineer-
ing: Computation, representation, and dynamics in neuro-
biological systems. MIT press.

Frémaux, N., Sprekeler, H., & Gerstner, W. (2013). Re-
inforcement learning using a continuous time actor-critic
framework with spiking neurons. PLoS computational bi-
ology, 9(4), €1003024.

Joel, D., Niv, Y., & Ruppin, E. (2002). Actor—critic models
of the basal ganglia: New anatomical and computational
perspectives. Neural networks, 15(4-6), 535-547.

Komer, B., Stewart, T. C., Voelker, A., & Eliasmith, C.
(2019). A neural representation of continuous space using
fractional binding. In Cogsci (pp. 2038-2043).

MacNeil, D., & Eliasmith, C. (2011). Fine-tuning and the
stability of recurrent neural networks. PloS one, 6(9),
€22885.

Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y., &
Hikosaka, O. (2004). Dopamine neurons can represent
context-dependent prediction error. Neuron, 41(2), 269—
280.

Rasmussen, D., Voelker, A., & Eliasmith, C. (2017). A neural
model of hierarchical reinforcement learning. PloS one,
12(7), e0180234.

Schultz, W. (1998). Predictive reward signal of dopamine
neurons. Journal of neurophysiology, 80(1), 1-27.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural
substrate of prediction and reward. Science, 275(5306),
1593-1599.

Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine learning, 3(1), 9—44.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Voelker, A. R., & Eliasmith, C. (2018). Improving spik-
ing dynamical networks: Accurate delays, higher-order
synapses, and time cells. Neural computation, 30(3), 569—
609.

Zambrano, D., Roelfsema, P. R., & Bohte, S. M. (2015).
Continuous-time on-policy neural reinforcement learning
of working memory tasks. In 2015 international joint con-
ference on neural networks (ijcnn) (pp. 1-8).

