Reduction and Slicing of Hierarchical State Machines Mats P.E. Heimdahl and Michael W. Whalen Presenter: David Gage ## The Authors - * Mats P.E. Heimdahl - * Professor at the University of Minnesota - * Research in requirements specification - + (page last updated in 2006) - * Michael W. Whalen - Program Director at UMN Software Engineering Center - + Formal verification - * A lot of work with avionics models ## Motivation - * We want to write a specification to simplify things. - * But even a specification that is readable can get complicated and large. - + How can we accurately look at only "digestible chunks" of a specification? # Program Slicing - * A projection of a program under specified conditions. - What influences a variable? - + Or in this case - * What influences transitions? - * What allows them to happen? - + What triggers them? ### RSML - * Requirements State Machine Language. - * Designed for readability and understandability. - * Based on hierarchical state machines. - * Guarding conditions are unavoidably complex. ## AND/OR Transition(s): Potential-Threat \longrightarrow Other-Traffic Location: Other-Aircraft ▷ Intruder-Status_{s-136} Trigger Event: Air-Status-Evaluated-Evente-279 Condition: | | $\overline{\cdot}$ | | |--|--------------------|---| | RA-Mode-Cancelled _{m-218} | | Ŀ | | Alt-Reporting _{s-101} in state No | $\overline{}$ | Ŀ | | V Orger-pearing-variov-130 | F | Ŀ | | N Other-Range-Valid _{v-117} = True | \cdot | F | | D Potential-Threat-Range-Test _{m-214} | $\overline{f T}$ | Γ | | Potential-Threat-Condition _{m-213} | \cdot | Ŀ | | Proximate-Traffic-Condition _{m-216} | \cdot | Ŀ | | Threat-Condition _{m-224} | • | Ŀ | | Other-Air-Status _{s-101} in state On-Ground | \cdot | Ŀ | | | | | U | K | | | | | |----|-----------------------|--------------------|-----------------------|-------------------------|-------------------|---------------------------|---|------------| | TT | $\lceil \cdot \rceil$ | | T | T | $\overline{\Box}$ | \Box | N | lacksquare | | | T | T | | | T | 丁 | | \cdot | | | T | T | $\lceil \cdot \rceil$ | oxdot | T | T | | • | | F | F | $\overline{\cdot}$ | F | $\overline{\ }$ | F | | | | | ·F | \Box | F | \Box | F | $oxed{\cdot}$ | F | | lacksquare | | TT | T | T | F | F | F | 1 | | • | | | $\overline{\cdot}$ | oxdot | $\overline{\cdot}$ | | | | F | - | | | $\overline{\cdot}$ | \Box | T | $\overline{\mathbf{T}}$ | T | $ \overline{\mathbf{T}} $ | T | · | | | $\overline{\cdot}$ | \Box | $\overline{\cdot}$ | $\overline{\cdot}$ | • | | F | • | | | | | | | | | | T | $\triangle D$ Output Action: Intruder-Status-Evaluated-Event_{e-279} Fig. 2. A transition definition from TCAS II with the guarding condition expressed as an AND/OR table. ## Scenarios - * Defined by domain experts. - * Restricts the value of certain variables. - * Become interpretations after any behavior impossible in the scenario are removed. ## TCAS II - * "In Intruder-Status, how does the threat classification logic work for an intruder that reports both valid range and valid bearing?" - + "How do we classify and intruder that has stopped reporting altitude?" - * "What happens with a threat that lands and is determined to be on the ground?" # Interpretations - * The collection of states that can still be reached given restrictions placed by the scenario. - * With the reduced AND/OR guarding conditions. ## How it's done - * Remove any contradicting columns in each transitions AND/OR tables. - * Remove any columns that are left with all "don't care" values. - * Any transitions guarded by now empty AND/OR tables can be safely removed. #### TCAS II * "In Intruder-Status, how does the threat classification logic work for an intruder that reports both valid range and valid bearing?" Reduction Scenario: Valid-Tracking Fig. 6. An intruder reporting reliable tracking data expressed as an AND/OR table. Transition(s): Potential-Threat → Other-Traffic Location: Other-Aircraft ▷ Intruder-Status_{s-136} Trigger Event: Air-Status-Evaluated-Evente-279 Condition: | | Alt-Reporting _{s-101} in state Lost | T | T | | | T | T | | | | | |---|--|---------|---|---|--------|--------------------------|---|--------|---|--------|---| | | RA-Mode-Cancelled _{m-218} | | | T | T | | | T | 口 | | 凵 | | | Alt-Reporting _{s-101} in state No | | | T | I | | | T | T | 닏 | 니 | | | Other-Bearing-Valid _{v-130} | F | | F | Ŀ | F | 旦 | F | | ᄓ | 山 | | Ñ | Other-Range-Valid $_{v-117}$ = True | | F | | F | $oxed{oldsymbol{\cdot}}$ | F | | F | | ഥ | | _ | Potential-Threat-Range-Test _{m-214} | T | T | T | T | F | F | F | F | | | | | Potential-Threat-Condition _{m-213} | | | | | | 旦 | | | F | | | | Proximate-Traffic-Condition _{m-216} | | | | \Box | T | T | I | T | F | 니 | | | Threat-Condition _{m-224} | \cdot | | | | | | | | F | 니 | | | Other-Air-Status _{s-101} in state On-Ground | | | | | \Box | | \Box | | \Box | T | OR Output Action: Intruder-Status-Evaluated-Event_{e-279} Fig. 2. A transition definition from TCAS II with the guarding condition expressed as an AND/OR table. $Transition(s): Potential-Threat \longrightarrow Other-Traffic$ Location: Other-Aircraft ▷ Intruder-Status_{s-136} Trigger Event: Air-Status-Evaluated-Evente-279 Condition: Output Action: Intruder-Status-Evaluated-Evente-279 Fig. 8. The transition definition sliced based on the scenario Valid-Tracking in Figure 6. #### Data Flow - * If we are interested in some transition - * What has to take place to release it's guarding condition? Output Action: Intruder-Status-Evaluated-Evente-279 Fig. 8. The transition definition sliced based on the scenario Valid-Tracking in Figure 6. ## Control Flow - * If we're interested in an Event - * What can trigger it? Fig. 8. The transition definition sliced based on the scenario Valid-Tracking in Figure 6. Output Action: Intruder-Status-Evaluated-Evente-279 # Combining slices Other-Aircraft [i] Track-Status Threat-Not-Tracked Not-Tracked Trzcked Intruder-Status Other-Traffic Proximate-Traffic Potential-Threat Threat Range-Test Altitude-Reporting Other-Air-Status On-Ground Airborne Fig. 10. Model of Own-Aircraft reduced Fig. 11. Model of an intruding aircraft # Case Study - + TCAS II RSML - * Metrics - Number of transitions - * Perceived table size - * Effective table size ## Evaluation - * Scenarios - * Reduced perceived table size from 1-80 to 0-40. - * Reduced effective size from 10^8-10^10 to 0-10^8. - * Does not significantly reduce transitions. - * Data and Control Flow - * Significantly reduced the specification. ## Discussion - + Can we use this? - * Are there changes that need to be made?