THE “PHYSICS” OF NOTATIONS: TOWARD A SCIENTIFIC BASIS FOR CONSTRUCTING VISUAL NOTATIONS IN SOFTWARE ENGINEERING

By: Daniel L. Moody
Presented By: Kevin Shelley
Outline

• Introduction
• Background
• Communication Theory
• 9 Principles for designing effective visual notations
• Interactions among principles
• Conclusion
• Discussion
Introduction

• Visual Notations are Important in SE
• Graphical conventions historically ignored or undervalued
 • frequently design rationale put into the semantics, and graphical conventions are an afterthought
• This Paper presents principals for cognitively effective notations
• Identifies some errors in common SE notations
Background

- Visual language predates written language by 25,000 years
- Diagrams play a crucial role in communicating in SE
 - Believed to convey information to non-technical people more effectively than text
- Diagrams are effective at representing information because:
 - tap into the power of the visual system (Dual Channel Theory)
 - communicated more concisely
 - picture superiority effect
Background

- Rationale for notation design largely absent in SE
- Graphical conventions defined without reference to theory or any justification
 - UML: class defined by a rectangle
- Lack of ability to objectively evaluate diagrams gives rise to multiple visual dialects of same language
Cognitive Effectiveness

• Currently no clear design goal for visual notations
• Common goals include:
 • Simplicity
 • Aesthetics
 • Expressiveness
• Often vague and subjective
• Cognitive Effectiveness: the speed, ease and accuracy with which a representation can be processed by the human mind
 • Information processing highly sensitive to form
Communication Theory

- Communication Consists of Two Processes:
 - Encoding (Design Space)
 - Decoding (Solution Space)
Encoding

<table>
<thead>
<tr>
<th>PLANAR VARIABLES</th>
<th>RETINAL VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Position</td>
<td>Shape</td>
</tr>
<tr>
<td></td>
<td>□ △</td>
</tr>
<tr>
<td>Vertical Position</td>
<td>Brightness</td>
</tr>
<tr>
<td></td>
<td>Low, Medium, High</td>
</tr>
<tr>
<td></td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td>Orientation</td>
</tr>
<tr>
<td></td>
<td>10°, 15°</td>
</tr>
<tr>
<td></td>
<td>Colour</td>
</tr>
<tr>
<td></td>
<td>Red, Green, Blue</td>
</tr>
<tr>
<td></td>
<td>Texture</td>
</tr>
</tbody>
</table>

- Eight visual variables that can be used to graphically encode information
Decoding

- Perceptual processing (seeing)
 - Automatic, fast, parallel

- Cognitive Processing (understanding)
 - Slow, effortful, sequential

- Computational Offloading: Shift some of the processing burden from the cognitive system to the perceptual system
Principles for Designing Effective Visual Notations
Principle of Semiotic Clarity

- There must be a one-to-one correspondence between symbols and their referent concepts
Principle of Semiotic Clarity

• Symbol Redundancy
 • Multiple symbols exist for the same construct

• Symbol Overload
 • Multiple constructs exist for the same symbol

• Symbol Excess
 • Graphical constructs do not have any semantic meaning

• Symbol Deficit
 • Semantic Constructs not represented by any symbol
Principle of Perceptual Discriminability

• Different Symbols should be easily distinguishable from one another
• Primarily determined by visual distance
 • The number of visual variables on which they differ and the size of the differences
 • Higher visual distance = faster, more accurate recognition
• Shape
 • The primary visual variable
Principle of Perceptual Discriminability

- SE notations use mostly rectangle variants
- Visual distance can be increased using redundant coding
- Feature integration theory increases “perceptual popout”
- Textual Differentiation
 - Zero Visual Distance, cognitively ineffective
Principle of Semantic Transparency

• The Extent to which the meaning of a symbol can be inferred from its appearance (intuitiveness)

• Symbols can be:
 • Semantically Immediate
 • Semantically Opaque
 • Semantically Perverse

• SE notations frequently use only abstract geometric shapes

• Icons
 • Speed up recognition
 • Appear less daunting
Principle of Semantic Transparency

- Semantically Transparent relationships
 - Interpreted in a spontaneous or natural way
- Limited use in SE
Principle of Complexity Management

- Visual Representations do not scale well
- Include mechanisms to represent information without overloading the human mind
- Avoid Cognitive overload
- The number diagram elements to be comprehended exceeds working memory capacity
Principle of Complexity Management

- Modularization
 - Reduces amount of information presented at a time

- Hierarchy
 - Represent a system at different levels of detail
 - Complexity limit: 7 +/- 2 elements per diagram
Principle of Cognitive Integration

• Include explicit mechanism to support integration of information from different diagrams

• Applies when multiple diagrams used
 • Frequently the case in SE

• Conceptual Integration
 • Help reader assemble a coherent mental representation

• Perceptual Integration
 • Simplify navigation and transitions between diagrams
Principle of Cognitive Integration

- Contextualization
 - Part of the system of interest displayed in the context of the system as a whole
- DFD
 - Long shot (summary diagram)
- UML lacks these mechanisms
Principle of Visual Expressiveness

- Number of visual variables used in a notation
- 8 Degrees of visual freedom
- Can range from
 - 0 = Nonvisual (textual)
 - 8 = Visually Saturated
- Most SE notations are visually One-dimensional (shape only)
- Colour prohibited in UML
Principle of Visual Expressiveness

- Variables have different capabilities for encoding information
- Power
 - Highest level of measurement that can be encoded
- Capacity
 - Number of perceptible steps
- SE uses limited capacity of shape variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Power</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal position (x)</td>
<td>Interval</td>
<td>10-15</td>
</tr>
<tr>
<td>Vertical position (y)</td>
<td>Interval</td>
<td>10-15</td>
</tr>
<tr>
<td>Size</td>
<td>Interval</td>
<td>20</td>
</tr>
<tr>
<td>Brightness</td>
<td>Ordinal</td>
<td>6-7</td>
</tr>
<tr>
<td>Colour</td>
<td>Nominal</td>
<td>7-10</td>
</tr>
<tr>
<td>Texture</td>
<td>Nominal</td>
<td>2-5</td>
</tr>
<tr>
<td>Shape</td>
<td>Nominal</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Orientation</td>
<td>Nominal</td>
<td>4</td>
</tr>
</tbody>
</table>
Principle of Dual Coding

- Use Text to complement graphics
- Using text and graphics together is more effective than either on their own (dual coding theory)
- Should be used to supplement rather than substitute graphics
- Enables cardinalities to be specified
- Reinforces the meaning of the symbol
Principle of Graphic Economy

• Number of different graphical symbols should be cognitively manageable
• If too many symbols exist, a legend must be supplied
 • Increases effort for processing
• Human Span of absolute judgment
 • We can only discriminate between 6 categories per variable
 • Upper limit on graphic complexity
• DFDs and ER satisfy this principle
• UML does not
Principle of Graphic Economy

- Strategies for reducing graphic complexity
 - Reduce semantic complexity
 - Introduce symbol deficit (Graphics-text boundary)
 - Increase visual expressiveness
Principle of Cognitive Fit

• Use different visual dialects for different tasks and audiences
• Visual monolinguism
 • Use a single visual representation for all purposes (usually the case in SE)
• Expert-Novice Differences
 • More difficulty discriminating between symbols
 • Have to consciously remember what symbols mean
 • Expertise reversal effect
• Representational medium
 • Requirements for hand drawing constrain visual expressiveness
Interactions Among Principles

![Interaction Matrix]

<table>
<thead>
<tr>
<th></th>
<th>Semiotic Clarity</th>
<th>Perceptual Discriminability</th>
<th>Semantic Transparency</th>
<th>Complexity Management</th>
<th>Cognitive Integration</th>
<th>Visual Expressiveness</th>
<th>Dual Coding</th>
<th>Graphic Economy</th>
<th>Cognitive Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiotic Clarity</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Perceptual Discriminability</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Semantic Transparency</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Complexity Management</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Cognitive Integration</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Visual Expressiveness</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Dual Coding</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Graphic Economy</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>Cognitive Fit</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
</tr>
</tbody>
</table>
Summary

• Raise awareness about impact of notation design
 • Equally if not more important than semantics

• Cognitive Effectiveness
 • The primary dependent variable for evaluating visual notations

• Communication theory
 • Describes how notations communicate leveraging theories from communication, graphic design, visual perception and cognition

• Presents principles for constructing and evaluating visual notations

• Identifies serious design flaws in leading SE notations

• Profound effect on usability of notations in SE and other domains
Discussion

• Why is this paper significant?
• How does it differ from other software engineering research?
• What examples from common SE notations follow/break these principles?
• How could this research be used in conjunction with other papers in the course?
• How could these concepts be applied to other research areas?