Statecharts: A visual formalism for complex systems

David Harel

Presented by: Taha Rafiq

CS846: Model-Based Software Engineering
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Motivation
Motivation

• The author was a consultant for IAI
• Involved with design specification of fighter aircraft – the Lavi
• Interactions with the avionics team
• What happens when you press a button under a certain set of circumstances?
 – Incomplete/Inconsistent/Incomprehensible specification – who decides?
“How should an engineering team specify the behavior of such a complex reactive system in an intuitively clear yet mathematically rigorous fashion? This was what I aimed to try to answer.”

- David Harel, Statecharts in the making: A personal account
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
What is a Reactive System?

• Main behavior – Reactivity
• Event-driven, control-driven, event-response nature
• Often highly parallel behavior
• Behavior is specified by set of allowed
 – Input/Output events
 – Conditions
 – Actions
 – Timing constraints
Specifying the Behavior of a Reactive System

• States & Events – natural medium

• General form
 – When event a occurs in state A, if condition C is true, the system transfers to state B

• **Finite State Machines** = formal mechanism for describing such interactions
Problems with FSMs

• Complex system (fighter aircraft)
 – Unmanageable, exponentially growing states
 – Flat, unstructured and chaotic diagram
What are Statecharts?

• Extension of traditional state diagrams
• Visual formalism for states and transitions
 – Modular
 – Clustering
 – Concurrency
 – Levels of abstraction

• **Statecharts** = state-diagrams + depth + orthogonality + broadcast-medium
What are Statecharts?
Running Example

Citizen Quartz Multi-Alarm III Wristwatch

- 4 buttons: a, b, c, d
- Time + date
- Chime (hour beep)
- 2 alarms
- Stopwatch
- Light
- Weak battery indication
- Beeper test
Running Example

Main Events

• Depressing of button (a)
• Releasing of button (â)
• Internal events
 – Timed events
 – Battery events
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Basics

- Encapsulation expresses hierarchy
- Arrows originate and terminate at any level
- Clustering represents XOR (Abstraction)
 - D is XOR of A and C
Zooming In and Zooming Out

Zooming out of \(D \)

Refinement

Abstraction

Zooming into \(D \)
Default States

(i)

(ii) Advantageous for zooming

(iii)
Watch Example

P1 = alarm1.on && (alarm2.off || T1 != T2)

P = alarm1.on && alarm2.on && T1 == T2
Refinement of Displays State

displays

time

2 min in date

date

stopwatch

chime

alarm 2

alarm 1

a

d

a

a

a
History Connective

Enter off first time, else enter last visited state

(a)

(b)
History Connective - Levels

Apply only at level K

Apply at all contained levels

(a) (b)
History Connective - Levels

Something between 'one' and 'all' extremes
Watch Example – History + Update Capability

displays

2 sec in wait

update

c

wait

c

date

d

2 min. in date

a

g

stopwatch

chime

don

d

d

d

d

alarm 2

off

d

don

alarm 1

off

d

don

update 2

update 1
Watch Example – Refinement of Update States

Depressing d brings back to previous substate

c applies to certain parts of update
Common Source/Target Arrows

Contradiction: Non-deterministic behavior
Subtle Contradictions - Example
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Basics

• AND decomposition
• System must be in all of its AND components
• Y is an orthogonal product of A and D
AND-Free Equivalence

Much cleaner and easier to understand!
Example Application – Avionics System
Orthogonal States - Exits and Entrances

Alternative representations
Orthogonality – Watch Example
Orthogonality – Watch Example
Adding a Feature – Watch Example
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Basics

• Expressing reactivity
 – Generating events
 – Changing conditions
• **Action**: Split second occurrence
 – Display balance
• **Activity**: Take non-zero time
 – Beep for 30 seconds
• Each activity X associated with two actions: $start(X)$ and $stop(X)$
Basics

• Actions are allowed with
 – Transitions
 – Entering a state
 – Exiting a state
• Difficult to define semantics
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Condition and Selection Entrances

(a) \(\alpha(Q) \), \(\sigma(P) \), \(\sigma(R) \)
(b) \(\alpha \), \((Q) \), \((R) \), \((P) \)
(c) \(\alpha \), \(C \)

- Updating
 - Type
 - Update
 - Qty
 - Update
 - Name
 - Update
 - Place
 - Update

University of Waterloo
Timeouts
Unclustering
Parametrized States
Overlapping States
Temporal Logic

• Specifying constraints in TL and verification of statecharts from constraint specification

OR

• Synthesizing 'good' statecharts from TL specifications
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Some Problems

Cycles

What happens when α occurs?
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Discussion

• Impact
 – 6000+ citations
 – UML statecharts are a variant of the Harel statechart

• Problems
 – Easy to make errors that lead to undefined/contradictory states
 – Unintended consequences in complex systems