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Motivation, Technology, and Context



Motivation

• Feature configuration problem: 

• How do we obtain the optimal 
configuration of features for a software 
product?

• Solution: combine lightweight modelling with 
discrete multiobjective optimization



Motivation

• My objective: enable the ability to express 
MOOPs (multiobjective optimization 
problems) in Alloy



Technology

• Lightweight modelling

• Alloy (http://alloy.mit.edu/alloy/)

• Multiobjective optimization using Moolloy 
(http://sdg.csail.mit.edu/moolloy/)

• Feature models & Design Space Modelling



Alloy

• A Language and Tool for Relational Models 
(http://alloy.mit.edu/alloy/)

• Logic and Language

• First-order logic and transitive closure



Alloy

• Analysis

• Model-finding / Simulation

• Refutation: check assertions against a huge set  
(likely billions) of test cases to find a counter-
example



Alloy+Kodkod

• The Alloy compiler translates a 
specification into a Kodkod formula

• Kodkod1 (a relational constraint 
solver) translates its “bounded 
relational logic” to CNF using novel 
techniques

• Kodkod passes the formula to a 
backend SAT solver

1E. Torlak and D. Jackson. “Kodkod: A Relational Model Finder,” Proceedings of 13th International 
Conference on Tools and Algorithms forConstruction and Analysis of Systems, Braga, Portugal, April 
2007. Lecture Notes in Computer Science, Vol. 4424, Berlin, Springer- Verlag, pp.632-647.



Alloy+Kodkod
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Alloy+MOOP

• Alloy calls Kodkod (as per usual)

• Kodkod, instead, passes control to 
Moolloy

• Moolloy uses the “Guided 
Improvement Algorithm” for 
solving discrete MOOPs



Alloy+MOOP

Alloy Kodkod SAT 
Solver

Bounded
Relational Logic

Moolloy

Conjunctive
Normal Form

+
Objectives



Optimization

• Single objective

• 0-1 Knapsack: maximize the value of the 
contents of your knapsack subject to a 
weight restriction

• one optimal solution



Optimization

• Multiobjective

• maximize performance; minimize cost; 
maximize stability; minimize energy use...

• one or more optimal solutions 
representing the trade-offs among the 
objectives



Figure 4: The entire model-tree, the solution window and the plot of the Pareto front.

Figure 5: For each variable we declare the in-
fluence of a domain value on the metric value.

Frame will never be assigned to this domain
value. Rows which are only partially filled with
metric values, are automatically completed by
adding a neutral element (0 for addition, 1 for
multiplication) in the empty fields.

3.4 Solving the Model

Once we have completed our model, we solve
it in order to get the Pareto optimal solutions
(the Pareto front). Figure 4 shows the main
window with the complete model-tree for our
bicycle example.

A separate window displays a table with
all the Pareto optimal solutions, showing their
metric values (see Figure 6). Clicking on one
of these rows will open up a new window dis-
playing the details of the the solution, i.e. the

assignments of variables to domain values (see
Figure 7).

To visually inspect the Pareto front of our
model, we can plot two metrics in a diagram.
For our bicycle example, we can observe that
there is high density of solutions with low
costs and low to medium performance but only
a few solutions with excellent performance.
This might indicate that we have not enough
medium-price, medium-performance options in
our model.

Figure 6: Pareto optimal solutions to the
model. The Pareto front can be plotted using
the context menu.
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D. Rayside and H.-C. Estler. “A Spreadsheet-like User Interface for Combinatorial 
Multi-Objective Optimization,” CASCON'09.



Moolloy+GIA
• The “guided improvement algorithm” (GIA1) 

is used by Moolloy to solve MOOPs

• It repeatedly adjusts a Kodkod formula to 
ask for better and better solutions

• When no better solution exists, then an 
optimal solution has been identified on the 
Pareto Front

• Moolloy provides exact solutions
1D. Rayside, H.-C. Estler and D. Jackson. “A Guided Improvement Algorithm for 
Exact, General Purpose, Many-Objective Combinatorial Optimization,” MIT-CSAIL-
TR-2009-033.



Alloy + Partial Instances

• Alloy generates tuples for each relation 
bounded by a specified scope

• The ability to specify partial instances is a 
pre-requisite for Alloy+MOOP,  because we 
need relations that map specific features to 
their metric values





Context
• Design Space Modelling and Analysis (Cai 

and Sullivan)

• MOOPs may arise when we consider 
possible decisions in software design

• Make optimal design decisions in terms of 
algorithm and data structure selection

• Minimize the impact of changes on other 
modules



Context

• Feature-oriented software development1

• A feature is a unit of functionality that 
satisfies some requirement

• Software systems are decomposed into 
their features

• Software Product Lines (SPLs) are generated 
from a set of features (i.e., configurations)

1S. Apel and C. Kastner. An overview of feature-oriented software development. Journal of 
Object Technology, 8, 2009.



Context

• What if we have limited resources?

(i.e., CPU speed, memory, battery)

• Select features that satisfy stakeholder 
requirements within this constrained context

“optimal configurations”



Context

• The Alloy Analyzer can potentially allow us 
to step-through, and explore optimal 
configurations in an SPL

• We’re essentially turning Alloy into a 
discrete MOOP solver



Methodology and Implementation



Methodology

• Update Alloy compiler

• JFlex -- lexical analyzer

• JavaCUP -- parser generator

• Add new classes for AST



Methodology

• Translation of Alloy to Kodkod

• Objectives must be translated and passed 
to Kodkod

• Update Kodkod to interact with Moolloy

• Alloy GUI is oblivious to backend changes



Implementation

• Updating JFlex (lex file)

• Add new keywords: 

objectives

maximize and minimize

optimize



Alloy+MOOP - Grammar

• Alloy 4 grammar
paragraph ::= sigDecl | factDecl | predDecl | funDecl 
| assertDecl | cmdDecl

• Alloy+MOOP
paragraph ::= sigDecl | factDecl | predDecl | funDecl 
| assertDecl | cmdDecl | instDecl | objDecl



objectives myGoals {

minimize energy,

maximize performance,

minimize memoryUse,

maximize stability

}



run myPredicate for config 
optimize myGoals

inst 
block

objectives 
block



Demonstration



Demonstration
• Now we can use Alloy to solve problems 

such as 0-1 Knapsack

• Imagine: “executable declarative 
specifications”

• In fact, “Squander” uses an Alloy-like 
language for executing declarative syntax in 
Java (performs well on NP-complete 
problems)



Demonstration
• Product configuration

• A product is specified as having a set of 
features

• For each feature, we can specify a value 
for the metrics we are interested in

• Alloy+MOOP will solve for optimal 
configurations





Concluding Remarks



Results
• The Alloy syntax has been extended to 

support the specification of optimization 
constraints

• The extension has enabled the ability to 
express and solve MOOPs via Alloy 

• Rafael Olaechea will present his work 
(next) on translating Clafer to Alloy for 
MOOPs



Conclusions

• The new syntax enables the exploration of 
optimal configurations of software 
products

• This ability enables us to use Alloy as a 
MOOP solver, with the full-capabilities of 
Moolloy at our disposal



Lessons Learned

• Making changes to the Alloy compiler was 
difficult

• Very little documentation

• Some questionable design decisions

• Reminds us of the benefits of applying best-
practices in our academic work



Future Work
• Additional work is currently underway to improve and 

better-define how the scope of relational variables are 
computed

• The problem of discontiguous integers leading to increased 
formula generation and solving time is still being addressed

• As part of their 4th-year design project, students are 
working on how to improve the visualization of Pareto-
optimal solutions

• A group of nano students are writing Alloy models for 
discrete multiobjective optimization problems


