Extending Alloy to Express
and Analyze Optimization
Constraints

CS846 Project Presentation
Steven.Stewart@uwaterloo.ca

Motivation, Technology, and Context
Methodology and Implementation

Demonstration

Concluding Remarks

Motivation, Technology, and Context

® Feature configuration problem:

® How do we obtain the optimal
configuration of features for a software
product!?

® Solution: combine lightweight modelling with
discrete multiobjective optimization

® My objective: enable the ability to express
MOOPs (multiobjective optimization
problems) in Alloy

® |ightweight modelling

® Alloy (http://alloy.mit.edu/alloy/)

® Multiobjective optimization using Moolloy
(http://sdg.csail.mit.edu/moolloy/)

® Feature models & Design Space Modelling

Alloy

® A lLanguage and Tool for Relational Models
(http://alloy.mit.edu/alloy/)

® | ogic and Language

® First-order logic and transitive closure

® Analysis

® Model-finding / Simulation

® Refutation: check assertions against a huge set
(likely billions) of test cases to find a counter-

example

® The Alloy compiler translates a
specification into a Kodkod formula

® Kodkod! (a relational constraint
solver) translates its “bounded

relational logic” to CNF using novel
techniques

%

® Kodkod passes the formula to a
backend SAT solver

c-ig'A'Relational Model Finder,” Proceedings of 1 3" mternational

s forConstruction and Analysis of Systems, Braga, Portugal, April
-omputer Science, Vol. 4424, Berlin, Springer- Verlag, pp.632-647.

Execute

Alloy+Kodko

Bounded Conjunctive
Relational Logic Normal Form

® Alloy calls Kodkod (as per usual)

® Kodkod, instead, passes control to
Moolloy

® Moolloy uses the “Guided
Improvement Algorithm” for
solving discrete MOOPs

Execute

Bounded
Relational Logic

Conjunctive
Normal Form
+

Objectives

M[oYe]l[0)%

® Single objective

® (-1 Knapsack: maximize the value of the
contents of your knapsack subject to a
weight restriction

® one optimal solution

® Multiobjective

® maximize performance; minimize cost;
maximize stability; minimize energy use...

® one or more optimal solutions
representing the trade-offs among the
objectives

(& Solutions to Bike.moolloy B@E
File
efworkspace/moolloy-ui-cason09/models/Bike.moolloy | Solutions = Cost Performance
soln 2045.0 £1.0 [o
soinl 1720.0 54.0)
soln2 1610.0 50.0
Matrics ' ' M soln3 1610.0 50.0 I
Mame | Operator Preference Min Max soln4 1435.0 37.0
Wrerform 1+ max a solns 2345.0 £4.0 —
Cost i min solné 1485.0 42.0
- soln7 1775.0 56.0
solng 1835.0 58.0
solng 1535.0 51.0
— solnlo 1535.0 51.0
Frame :: i soin1l 2455.0 56.0
Frame Ferformance Cost solnl2 1525.0 46.0
Steel 5.0 800.0 o solnl3 1525.0 46.0
Aluminum 2.0 1100.0 solnl4 1525.0 46.0 =
Carbon_fiber 10.0 1900.0 ’

Moolloy - 207 Chart
Pareto-Front

65,04

Fork
Fork Ferformance Cost T, e
WIFockShock XL 9.0 800.0 e 25
I ountain_july 5.0 580.0 ’
lI=Tar 9.0 750.0 70,0
|Inone 67.5
- @ 000 00000_00___—_—_—_—_—_—_—_—_—_—_—_—_/1=76W | ssod o gm

52,5
S 60,0
g
Rear_mech E 37,5 |
Fear_mech Ferformance Cost E 55,0
Shimanu_X7Z 10.0 190.0 - 5 525
Shimanu_xXR 9.0 125.0 B 5, (| T e
Shimanu_Deo 7.0 75.0 47,5
Srum_10 10.0 160.0 450
Srum_g 8.0 130.0
2, |
x 40,0
37,5

1.500 2.000

2.500

3.000
Cost

3.500

® Pareto-Solutions

D. Rayside and H.-C. Estler. “A Spreadsheet-like User Interface for Combinatorial

Multi-Objective Optimization,” CASCON'09.

® The “guided improvement algorithm” (GIA)
is used by Moolloy to solve MOOPs

® |t repeatedly adjusts a Kodkod formula to
ask for better and better solutions

® VWhen no better solution exists, then an
optimal solution has been identified on the
Pareto Front

® Moolloy provides exact solutions

stler and D. Jackson. “A Guided Improvement Algorithm for
T:urpose, Many-Objective Combinatorial Optimization,” MIT-CSAIL-

® Alloy generates tuples for each relation
bounded by a specified scope

® The ability to specify partial instances is a
pre-requisite for Alloy+MOOP, because we

need relations that map specific features to
their metric values

inst inventory {
exactly 1 Product, --explore possible configs of one product
6 Int, --large enough integers for our metrics

--inventory of options for each feature
F1 =F101 + F102 + F103,
F2 = F201 + F202 + F203,

--assignment of values to metrics for each option

ml = F101->10 + F102->15 + F103->5 +
F201->4 + F202->16 + F203->8,

m2 = F101->5 + F102->7 + F103->3 +
F201->8 + F202->5 + F203->2

Design Space Modelling and Analysis (Cai
and Sullivan)

MOOPs may arise when we consider
possible decisions in software design

Make optimal design decisions in terms of
algorithm and data structure selection

Minimize the impact of changes on other
modules

® Feature-oriented software development!

® A feature is a unit of functionality that
satisfies some requirement

® Software systems are decomposed into
their features

® Software Product Lines (SPLs) are generated
from a set of features (i.e., configurations)

. An overview of feature-oriented software development. Journal of

® What if we have limited resources!
(i.e., CPU speed, memory, battery)

® Select features that satisfy stakeholder
requirements within this constrained context

“optimal configurations”

® The Alloy Analyzer can potentially allow us
to step-through, and explore optimal
configurations in an SPL

® VWe're essentially turning Alloy into a
discrete MOOP solver

Methodology and Implementation

® Update Alloy compiler

® |Flex -- lexical analyzer

® JavaCUP -- parser generator

® Add new classes for AST

® Translation of Alloy to Kodkod

® Objectives must be translated and passed
to Kodkod

® Update Kodkod to interact with Moolloy

® Alloy GUI is oblivious to backend changes

® Updating JFlex (lex file
® Add new keywords:
objectives

maximize and minimize

optimize

Alloy+MOOP - Grammar

® Alloy 4 grammar

paragraph ::= sigDecl | factDecl | predDecl | funDecl
| assertDecl | cmdDecl

® Alloy+MOOP

Peirclgmaphiis = sigbDecl. | ifactDegl. | predbececil sl sfunbe el
| assertDecl | cmdDecl | instDecl | objDecl

objectives myGoals {
minimize energy,
maximize performance,

minimize memoryUse,

maximize stability

run myPredicate for config
optimize myGoals

objectives

Demonstration

® Now we can use Alloy to solve problems
such as 0-1 Knapsack

® |magine: “executable declarative
specifications”

® |n fact,”“Squander” uses an Alloy-like
language for executing declarative syntax in
Java (performs well on NP-complete
problems)

® Product configuration

® A product is specified as having a set of
features

® For each feature, we can specify a value
for the metrics we are interested in

® Alloy+MOORP will solve for optimal
configurations

Mandatory Optional
FeatureA m1 m2 FeatureB m1 m2
FAV1 5 4 FBV1 3 5
FAV2 4 2 FBV2 3 2
Configurations
FeatureA FeatureB totalM1 totalM2 Optimal?
FAV1 none 5 4 no
FAV2 none 4 2 yes
none FBV1 3 5 no
none FBV2 3 2 no
FAV1 FBV1 8 9 no
FAV1 FBV2 8 6 yes
FAV2 FBV1 7 7
FAV2 FBV2 7 4 yes

The Alloy syntax has been extended to
support the specification of optimization
constraints

The extension has enabled the ability to
express and solve MOOPs via Alloy

Rafael Olaechea will present his work

(next) on translating Clafer to Alloy for
MOOPs

® The new syntax enables the exploration of
optimal configurations of software
products

® This ability enables us to use Alloy as a
MOGOP solver, with the full-capabilities of
Moolloy at our disposal

® Making changes to the Alloy compiler was
difficult

® Very little documentation

® Some questionable design decisions

® Reminds us of the benefits of applying best-
practices in our academic work

Additional work is currently underway to improve and
better-define how the scope of relational variables are
computed

The problem of discontiguous integers leading to increased
formula generation and solving time is still being addressed

As part of their 4th-year design project, students are
working on how to improve the visualization of Pareto-
optimal solutions

A group of nano students are writing Alloy models for
discrete multiobjective optimization problems

