Statecharts: A visual formalism for
complex systems

David Harel

Presented by: Taha Rafig
CS846: Model-Based Software Engineering

UNIVERSITY OF

~ WATERLOO N

Outline

* Motivation behind Statecharts
* What are Statecharts?
* Diving deeper
— Clustering & Refinement
— Orthogonality & Concurrency
— Actions & Activities
* Additional features & possible extensions
* Trouble with semantics
* Discussion

UNIVERSITY OF
WATERLOO BN
S e s e

Outline

Motivation behind Statecharts

UNIVERSITY OF
WATERLOO BN
S e s e

Motivation

UNIVERSITY OF ._
WATERLOO
% N ——

——— —

Motivation

The author was a consultant for IAI

Involved with design specification of fighter
aircraft — the Lavi

Interactions with the avionics team
What happens when you press a button under a
certain set of circumstances?

— Incomplete/Inconsistent/Incomprehensible

specification — who decides?
UNIVERSITY OF

WATERLOO FERIE= S

Motivation

“How should an engineering team

specify the behavior of such a complex

reactive system 1n an intuitively clear yet

mathematically rigorous fashion? This

was what I aimed to try to answer.”

- David Harel, Statecharts in the making: A personal account

UNIVERSITY OF

WATERLOO PRI
:\—————_____, ;

Outline

What are Statecharts?

UNIVERSITY OF
WATERLOO BN
S e E e

What is a Reactive System?

Main behavior — Reactivity

* Event-driven, control-driven, event-response nature

Often highly parallel behavior

* Behavior is specified by set of allowed
— Input/Output events

— Conditions

— Actions

— Timing constraints

UNIVERSITY OF

WATERLOO I

Specifying the Behavior of a
Reactive System

* States & Events — natural medium

* General form

— When event a occurs 1n state 4, 1f condition C 1s
true, the system transfers to state B

* Finite State Machines = formal mechanism
for describing such interactions

UNIVERSITY OF

WATERLOO SR

Problems with FSMs

* Complex system (fighter aircraft)
— Unmanageable, exponentially growing states

— Flat, unstructured and chaotic diagram

UNIVERSITY OF

WATERLOO FERIE= S

What are Statecharts?

* Extension of traditional state diagrams

* Visual formalism for states and transitions
— Modular
— Clustering
— Concurrency

— Levels of abstraction

* Statecharts = state-diagrams + depth +
orthogonality + broadcast-medium

UNIVERSITY OF

WATERLOO R

What are Statecharts?

UNIVERSITY OF

WATERLOO

[battery]

[no hattery] powered

keep time time

PM ican auto
off [pass 12 haurs]

run operations
display current time

i

push hour auto i‘:fbh rhn°mu'
QR min Pt pressed]

switch to "run® ¥

[alarm on]
ML ison=ott display alarm time

switch to "alarm set'
JALicon=on switch to "time set'

alarm set

display alatm time

=

suwitch to "run"

time set

display cutrenttime

=
£

update update
hours mins

auto
O[culre t=alarm time
AND

light=presse

" press
switeh alarm "on"

alarm “droms ed light'
falarm iconi=on | jatsrm=alaim+a
off . AND flash icon;

switeh alarm "otf" [OR switch modes
falarm izan:=off

[current=
alarm time]

auto [tm 1]

ringing

press "drows e/ light" hacklight
f‘ off an

auts [notpressed]

Figure 3. The Conceptual Model

Running Example

Citizen Quartz Multi-
Alarm III Wristwatch

* 4 buttons: a, b, ¢, d
* Time + date

* Chime (hour beep)

* 2 alarms

* Stopwatch

* Light

* Weak battery indication

* Beeper test
UNIVERSITY OF
WATERLOO

Running Example

Main Events

* Depressing of button (a)
* Releasing of button ()
* Internal events

— Timed events

— Battery events

UNIVERSITY OF
WATERLOO

Outline

* Diving deeper

— Clustering & Refinement

UNIVERSITY OF
WATERLOO B
& _________———/—/—_

Basics

Event

* Encapsulation /
expresses hierarchy J/)
ommon

__ property
~ of Aand C

* Arrows originate and
terminate at any
level

* Clustering represents
XOR (Abstraction)

— Di1s XOR of A and C

Condition
UNIVERSITY OF
WATERLOO
=

<« Clustering

Zooming In and Zooming Out

Zooming out of D

Abstraction
Zooming into D

UNIVERSITY OF
WATERLOO

Default States

b fio 6

(i1) (iii)

Advantageous for
zooming

UNIVERSITY OF
WATERLOO
S e

Watch Example

alarms-beep

beeps
30 sec in alorms-beep Slorm 2

T hits T2 (P2} __—

P1 = alarm1.on && (alarm2.off || T1 1= T2)

displays

P = alarm1.on && alarm2.on &&
T1==T2

UNIVERSITY OF
WATERLOO
X.

Refinement of Displays State

[displays)

d

History Connective

Enter off first time, else enter last visited state

UNIVERSITY OF
WATERLOO

History Connective - Levels

Apply only at level K Apply at all contained levels

(g y— [Cm—]
e * 2
-

(E,’E
E G
3 i a

5 w____J
" -’
|) (b)

et

UNIVERSITY OF
WATERLOO
S e

History Connective - Levels

Something between 'one' and 'all' extremes
(K i \
C Y o (F
3 q ﬂ
| "]
o

€ |

L—J |
L)

UNIVERSITY OF
WATERLOO
S e

Watch Example — History + Update
Capability

r~ T
displays
*
2 wait wait dat
[
d
update
time d
b 2 min. in date
0\
f ehi _W f 2) falorm 4)
opwatch o hime alarm a
! .
ff f+ off
af af Jd of Jo
'on
T 17
[|

Watch Example — Refinement of
Update States

L:llurmi
tb c
¢/ (update | \ A
i c 10‘ c [hr
“"-—--minl’— min pe—
Fig. 13- ¢ applies to certain

B~q
N
parts of update

updute update
Depressing d brings back

to previous substate

UNIVERSITY OF
WATERLOO
k_

Common Source/Target Arrows

t_J L_.l

%F‘ r4>w A%

(c)

Contradiction: Non-deterministic
behavior

UNIVERSITY OF
WATERLOO
k_

Subtle Contradictions - Example

UNIVERSITY OF
WATERLOO

Outline

* Diving deeper

— Orthogonality & Concurrency

UNIVERSITY OF
WATERLOO BN
S e s e

Basics

Conditional
dependence

Concurrency

* AND decomposition

* System must be in
all of its AND
components

* Y 1s an orthogonal
product of 4 and D

Synchronization
UNIVERSITY OF
WATERLOO
k_

AND-Free Equivalence

Much cleaner and easier to understand!

UNIVERSITY OF
WATERLOO
X.

Example Application — Avionics
System

AVIONICS SYSTEM

[general - mode i radar | abc-system i
! | {
| i |
|
| | |
| | |
l l librate l
| ‘ calibra | .
| | |
I | end |
culibmimnl
I I
| | l
| | lI
L l L — __ . W -
~ Y
subsystems

UNIVERSITY OF
WATERLOO
§

e —————

Orthogonal States -
Exits and Entrances

~ N\ L‘\ \ ,/;‘
L :
D
I
B
I E
I
(w) |
ey
T a C I
o
_ l
Alternative representations

UNIVERSITY OF
WATERLOO
k_

Orthogonality — Watch Example

itizen quartz multi-alarm 111
batt. inserted

alive
F L
main I alarm1- lchime- : light I
| status | status |
|
| | I .
I i |
| | | e
I o e o
| alarm2 - | | power
| status l I
| | | -
| | : ,
I
UNIVERSITY OF : | | D

WATERLOO :
k_

Orthogonality — Watch Example

Citizen quartz multi-alarm 111 h
{ main | alarm1 - status =chime-status lllight A
| [| o
| disabled | | [off
df Yd | I ol 18 batt. inserted
linalarm1.0tf] |(inalarm!.on) {in chime.on) (inchime, off) I o
— f — I enabled | {enabled | n l |7m remove;:i\ |
5 alarms - (.
e beep | _: | /clh{mainT)
e rarr i N I P
f I whole hour beep I
. | disabled | :
o el |
ll inalarm2.0ff)| |(nalarm2.an) | ~— ot I M/éukg{id as
| enabled | | felh (main*)
| . | |
\ | | | y,
_ L/

UNIVERSITY OF

WATERLOO
§

Adding a Feature — Watch Example

beep-test \’/—.

¢ requiar

date

beep-test ¢ Y \
sep-tes _4 / \
€ ~fc C A A
foo ” e) [0)cf. _ "'d/ oY P 4o
min L] min time
b 2 min in date

A A
- d b
f‘ o - d /J
ilc Wg_r““ c _— : -
- >

7 2min in updote " J a |
| J
\

Draw box around relevant portions

UNIVERSITY OF
WATERLOO
k_.

Outline

* Diving deeper

— Actions & Activities

UNIVERSITY OF
WATERLOO JENNEE
S e S A

Basics

* Expressing reactivity
— Generating events
— Changing conditions

* Action: Split second occurrence

— Display balance

* Activity: Take non-zero time

— Beep for 30 seconds

* Each activity X associated associated with two
actions: start(X) and stop(X)

UNIVERSITY OF
WATERLOO B
& _________———/—/—_

Basics

* Actions are
allowed with

— Transitions

— Entering a state
— Exiting a state

* Difficult to define
semantics

UNIVERSITY OF
WATERLOO

™

Outline

Additional features & possible extensions

UNIVERSITY OF
WATERLOO B
S e = e

Condition and Selection Entrances

r B) ~
C\m? -) C (:J
@ «(P) R) (P}
(= " ("] ((J o
| @ﬂ T :u
(a} | | (b) | lil'_ (e) | |
type H
lected

i =
update

UNIVERSITY OF update

WATERLOO \)7)

Timeouts

UNIVERSITY OF
WATERLOO

Unclustering

UNIVERSITY OF
WATERLOO
k_

Parametrized States

| ’..'L[f] rlrl'li!"l-. 1€(0..9] a"-.. C) c

ey e d_] [_]/ P

IIIII

UNIVERSITY OF
WATERLOO

Overlapping States

UNIVERSITY OF
WATERLOO

Temporal Logic

* Specifying constraints in TL and verification
of statecharts from constraint specification

OR

* Synthesizing 'good' statecharts from TL
specifications

UNIVERSITY OF

WATERLOO FERIE= S

Outline

* Trouble with semantics

UNIVERSITY OF
WATERLOO B
S e s e

Some Problems

i —— — T — S S ——

What happens when a occurs?
Cycles

UNIVERSITY OF
WATERLOO
k_.

Outline

* Discussion

UNIVERSITY OF
WATERLOO B
& _________———/—/—_

Discussion

* Impact
— 6000+ citations

— UML statecharts are a variant of the Harel
statechart

* Problems

— Easy to make errors that lead to
undefined/contradictory states

— Unintended consequences in complex systems

UNIVERSITY OF
WATERLOO B
& _________———/—/—_

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

