

SE463

Software Requirements Specification & Analysis

Risk Management

Readings:

J. D. Kiper and M. S. Feather, "A Risk-Based Approach to Strategic Decision-Making for Software Development," in *Proceedings of the 38th Annual Hawaii International Conference on System Sciences*, 2005.

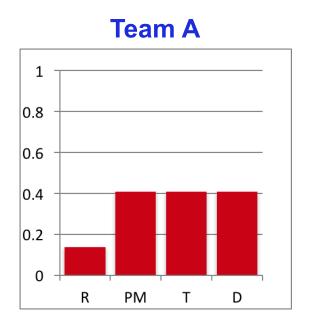
Risk

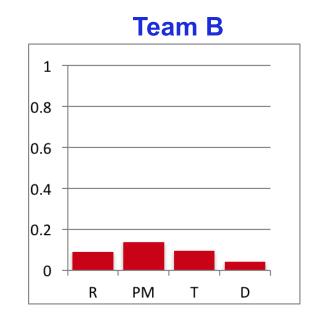
A risk is an uncertain factor whose occurrence may result in some loss of satisfaction of some corresponding objective.

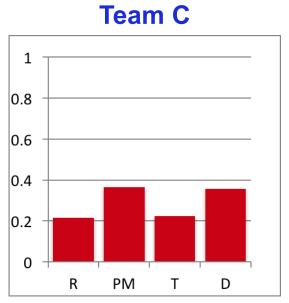
[van Lamsveerde, p. 3.6]

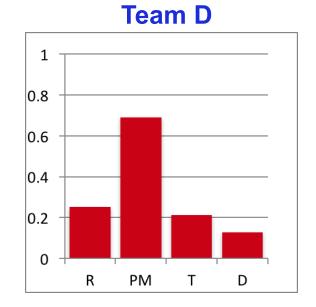
- has a likelihood to occur
- has consequences
- product-related risks
- process-related risks

Project Risk Manager


Risk Exposure


Risk Exposure is an expression of the degree of risk

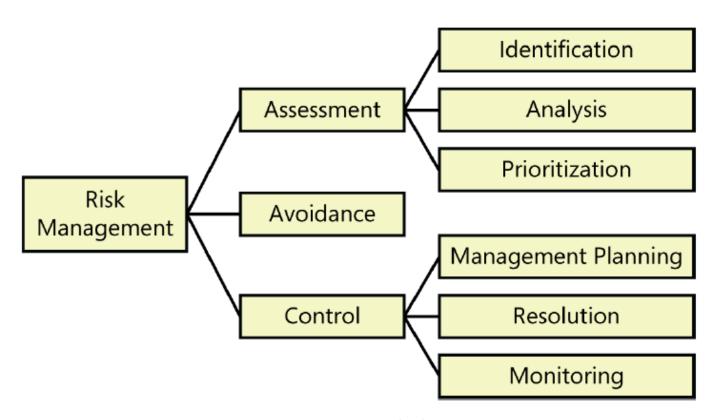

RE = prob(occurrence) X cost(consequences)


The risk exposure determines whether it makes sense to take action to reduce risk or mitigate consequences.

Risk Exposure

Risk Consequence Table

	Risks (Failure Modes)						
		Requirements		Project Management	Technical	Dependencies	
	Weight	(incomplete, incorrect,		(estimations, project,	(complex problem, lack of	(on adjacent systems,	Loss of
Requirements	(req)	ambiguou <mark>s c</mark> hanging)		team management)	experience with technology)	components, other people)	Objective
Likelihood (risk)			0.2	0.6	0.2	0.1	
Creating a product							
that users would							
like	0.7		0.8	0.5	0.8	0.7	0.483
Completing the							
product on time	1.0	0.7		0.8	0.5	0.8	0.8
Risk Criticality		0.252		0.69	0.212	0.129	


Impact(risk, req) = estimate of loss of requirement

0 = no loss

1 = total loss

Risk Management

Risk Management attempts to manage the degree to which a project is exposed to risks of quality, delay, or failure.

K. Wiegers and J. Beatty, Software Requirements 3ed, Microsoft Press, 2013.

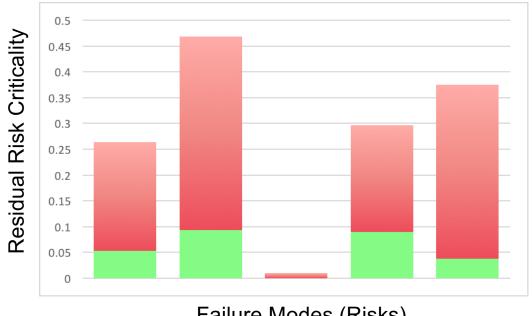
Risk Countermeasures Table

	Risks (Failure Modes)							
	Requirements	Project Management	Technical	Dependencies				
	(incomplete, incorrect,	(estimations, project,	(complex problem, lack of	(on adjacent systems,	Overall single effect			
Countermeasures	ambiguous, changing)	team management)	experience with technology)	components, other people)	of countermeasure			
Criticality (risk)	0.252	0.69	0.212	0.129				
Collaborative								
elicitation process								
with extensive user								
involvement;								
modelling; mock-								
ups	0.5	0.3	0	0.1	0.3459			
Continually								
estimate costs;								
use shorter								
development	•							
iterations	C	0.7	0.2	0	0.5254			
Prototype novel or								
risky requirements;								
plan time for								
learning and								
experimentation Investigate	0.5	0.3	0.6	0.1	0.4731			
suppliers; monitor								
their progress;								
develop backup	0	0	0.1	0.5	0.0857			
Combined Risk		J	0.1	0.5	0.0037			
Reduction	0.75	0.853	0.712	0.595				

Effect(cm, risk) = estimate of reduction of risk

0 = no reduction

1 = risk eliminated


Optimizing the Residual Risk

Goal: Select the optimal combinations of countermeasures

- based on their joint effectiveness in reducing risk
- based on their associated cost of implementation

Result: Optimal (or near optimal) balance of risk exposure

selected countermeasures become new requirements

Case Study: Medical Devices

Risk management in the medical device domain covers both the medical device and the usage of the device

- Design
- Manufacturing
- Quality control
- User training
- Interaction with other devices
- Human factors
 - User interface design
 - Job aiding
 - Personnel training
 - Cognition and perception of information

Case Study: Medical Devices

Input: user scenarios representing normal operations and special circumstances

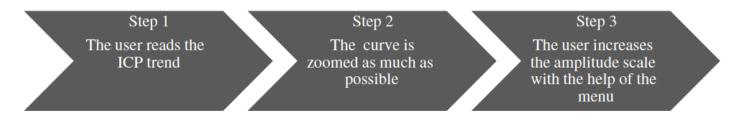


Fig. 6 User scenario A1.1

Process: risks are identified through brainstorming and assessed for probability, severity, and detectability.

Table 1 Risk identified from user scenario A1.1

ID	Conditions	Risk ID	Risk Description	S	P	R
A1.1	The amplitude scale is increased with the menu	A1.1.3 R1	Another user does not see that the amplitude scale is increased	4	4	16

Lindholm et al., "A case study on software risk analysis and planning in medical device development," Software Quality Journal, 2014.

Case Study: Medical Devices

- 15 meetings, 2-3 hours each
- 225 identified risks
 - 25 were removed (assessed to be non risks)
 - 22 user risks to be addressed
 - 11 were determined to be technical risks (to be addressed
 - 167 considered to be sufficiently managed

Summary

Software engineers and project managers are eternal optimists. We expect our next project to run smoothly, despite the history of problems on earlier projects. The reality is that dozens of potential pitfalls can delay or derail a software project. Software teams must identify and control their project risks, beginning with those related to requirements.

- Risk What could go wrong?
- Risk Analysis
- Risk Mitigation
- Adoption of optimal countermeasures as additional requirements to be implemented.