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Motivation

The author was a consultant for IAI

Involved with design specification of fighter
aircraft — the Lavi

Interactions with the avionics team
What happens when you press a button under a
certain set of circumstances?

— Incomplete/Inconsistent/Incomprehensible

specification — who decides?
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Motivation

“How should an engineering team

specify the behavior of such a complex

reactive system 1n an intuitively clear yet

mathematically rigorous fashion? This

was what I aimed to try to answer.”

- David Harel, Statecharts in the making: A personal account
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What are Statecharts?
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What is a Reactive System?

Main behavior — Reactivity

* Event-driven, control-driven, event-response nature

Often highly parallel behavior

* Behavior is specified by set of allowed
— Input/Output events

— Conditions

— Actions

— Timing constraints
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Specifying the Behavior of a
Reactive System

* States & Events — natural medium

* General form

— When event a occurs 1n state 4, 1f condition C 1s
true, the system transfers to state B

* Finite State Machines = formal mechanism
for describing such interactions
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Problems with FSMs

* Complex system (fighter aircraft)
— Unmanageable, exponentially growing states

— Flat, unstructured and chaotic diagram
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What are Statecharts?

* Extension of traditional state diagrams

* Visual formalism for states and transitions
— Modular
— Clustering
— Concurrency

— Levels of abstraction

* Statecharts = state-diagrams + depth +
orthogonality + broadcast-medium
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What are Statecharts?
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Figure 3. The Conceptual Model




Running Example

Citizen Quartz Multi-
Alarm III Wristwatch

* 4 buttons: a, b, ¢, d
* Time + date

* Chime (hour beep)

* 2 alarms

* Stopwatch

* Light

* Weak battery indication

* Beeper test
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Running Example

Main Events

* Depressing of button (a)
* Releasing of button ()
* Internal events

— Timed events

— Battery events
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* Diving deeper

— Clustering & Refinement
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Basics

Event

* Encapsulation /
expresses hierarchy J/ )
ommon

__ property
~ of Aand C

* Arrows originate and
terminate at any
level

* Clustering represents
XOR (Abstraction)

— Di1s XOR of A and C

Condition
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Zooming In and Zooming Out

Zooming out of D

Abstraction
Zooming into D
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Default States

b fio 6

(i1) (iii)

Advantageous for
zooming
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Watch Example

alarms-beep

beeps
30 sec in alorms-beep Slorm 2

T hits T2 (P2} __—

P1 = alarm1.on && (alarm2.off || T1 1= T2)

displays

P = alarm1.on && alarm2.on &&
T1==T2

UNIVERSITY OF
WATERLOO
X.




Refinement of Displays State

[ displays )

d




History Connective

Enter off first time, else enter last visited state
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History Connective - Levels

Apply only at level K Apply at all contained levels
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History Connective - Levels

Something between 'one' and 'all' extremes
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Watch Example — History + Update
Capability
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Watch Example — Refinement of
Update States

L:llurmi
tb c
¢/ (update | \ A
i c 10‘ c [hr
“"-—--minl’— min pe—
Fig. 13- ¢ applies to certain

B~q
N
parts of update

updute update
Depressing d brings back

to previous substate
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Common Source/Target Arrows

t_J L_.l

%F‘ r4>w A%

(c)

Contradiction: Non-deterministic
behavior
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Subtle Contradictions - Example
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* Diving deeper

— Orthogonality & Concurrency
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Basics

Conditional
dependence

Concurrency

* AND decomposition

* System must be in
all of its AND
components

* Y 1s an orthogonal
product of 4 and D

Synchronization
UNIVERSITY OF
WATERLOO
k_




AND-Free Equivalence

Much cleaner and easier to understand!
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Example Application — Avionics
System

AVIONICS SYSTEM

[ general - mode i radar | abc-system i
! | {
| i |
|
| | |
| | |
l l librate l
| ‘ calibra | .
| | |
I | end |
culibmimnl
I I
| | l
| | lI
L l L — __ . W -
~ Y
subsystems
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Orthogonal States -
Exits and Entrances
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Orthogonality — Watch Example

itizen quartz multi-alarm 111
batt. inserted

alive
F L
main I alarm1- lchime- : light I
| status | status |
|
| | I .
I i |
| | | e
I o e o
| alarm2 - | | power
| status l I
| | | -
| | : ,
I
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Orthogonality — Watch Example

Citizen quartz multi-alarm 111 h
{ main | alarm1 - status =chime-status lllight A
| [ | o
| disabled | | [off
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o el |
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\ | | | y,
\_ L/
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Adding a Feature — Watch Example

beep-test \’/—.

¢ requiar

date

beep-test ¢ Y \
sep-tes _4 / \
€ ~fc C A A
foo ” e) [0 )cf. _ "'d/ oY P 4o
min L] min time
b 2 min in date

A A
- d b
f‘ o - d /J
ilc Wg_r““ c _— : -
- >

7 2min in updote " J a |
| J
\

Draw box around relevant portions
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Outline

* Diving deeper

— Actions & Activities
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Basics

* Expressing reactivity
— Generating events
— Changing conditions

* Action: Split second occurrence

— Display balance

* Activity: Take non-zero time

— Beep for 30 seconds

* Each activity X associated associated with two
actions: start(X) and stop(X)
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Basics

* Actions are
allowed with

— Transitions

— Entering a state
— Exiting a state

* Difficult to define
semantics
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Additional features & possible extensions
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Condition and Selection Entrances

r B ) ~
C\m? - ) C (:J
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lected
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update
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Timeouts
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Unclustering
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Parametrized States
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Overlapping States
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Temporal Logic

* Specifying constraints in TL and verification
of statecharts from constraint specification

OR

* Synthesizing 'good' statecharts from TL
specifications
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Outline

* Trouble with semantics
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Some Problems
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What happens when a occurs?
Cycles
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Outline

* Discussion
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Discussion

* Impact
— 6000+ citations

— UML statecharts are a variant of the Harel
statechart

* Problems

— Easy to make errors that lead to
undefined/contradictory states

— Unintended consequences in complex systems
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