B.Sw.Eng. @ UWaterloo

An undergraduate degree program in Software Engineering at the University of Waterloo, jointly sponsored by the depts of CS and E&CE.
Ad Hoc Committee Members

- Rudy Seviora [E&CE]
- Jo Atlee [CS]
- Bruno Preiss *(him)*
- Ric Holt
- Paul Dasiewicz
- Anne Pidduck
- Kostas Kontogiannis
- Mike Godfrey *me*
- Stefan Leue
- Grant Weddell
- Ajit Singh
- Farhad Mavaddat
Background and Motivation

Software runs the world, for better or worse.
Software systems comprise major assets of large corporations.
Software is become even more pervasive!
Industry is crying out for more, better help.
Why not ...

- B.Eng./B.A.Sc. in E&CE
 - not nearly enough “software content”
- B.Sc./B.Math. in CS
 - no “engineering” mindset
 - not enough coverage of some engineering topics
Why not ...

- B.Eng. + B.Sc.
 - Not enough coverage of “software engineering”
 - HCI? Project management?
Program Design Goals

- A true software engineering curriculum!
- Graduate emerge prepared for life as a software professional.
- Curriculum covers the scientific and mathematical foundations.
- Curriculum includes engineering science and engineering design.
Program Design Goals

- Curriculum exposes students to ethical and societal issues of SE.
- Curriculum permits electives (technical and general).
- Graduates should be able to apply their knowledge to specific problems and produce solutions.
Curriculum Design

Proposed curriculum is based on many sources:

- ACM
- IEEE
- SEI
- CSAC
- CEAB

plus interactions with CS and E&CE curriculum committees.
Curriculum Outline

Core
- mathematics
- natural sciences
- digital systems
- computer science & engineering
- software engineering
- complementary studies

Electives
- general
- linkage
- advanced
- technical
Core Mathematics

<table>
<thead>
<tr>
<th>Level</th>
<th>Course</th>
<th>Level</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Calculus 1</td>
<td>1B</td>
<td>Calculus 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2A</td>
<td>Probability & statistics</td>
</tr>
<tr>
<td></td>
<td>Linear algebra</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discrete Mathematics</td>
<td>3A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4B</td>
<td></td>
</tr>
</tbody>
</table>
Core Natural Sciences

<table>
<thead>
<tr>
<th>1A</th>
<th>Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>Electricity & magnetism</td>
</tr>
<tr>
<td>2A</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td></td>
</tr>
</tbody>
</table>
Core Digital Systems

<table>
<thead>
<tr>
<th>1A</th>
<th>1B</th>
<th>Digital circuits & systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>2B</td>
<td>Digital computers</td>
</tr>
<tr>
<td>3A</td>
<td>3B</td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>4B</td>
<td></td>
</tr>
<tr>
<td>Core Computer Sci. & Eng.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Developing programming principles</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>Principles of computer science</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>Foundations of sequential programs</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>Algorithms & data structures</td>
<td>Dynamic systems analysis</td>
</tr>
<tr>
<td>3A</td>
<td>Control structures</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>Real-time operating systems</td>
<td>System performance evaluation</td>
</tr>
<tr>
<td>4A</td>
<td>Computer networks & security</td>
<td>Database systems</td>
</tr>
<tr>
<td>4B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Core Software Engineering

<table>
<thead>
<tr>
<th>1A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>Software abstraction & specification</td>
</tr>
<tr>
<td>3A</td>
<td>Software project management</td>
</tr>
<tr>
<td>3B</td>
<td>Software requirement analysis & specification</td>
</tr>
<tr>
<td>4A</td>
<td>Software design & architectures</td>
</tr>
<tr>
<td>4B</td>
<td>Software testing & quality assurance</td>
</tr>
</tbody>
</table>
General Electives

3 courses

- Ideally unconstrained to allow student to customize the degree to an application area of interest to the student

Initially constrained to satisfy CEAB natural sciences criteria
Linkage Electives

5 courses
- Communication
- Societal issues
- Business issues
- Reasoning methodologies
- Humanities & social sciences

plus Engineering economics (core)
Advanced Electives

- 2 courses
 - Fourth-year CS or E&CE courses
 - Chosen to expose students to one or more significant application areas
Advanced Electives

- Compiler construction
- Information system management
- Introduction to AI or Applied AI
- Introduction to computer graphics
- Distributed and network-centric computing
- Embedded software systems
- Numerical Linear Algebra
- Numeric Computation for Dynamic Simulation
Technical Electives

３ courses

- Selected third- and fourth-year technical courses, or
- Advanced electives

Offered by CS or E&CE

- No overlap with SE program courses
Program Skeleton

<table>
<thead>
<tr>
<th></th>
<th>math</th>
<th>sci</th>
<th>GE</th>
<th>LE</th>
<th>dig</th>
<th>comp</th>
<th>softw</th>
<th>TE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Program Sequence - Year 1

- Calculus 1
- Linear algebra
- Mechanics
- Discrete mathematics
- Developing programming principles

- Calculus 2
- Electricity & magnetism
- Logic & computation
- Principles of computer science
- Digital circuits & systems
Program Sequence - Year 2

- Probability & statistics
- Foundations of Sequential programs
- Digital computers
- Managerial & engineering economics
- General elective
- Algorithms & data structures
- Software abstraction & specification
- Dynamic systems analysis
- Linkage elective
- General elective
Program Sequence - Year 3

- Software project management
- Control structures
- Human-computer interaction
- Linkage elective
- General elective

- Software requirement analysis & spec
- Real-time operating systems
- System performance evaluation
- Technical elective
- Linkage elective
Program Sequence - Year 4

- Software design & architectures
- Computer networks & security
- Database systems
- Technical elective
- Linkage elective
- Software testing & quality assurance
- Technical elective
- Technical elective
- Technical elective
- Linkage elective
<table>
<thead>
<tr>
<th>category</th>
<th>actual</th>
<th>required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>298</td>
<td>195</td>
</tr>
<tr>
<td>Basic science</td>
<td>212</td>
<td>225</td>
</tr>
<tr>
<td>Engineering science</td>
<td>339</td>
<td>225</td>
</tr>
<tr>
<td>Engineering design</td>
<td>565</td>
<td>225</td>
</tr>
<tr>
<td>Eng. sci. & design</td>
<td>934</td>
<td>900</td>
</tr>
<tr>
<td>Complementary studies</td>
<td>281</td>
<td>225</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1815</td>
<td>1800</td>
</tr>
</tbody>
</table>
Social Issues of Curriculum Design

- Initially, some resistance from within CS and E&CE, but good will has won the day
- Some fine tuning still needed.

Issues:
- How much of topic XXX vs. YYY?
- New courses or re-used courses?
- Instructors, TAs, lab space, ...
Broader Social Issues

“Something old, something new, …”

“You’re stealing our courses.”

“It’s an insidious plot by engineering to take over computer science.”

“You’re creating a new department.”

“Software engineering is just a trendy catch phrase, like neural networks.”
Broader Social Issues

“Those computer scientists don’t understand engineering!”

“Those engineers don’t understand software!”

“The students won’t learn enough theory / numerical / AI / hardware / embedded / circuits …”
Issues to be Resolved

- Teaching load, hiring, promotion and tenure
- Support staff, office space
- Techies, lab space
- Fees, BIU levels, low-level academic policies
Where do we go from here?

Objective: Admit students into the SE program in Sept. 2001

The hurdles:
- departmental curriculum committees
- departments (June 1999)
- faculty undergraduate studies committees
- faculty councils (Sept. 1999)
- senate undergraduate studies committee
- senate (Oct. 1999)