
Model Transformations?
Transformation models!

Presented by: Rafael Olaechea

Jean Bézivin, Fabian Buttner, Martin
Gogolla, Frederic Joualt, Ivan Kurtev,

Monday, 12 March, 12

Why use
Transformation Models?

• Focus on the properties of
transformations instead of an
operational description of them.

• Undirected.
• Higher Order Transformations.
• Validations and Completions.

Monday, 12 March, 12

Operational view of
Model Transformations

Query View Transformation (QVT) Standard

Monday, 12 March, 12

Operational View of
Model Transformations

map packageToSchema in umlRdbms {

 uml () {
p:Package

}

 rdbms () {
 s:Schema

}
where () {

 p2s:PackageToSchema|
 p2s.umlPackage = p;
 p2s.schema = s;

}
map {

where () {
 p2s.name := p.name;
 p2s.name := s.name;
 p.name := p2s.name;
 s.name := p2s.name;

}

}

}

Monday, 12 March, 12

Operational View of
Model Transformations

 class PrimitiveToName {
 owner : PackageToSchema opposites primitivesToNames;
 name : String;
 -- uml
 primitive : PrimitiveDataType;
 --rdbms
 typename: String;
}

map primitiveToName in umlRdbms {
 uml (p:Package) {
 prim:PrimitiveDataType|
 prim.owner = p;
 }
 check enforce rdbms () {
 sqlType:String
 }
 where (p2s:PackageToSchema| p2s.umlPackage=p) {
 realize p2n:PrimitiveToName|
 p2n.owner := p2s;
 p2n.primitive := prim;
 p2n.typeName := sqlType;
 }
 map {
 where () {
 p2name := prim.name + '2' + sqlType
 }
 }

map integerToNumber in umlRdbms
refines primitiveToName {
 uml () {
 prim.name = 'Integer';
 }
 check enforce rdbms () {
 sqlType := 'NUMBER';
 }

}

Monday, 12 March, 12

Modelling View of
Model Transformations

Model Transformations? Transformation Models! 443

Fig. 3. Model Transformations Abstracted to a Transformation Model

details of the different model transformations and summarizes and concentrates
the similarities. We expect that the different model transformations all satisfy
what is required in this transformation model. This satisfies relationship is indi-
cated by the thick grey arrows. Having set this context, we state the hypothesis
which we would like to discuss further in this contribution:

Model transformations can be abstracted to a transformation model.

The reader may check, that the three highly related notions model transfor-
mation, model transformation metamodel and model transformation model, for
short denoted as transformation model, mean different things to us. As indicated
in Fig. 3, the transformation model again conforms to our metametamodel, in
our case MOF. Speaking in technical terms, this means that we only employ
MOF features for the formulation of our transformation model.

3 Er to Rel: A Transformation Model Example

We want to show the usefulness of the concept transformation model through
a proof by example. The example chosen here is the well-known transforma-
tion from the Er database model to the Relational database model. This ex-
ample is also used (with a bit different terminology) in the current QVT pro-
posal [OMG05], in [Bez05] and other works on model transformation [CESW04].
Because it is well-known, it is well-suited to demonstrate ideas and technical de-
tails of transformation principles.

Monday, 12 March, 12

What are
transformation models?

• Transformation models express
transformations as a MOF model
relating source and target elements ,
including OCL constraints.

Monday, 12 March, 12

UML-based Specification
Environment (USE)

Transformation model of Entity Relationship
into a Relational model , is specified and

validated using USE.
Monday, 12 March, 12

Example: ER to Rel
Transformation Model

Base

ErSyn

ErSem

RelSyn

RelSem

DataMods

Er2Rel

Trans

ErState, Instance,
Link, RelendMap

ErSchema, Entity,
Relship, Relend

Attribute, DataType,
AttrMap, Value, Named

RelDBSchema,
RelSchema

RelDBState,
Tuple

no classes,
only invariants

Packages with dependencies
and introduced classes

Figure 2.1: Package Diagram with Class Names

Entity

Relend

Relship

Attribute

DataType Value

ErState

RelendMap

Instance Link

ErSchema

AttrMap

RelSchema

RelDBState

Tuple

RelDBSchema

1

1..*

1

0..*

1

0..*

2..*
1

0..1 0..1

0..* 0..*

0..*
1

0..*1 0..*1

0..*1

0..*1

1..* 1..*

0..* 0..*

1

1

0..*

0..*

0..1

0..*

1
0..*

1
1

0..* 2..* 0..1

0..*

1

1..*

0..1

1..*

0..*1

0..*1
1..*

0..*

0..1

1..*

0..*

0..* 0..1

1

0..*

0..1

Figure 2.2: Class Diagram Modeling the ER and RE Datamodel

4

Monday, 12 March, 12

Example: ER to Rel
Transformation Model

Model Transformations? Transformation Models! 445

Fig. 5. Example Transformation viewed as a Transformation from Er to Rel

Figure 5 shows the six parts of the class diagram similar to the previously
mentioned example transformation in Fig. 2 from the QVT standard. The dashed
arrows indicated dependencies.

Structuring a transformation into a source metamodel, a target metamodel,
and a metamodel part for the actual transformation is not new. This idea is
present, for example, in the QVT standard [OMG05] and the triple graph gram-
mar approach [KS06].

ErSyn ErSem

Trans

RelSyn RelSem

Fig. 6. Syntax, Semantics, and Transformation

In our approach we constrain all three components with OCL constraints,
i.e., the source, the target, and the actual transformation. As shown in Fig. 6, in
addition, we divide source and target metamodels into a syntactic and a semantic
part. This enables us to formulate transformation properties expressing syntactic
and also semantic characteristics.

Monday, 12 March, 12

Syntax and Semantics
Metamodels for the Er

Model

Monday, 12 March, 12

Syntax for the Er model

Monday, 12 March, 12

Transformation Model
Object Diagram

Model Transformations? Transformation Models! 447

Fig. 9. Interplay between Syntax and Semantics

Fig. 10. Transformation

part shows a third database state with a marriage link (the husband is ignored
in the display).

Figure 10 shows a Trans(formation) object which connects the schemas (the
syntax parts) and the states (the semantics parts). In general, a transforma-
tion object will connect source and target objects by links expressing that the
source may or must be transformed into the target (depending on the stated
multiplicities and constraints). One schema is associated (in this example object
diagram) with three database states. This transformation model covers syntax
and semantics of the two classical database models. As will be explained below,
the model covers the transformation and its properties as well. Database dynam-
ics is captured insofar that more than one state can be associated with a single
database schema. In the example, one can think of the first state having only
the Charles instance, the second state having Charles and Diana as unmarried
instances, and the third state with a marriage link between Diana and Charles.

Figure 11 gives an overview on the probably most interesting part of the trans-
formation model: the constraints for the transformation. The figure involves the
four central areas (Er and Rel; Syn and Sem) with dependencies, constraint

Monday, 12 March, 12

Constraints Captured in
the ER2REL

Transformation Model

• Er2Rel captures 10 constraints:448 J. Bézivin et al.

Fig. 11. Overview on Transformation Constraints

names and indication of the ‘direction of the constraint’. We explain three con-
straints in more detail.
forRelSchemaExistsOneEntityXorRelship: This constraint ‘goes from’ the

Relational syntax part to the Er syntax part. It requires that for a Relational
schema from a transformed Relational database schema a uniquely deter-
mined entity or relationship in the Er schema with the same characteristics
exists.

Fig. 12. Class Diagram Illustrating Constraint forInstanceExistsOneTuple

forInstanceExistsOneTuple: This constraint ‘goes from’ the Er semantics
part to the Relational semantics part. It requires that for an instance from
an Er state occurring in a transformation an equivalent tuple in the Rela-
tional state exists.

Monday, 12 March, 12

Constraint I

• forRelSchemaExistsOneEntityXorRelship

Monday, 12 March, 12

Constraint II

• forInstanceExistsOneTuple

448 J. Bézivin et al.

Fig. 11. Overview on Transformation Constraints

names and indication of the ‘direction of the constraint’. We explain three con-
straints in more detail.
forRelSchemaExistsOneEntityXorRelship: This constraint ‘goes from’ the

Relational syntax part to the Er syntax part. It requires that for a Relational
schema from a transformed Relational database schema a uniquely deter-
mined entity or relationship in the Er schema with the same characteristics
exists.

Fig. 12. Class Diagram Illustrating Constraint forInstanceExistsOneTuple

forInstanceExistsOneTuple: This constraint ‘goes from’ the Er semantics
part to the Relational semantics part. It requires that for an instance from
an Er state occurring in a transformation an equivalent tuple in the Rela-
tional state exists.

Model Transformations? Transformation Models! 449

context self:Er2Rel_Trans inv forInstanceExistsOneTuple:
self.erState->forAll(erSt | self.relDBState->one(relSt |

erSt.instance->forAll(i | relSt.tuple->one(t |
i.attrMap->forAll(amEr |

t.attrMap->one(amRel |
amEr.attribute.name=amRel.attribute.name and
amEr.value=amRel.value))))))

com Trans ErState ErSchema: This constraint ‘goes from’ the Er semantics
part to the Er syntax part. Constraints starting with ‘com’ are commutativ-
ity constraints requiring the commutativity of two different evaluation paths
in the class diagram. This one requires that an Er state which is connected
to a Trans(formation) object must also be linked to the Er schema being
associated to the Trans(formation) object.

3.2 Explanation for Calling the Example a Transformation Model

Semantic properties: We have modeled the transformation with a class and
corresponding associations holding source and target object. By doing so,
semantic properties of the transformation can be formulated because we
can access source and target and retrieve their properties. In the example,
a bijection between database state spaces is described. But by dropping
certain constraints, this requirement could be relaxed to achieve only an
injection. For example, we could only require that each Er database state
has a corresponding equivalent Relational database states but not the other
way round. The required properties of the transformation rely merely on the
stated constraints and are under control and responsibility of the transfor-
mation developer. Only the properties of the transformation are stated, not
the realization of the transformation.

Alternatives: In the example, we have decided to make the transformation
deterministic. In general however, transformation alternatives can be allowed
in a single transformation model. For example, the transformation model
may allow two or more alternative Relational schemas to be associated with
one Er schema.

4 Model Transformation Versus Transformation Models

Executability: Model transformations can directly and efficiently be executed.
There is an international standard for them, QVT, and commercial and open
source implementations and systems like UMT, MTL, ATL, GMT or BOTL
are available (see the overview on transformation systems in [Wan05]).

Direction freeness: Transformation models may be seen as transformations in
multiple directions. Please check Fig. 13 which is nearly identical to Fig. 5 ex-
cept the central source and target decorations. Apart from the direction (Er
to Relational) which we have already discussed, the transformation model
may be seen in two other directions: As a transformation from the Relational

Monday, 12 March, 12

Advantages of
Transformation Models

• Direction Neutral
450 J. Bézivin et al.

Fig. 13. Two Further Views on Example Transformation (Different Source/Target)

database model to the Er database model and as a transformation from syn-
tax to semantics. In technical terms, a transformation direction has not to
be fixed in the model. This is based on the use of direction-free minimal
MOF language features: Classes, associations, attributes, and invariants.

Uniformity: Transformation models provide uniformity between the model de-
scription language and the language for transformations. If one has simple
models, for example, UML class diagrams with OCL constraints, then the
use of this language for transformations reliefs the development from the bur-
den of introducing another language like QVT. In particular in early project
development phases, it might be advisable to concentrate on transformation
properties by expressing them in transformation models instead of realizing
them already by model transformations.

Fig. 14. Example for Higher-Order Transformation

Higher-order transformations: Uniformity of the model and transformation
language also allows for higher-order transformations, i.e., transformations
that work on transformations. Our example could be understood and re-
alized as such a higher-order transformation: As shown in Fig. 14, assign-
ing semantics to the schemas could be seen as two basic transformations
realized through two classes ErSchema2ErState and RelSchema2RelState
and appropriate associations; the transformation from the Er model to the
Relational model could then be realized in a higher-order style by a third

Monday, 12 March, 12

Advantages of
Transformation Models

• Higher Order Transformations

450 J. Bézivin et al.

Fig. 13. Two Further Views on Example Transformation (Different Source/Target)

database model to the Er database model and as a transformation from syn-
tax to semantics. In technical terms, a transformation direction has not to
be fixed in the model. This is based on the use of direction-free minimal
MOF language features: Classes, associations, attributes, and invariants.

Uniformity: Transformation models provide uniformity between the model de-
scription language and the language for transformations. If one has simple
models, for example, UML class diagrams with OCL constraints, then the
use of this language for transformations reliefs the development from the bur-
den of introducing another language like QVT. In particular in early project
development phases, it might be advisable to concentrate on transformation
properties by expressing them in transformation models instead of realizing
them already by model transformations.

Fig. 14. Example for Higher-Order Transformation

Higher-order transformations: Uniformity of the model and transformation
language also allows for higher-order transformations, i.e., transformations
that work on transformations. Our example could be understood and re-
alized as such a higher-order transformation: As shown in Fig. 14, assign-
ing semantics to the schemas could be seen as two basic transformations
realized through two classes ErSchema2ErState and RelSchema2RelState
and appropriate associations; the transformation from the Er model to the
Relational model could then be realized in a higher-order style by a third

Monday, 12 March, 12

Advantages of
Transformation Models

• Uniformity of Development
• Avoiding QVT and using only UML

and OCL.
• Transformations of Transformations

• E.g Refactorings

Monday, 12 March, 12

Advantages of
Transformation Models

• Validations and Completions.
• “Analysis of Model Transformations

via Alloy”. 3

MOF
representation of

source metamodel

Specification of
Transformation
Rules (QVT)

Alloy
representation of

source metamodel

MOF
representation of
target metamodel

Alloy
representation of
target metamodel

Instance of mapping
between metamodel

elements

Random instance
of source

metamodel
OR

Counterexample

Instance of target
metamodel created

OR
Counterexample

MDA Compliant
Model

Transformation
Specification

Model
Transformation
Specification in

Alloy

Analysis in
Alloy

S
T E

 P
 1

S

T E
 P

 2

INPUT OUTPUT

<<ConformsTo>> <<ConformsTo>>

Mapping Relation +
Transformation Rules in Alloy

<<ConformsTo>>

T
r a

 n
s l

 a t
 e

T r
 a

n s
 l a

 t e

T r
 a

n s
 l a

 t e

Fig. 1. An outline of our approach

MOF metamodels are usually accompanied by constraints, which define syn-
tactic and semantic properties of the language. For example the UML stan-
dard specifies that an aggregation can only appear in binary associations [9,
p.110]. Such invariants are often referred to as well-formedness rules [9]. Well-
formedness rules are usually specified using the Object Constraint Language
(OCL) [10] and are considered to be part of the metamodel specification.

The first step of our approach requires that the metamodels of the source
and target language as well as the well-formedness rules of the source language
are translated to Alloy. This procedure can be automated and a methodology
has been developed [11] that translates MOF metamodels enriched with well-
formedness rules expressed in OCL, to Alloy. We have implemented this method
in a tool called UML2Alloy [11].

Additionally the transformation rules need to be converted to the Alloy lan-
guage. Transformation rules express under which circumstances, elements of the
source metamodel are mapped to elements of the target metamodel. The trans-
formation rules in Alloy are expressed in first-order logic. In order to keep track
which elements of the source metamodel are mapped to which elements of the
target metamodel, we also introduce a mapping relation in Alloy. The notion of
the mapping relation is similar to the notion of trace classes in the QVT speci-
fication [5].

Step 2: Analysis using the Alloy Analyzer. The procedure defined in
the previous step results in the production of an Alloy model of the model
transformation. The Alloy Analyzer can then be used to analyse the Alloy model
to detect flaws in the specification of the model transformation.

The analyser can be used to simulate the transformation. This results in
the production of a random instance of the source metamodel that conforms to
the well-formedness rules, an instance of the mapping that transforms elements
of the source model and the target model generated by the transformation. If

Monday, 12 March, 12

Advantages of
Transformation Models

• Complete Language Description.
• Syntax and Semantics part.

Monday, 12 March, 12

Discussion Questions

• Why would you prefer a transformation
model instead of standard QVT to describe
transformation?

• Would it be possible to automatically complete
transformations defined by the transformation
model?

• What are the advantage of partitioning the
models into semantic and syntax part?

Monday, 12 March, 12

