CS 846: Model-Based Software Engineering
Winter 2012

Jo Atlee

David R. Cheriton School of Computer Science
University of Waterloo
January 16, 2012

Introduction to Software Modelling

http://se.uwaterloo.ca/~jmatlee/teaching/846
Overview

• models, abstractions, realizations
• defining criteria
• purpose of models
• types of models
What is a Model?

"A model is a description of something" [KT08]

"A model is a simplification of reality" [BRJ05]

"set of declarative statements" [Sei03]

"models are a simplification of reality intended to promote understanding and reasoning" [Kra07]

"Modelling... is the cost-effective use of something in place of something else for the some cognitive purpose. It allows us to use something that is simpler, safer or cheaper than reality instead of reality for some purpose." [Rot89]

"suitable for prediction of characteristics of design" [KSLB03]

[Example from J. Dingel]
Models: A Loaded Term

mod·el [móddˈl] noun (plural **models**)

1. **copy of object:** a copy of an object, especially one made on a smaller scale than the original (*often used before a noun*)
2. **specific version of article:** a particular version of a manufactured article had traded in her car for the latest model
3. **something copied:** something that is copied or used as the basis for a related idea, process, or system
4. **simplified version:** a simplified version of something complex used in analyzing and solving problems or making predictions; a financial model
5. **perfect example:** an excellent example that deserves to be imitated
6. **somebody paid to wear clothes:** somebody who is paid to wear clothes or demonstrate merchandise, e.g. in fashion shows or in photographs
7. **artist's subject:** somebody who poses for a painter, sculptor, photographer, or other artist
8. **zoology animal species copied by another animal:** an animal species repellent to predators that another animal mimics for protection
9. **logic interpretation:** an interpretation of a theory arrived at by assigning referents in such a way as to make the theory true
10. **U.K. fashion original garment:** the first sewn example of a couturier's or clothing manufacturer's design, from which a new line of garments is produced

[Example from J. Dingel, J. Bezivin]

MSN Encarta
Models: A Loaded Term

model [módd'l] noun (plural **models**)

1. **copy of object**: a copy of an object, especially one made on a smaller scale than the original *(often used before a noun)*
2. **specific version of article**: a particular version of a manufactured article had traded in her car for the latest model
3. **something copied**: something that is copied or used as the basis for a related idea, process, or system
4. **simplified version**: a simplified version of something complex used in analyzing and solving problems or making predictions; a financial model
5. **perfect example**: an excellent example that deserves to be imitated
6. **somebody paid to wear clothes**: somebody who is paid to wear clothes or demonstrate merchandise, e.g. in fashion shows or in photographs
7. **artist's subject**: somebody who poses for a painter, sculptor, photographer, or other artist
8. **zoology animal species copied by another animal**: an animal species repellent to predators that another animal mimics for protection
9. **logic interpretation**: an interpretation of a theory arrived at by assigning referents in such a way as to make the theory true
10. **U.K. fashion original garment**: the first sewn example of a couturier's or clothing manufacturer's design, from which a new line of garments is produced

[Example from J. Dingel, J. Bezivin]
Google's "Definition" of a Model
Some Examples
Stackowiak [Sta73] advocates the following criteria that distinguish models from other artefacts:

mapping criterion: there is an original phenomenon that is mapped to the model.

reduction criterion: the model reflects only a (relevant) selection of the original's properties.

pragmatic criterion: the model is usable in place of the original, for some purpose.
Another Example

Two models of the Toronto Subway system, expressing different properties for different purposes.
Inappropriate Model for Intended Purpose

A model must **preserve relevant properties**, where "relevance" is with respect to questions to be answered about the original.

Is there a stop near the Eaton Centre?

How far to the end of the line?

Can I travel from Lawrence East to Spadina Ave?
Purposes of Models

1. **Exploratory** - lightweight exploration of design alternatives

2. **Documentation** - a descriptive model used to communicate information about the original

3. **Specification** - a plan (prescriptive model) for constructing an instance of the original

4. **Analysis** - descriptive models used to evaluate or predict properties of the original
 - e.g., differential equations

5. **Educational** - a substitute for the original for ethical or practical reasons
 - e.g., skeletons used in medical education, flight simulators, dolls
Models in Natural Science

• Mostly descriptive
 - regression fit of observations

• Validated via experiments

• Facilitates predictions

Examples

- Kepler's laws of planetary motion (ca. 1605)
- Newton's laws of motion (1687)
 - "the acceleration of an object is proportional to the force applied, and inversely proportional to the mass of the object": \(F = m \times a \)
- Einstein's formula equating mass and energy: \(E = mc^2 \)
- Maxwell's equations of electricity and magneticism
- Big bang theory of the origin of the universe

[Example from J. Dingel]
Models in Engineering

• Mostly prescriptive, facilitates construction

Process:
1. Models constructed from requirements (with knowledge of domain)
2. Models analyzed for desired properties; design iterates as necessary
3. System constructed from models

Benefits:
Analyses on models
1. easier, earlier than on system
2. facilitate decision making

[Example from J. Dingel]
Models within Executing Software

Many software systems include an internal run-time model of some part of the world -- Michael Jackson
Types of Models

1. **Descriptive vs. Prescriptive Models**

a property of the *relationship* between a model and an original
1. **Descriptive vs. Prescriptive Models**

Both prescriptive and descriptive models are used when designing a new product or system.

![Diagram showing the relationship between current state, modeling, descriptive model, risky change to original, new state, actualize, construct, prescriptive model, and modify the model.]

[Figure from Ludewig, 2004]
1. **Descriptive vs. Prescriptive Models**

Both prescriptive and descriptive models are used when designing a new product or system.
Types of Models

1. **Descriptive vs. Prescriptive Models**
 a property of the *relationship* between a model and an original

2. **Representative vs. Classification Models**
 whether model phenomena capture *singular* original instances, or generically represent *multiple* instances
Types of Models

1. Descriptive vs. Prescriptive Models
 a property of the relationship between a model and an original

2. Representative vs. Classification Models
 whether model phenomena capture singular original instances, or generically represent multiple instances

3. Static vs. Dynamic Models
 describes a snapshot in time, or describes how the original evolves
Types of Models

1. **Descriptive vs. Prescriptive Models**
 a property of the *relationship* between a model and an original

2. **Representative vs. Classification Models**
 whether model phenomena capture *singular* original instances, or generically represent *multiple* instances

3. **Static vs. Dynamic Models**
 describes a *snapshot* in time, or describes how the original *evolves*

4. **Sketch vs. Blueprint vs. Executable Model**
 level of precision of model
Summary

Models as purposeful abstractions
- represents some original
- is smaller than the original
- is usable in place of the original

Uses of models
- descriptive
- prescriptive
- predictive

Innate human activity to model and classify
References
