
Extending Alloy to Express
and Analyze Optimization

Constraints

CS846 Project Presentation
Steven.Stewart@uwaterloo.ca

Overview

• Motivation, Technology, and Context

• Methodology and Implementation

• Demonstration

• Concluding Remarks

Motivation, Technology, and Context

Motivation

• Feature configuration problem:

• How do we obtain the optimal
configuration of features for a software
product?

• Solution: combine lightweight modelling with
discrete multiobjective optimization

Motivation

• My objective: enable the ability to express
MOOPs (multiobjective optimization
problems) in Alloy

Technology

• Lightweight modelling

• Alloy (http://alloy.mit.edu/alloy/)

• Multiobjective optimization using Moolloy
(http://sdg.csail.mit.edu/moolloy/)

• Feature models & Design Space Modelling

Alloy

• A Language and Tool for Relational Models
(http://alloy.mit.edu/alloy/)

• Logic and Language

• First-order logic and transitive closure

Alloy

• Analysis

• Model-finding / Simulation

• Refutation: check assertions against a huge set
(likely billions) of test cases to find a counter-
example

Alloy+Kodkod

• The Alloy compiler translates a
specification into a Kodkod formula

• Kodkod1 (a relational constraint
solver) translates its “bounded
relational logic” to CNF using novel
techniques

• Kodkod passes the formula to a
backend SAT solver

1E. Torlak and D. Jackson. “Kodkod: A Relational Model Finder,” Proceedings of 13th International
Conference on Tools and Algorithms forConstruction and Analysis of Systems, Braga, Portugal, April
2007. Lecture Notes in Computer Science, Vol. 4424, Berlin, Springer- Verlag, pp.632-647.

Alloy+Kodkod

Alloy Kodkod SAT
Solver

Bounded
Relational Logic

Conjunctive
Normal Form

Alloy+MOOP

• Alloy calls Kodkod (as per usual)

• Kodkod, instead, passes control to
Moolloy

• Moolloy uses the “Guided
Improvement Algorithm” for
solving discrete MOOPs

Alloy+MOOP

Alloy Kodkod SAT
Solver

Bounded
Relational Logic

Moolloy

Conjunctive
Normal Form

+
Objectives

Optimization

• Single objective

• 0-1 Knapsack: maximize the value of the
contents of your knapsack subject to a
weight restriction

• one optimal solution

Optimization

• Multiobjective

• maximize performance; minimize cost;
maximize stability; minimize energy use...

• one or more optimal solutions
representing the trade-offs among the
objectives

Figure 4: The entire model-tree, the solution window and the plot of the Pareto front.

Figure 5: For each variable we declare the in-
fluence of a domain value on the metric value.

Frame will never be assigned to this domain
value. Rows which are only partially filled with
metric values, are automatically completed by
adding a neutral element (0 for addition, 1 for
multiplication) in the empty fields.

3.4 Solving the Model

Once we have completed our model, we solve
it in order to get the Pareto optimal solutions
(the Pareto front). Figure 4 shows the main
window with the complete model-tree for our
bicycle example.

A separate window displays a table with
all the Pareto optimal solutions, showing their
metric values (see Figure 6). Clicking on one
of these rows will open up a new window dis-
playing the details of the the solution, i.e. the

assignments of variables to domain values (see
Figure 7).

To visually inspect the Pareto front of our
model, we can plot two metrics in a diagram.
For our bicycle example, we can observe that
there is high density of solutions with low
costs and low to medium performance but only
a few solutions with excellent performance.
This might indicate that we have not enough
medium-price, medium-performance options in
our model.

Figure 6: Pareto optimal solutions to the
model. The Pareto front can be plotted using
the context menu.

5

D. Rayside and H.-C. Estler. “A Spreadsheet-like User Interface for Combinatorial
Multi-Objective Optimization,” CASCON'09.

Moolloy+GIA
• The “guided improvement algorithm” (GIA1)

is used by Moolloy to solve MOOPs

• It repeatedly adjusts a Kodkod formula to
ask for better and better solutions

• When no better solution exists, then an
optimal solution has been identified on the
Pareto Front

• Moolloy provides exact solutions
1D. Rayside, H.-C. Estler and D. Jackson. “A Guided Improvement Algorithm for
Exact, General Purpose, Many-Objective Combinatorial Optimization,” MIT-CSAIL-
TR-2009-033.

Alloy + Partial Instances

• Alloy generates tuples for each relation
bounded by a specified scope

• The ability to specify partial instances is a
pre-requisite for Alloy+MOOP, because we
need relations that map specific features to
their metric values

Context
• Design Space Modelling and Analysis (Cai

and Sullivan)

• MOOPs may arise when we consider
possible decisions in software design

• Make optimal design decisions in terms of
algorithm and data structure selection

• Minimize the impact of changes on other
modules

Context

• Feature-oriented software development1

• A feature is a unit of functionality that
satisfies some requirement

• Software systems are decomposed into
their features

• Software Product Lines (SPLs) are generated
from a set of features (i.e., configurations)

1S. Apel and C. Kastner. An overview of feature-oriented software development. Journal of
Object Technology, 8, 2009.

Context

• What if we have limited resources?

(i.e., CPU speed, memory, battery)

• Select features that satisfy stakeholder
requirements within this constrained context

“optimal configurations”

Context

• The Alloy Analyzer can potentially allow us
to step-through, and explore optimal
configurations in an SPL

• We’re essentially turning Alloy into a
discrete MOOP solver

Methodology and Implementation

Methodology

• Update Alloy compiler

• JFlex -- lexical analyzer

• JavaCUP -- parser generator

• Add new classes for AST

Methodology

• Translation of Alloy to Kodkod

• Objectives must be translated and passed
to Kodkod

• Update Kodkod to interact with Moolloy

• Alloy GUI is oblivious to backend changes

Implementation

• Updating JFlex (lex file)

• Add new keywords:

objectives

maximize and minimize

optimize

Alloy+MOOP - Grammar

• Alloy 4 grammar
paragraph ::= sigDecl | factDecl | predDecl | funDecl
| assertDecl | cmdDecl

• Alloy+MOOP
paragraph ::= sigDecl | factDecl | predDecl | funDecl
| assertDecl | cmdDecl | instDecl | objDecl

objectives myGoals {

minimize energy,

maximize performance,

minimize memoryUse,

maximize stability

}

run myPredicate for config
optimize myGoals

inst
block

objectives
block

Demonstration

Demonstration
• Now we can use Alloy to solve problems

such as 0-1 Knapsack

• Imagine: “executable declarative
specifications”

• In fact, “Squander” uses an Alloy-like
language for executing declarative syntax in
Java (performs well on NP-complete
problems)

Demonstration
• Product configuration

• A product is specified as having a set of
features

• For each feature, we can specify a value
for the metrics we are interested in

• Alloy+MOOP will solve for optimal
configurations

Concluding Remarks

Results
• The Alloy syntax has been extended to

support the specification of optimization
constraints

• The extension has enabled the ability to
express and solve MOOPs via Alloy

• Rafael Olaechea will present his work
(next) on translating Clafer to Alloy for
MOOPs

Conclusions

• The new syntax enables the exploration of
optimal configurations of software
products

• This ability enables us to use Alloy as a
MOOP solver, with the full-capabilities of
Moolloy at our disposal

Lessons Learned

• Making changes to the Alloy compiler was
difficult

• Very little documentation

• Some questionable design decisions

• Reminds us of the benefits of applying best-
practices in our academic work

Future Work
• Additional work is currently underway to improve and

better-define how the scope of relational variables are
computed

• The problem of discontiguous integers leading to increased
formula generation and solving time is still being addressed

• As part of their 4th-year design project, students are
working on how to improve the visualization of Pareto-
optimal solutions

• A group of nano students are writing Alloy models for
discrete multiobjective optimization problems

